freebsd-skq/sys/kern/kern_mutex.c
jhb 65d4d80800 Rework the optimization for spinlocks on UP to be slightly less drastic and
turn it back on.  Specifically, the actual changes are now less intrusive
in that the _get_spin_lock() and _rel_spin_lock() macros now have their
contents changed for UP vs SMP kernels which centralizes the changes.
Also, UP kernels do not use _mtx_lock_spin() and no longer include it.  The
UP versions of the spin lock functions do not use any atomic operations,
but simple compares and stores which allow mtx_owned() to still work for
spin locks while removing the overhead of atomic operations.

Tested on:	i386, alpha
2005-01-05 21:13:27 +00:00

902 lines
24 KiB
C

/*-
* Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Berkeley Software Design Inc's name may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
* and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
*/
/*
* Machine independent bits of mutex implementation.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_adaptive_mutexes.h"
#include "opt_ddb.h"
#include "opt_mprof.h"
#include "opt_mutex_wake_all.h"
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/turnstile.h>
#include <sys/vmmeter.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <ddb/ddb.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
/*
* Force MUTEX_WAKE_ALL for now.
* single thread wakeup needs fixes to avoid race conditions with
* priority inheritance.
*/
#ifndef MUTEX_WAKE_ALL
#define MUTEX_WAKE_ALL
#endif
/*
* Internal utility macros.
*/
#define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED)
#define mtx_owner(m) (mtx_unowned((m)) ? NULL \
: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
/*
* Lock classes for sleep and spin mutexes.
*/
struct lock_class lock_class_mtx_sleep = {
"sleep mutex",
LC_SLEEPLOCK | LC_RECURSABLE
};
struct lock_class lock_class_mtx_spin = {
"spin mutex",
LC_SPINLOCK | LC_RECURSABLE
};
/*
* System-wide mutexes
*/
struct mtx sched_lock;
struct mtx Giant;
#ifdef MUTEX_PROFILING
SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
static int mutex_prof_enable = 0;
SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
&mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
struct mutex_prof {
const char *name;
const char *file;
int line;
uintmax_t cnt_max;
uintmax_t cnt_tot;
uintmax_t cnt_cur;
uintmax_t cnt_contest_holding;
uintmax_t cnt_contest_locking;
struct mutex_prof *next;
};
/*
* mprof_buf is a static pool of profiling records to avoid possible
* reentrance of the memory allocation functions.
*
* Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
*/
#ifdef MPROF_BUFFERS
#define NUM_MPROF_BUFFERS MPROF_BUFFERS
#else
#define NUM_MPROF_BUFFERS 1000
#endif
static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
static int first_free_mprof_buf;
#ifndef MPROF_HASH_SIZE
#define MPROF_HASH_SIZE 1009
#endif
#if NUM_MPROF_BUFFERS >= MPROF_HASH_SIZE
#error MPROF_BUFFERS must be larger than MPROF_HASH_SIZE
#endif
static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
/* SWAG: sbuf size = avg stat. line size * number of locks */
#define MPROF_SBUF_SIZE 256 * 400
static int mutex_prof_acquisitions;
SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
&mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
static int mutex_prof_records;
SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
&mutex_prof_records, 0, "Number of profiling records");
static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
&mutex_prof_maxrecords, 0, "Maximum number of profiling records");
static int mutex_prof_rejected;
SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
&mutex_prof_rejected, 0, "Number of rejected profiling records");
static int mutex_prof_hashsize = MPROF_HASH_SIZE;
SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
&mutex_prof_hashsize, 0, "Hash size");
static int mutex_prof_collisions = 0;
SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
&mutex_prof_collisions, 0, "Number of hash collisions");
/*
* mprof_mtx protects the profiling buffers and the hash.
*/
static struct mtx mprof_mtx;
MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
static u_int64_t
nanoseconds(void)
{
struct timespec tv;
nanotime(&tv);
return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
}
static int
dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
{
struct sbuf *sb;
int error, i;
static int multiplier = 1;
if (first_free_mprof_buf == 0)
return (SYSCTL_OUT(req, "No locking recorded",
sizeof("No locking recorded")));
retry_sbufops:
sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
sbuf_printf(sb, "%6s %12s %11s %5s %12s %12s %s\n",
"max", "total", "count", "avg", "cnt_hold", "cnt_lock", "name");
/*
* XXX this spinlock seems to be by far the largest perpetrator
* of spinlock latency (1.6 msec on an Athlon1600 was recorded
* even before I pessimized it further by moving the average
* computation here).
*/
mtx_lock_spin(&mprof_mtx);
for (i = 0; i < first_free_mprof_buf; ++i) {
sbuf_printf(sb, "%6ju %12ju %11ju %5ju %12ju %12ju %s:%d (%s)\n",
mprof_buf[i].cnt_max / 1000,
mprof_buf[i].cnt_tot / 1000,
mprof_buf[i].cnt_cur,
mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
mprof_buf[i].cnt_contest_holding,
mprof_buf[i].cnt_contest_locking,
mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
if (sbuf_overflowed(sb)) {
mtx_unlock_spin(&mprof_mtx);
sbuf_delete(sb);
multiplier++;
goto retry_sbufops;
}
}
mtx_unlock_spin(&mprof_mtx);
sbuf_finish(sb);
error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
sbuf_delete(sb);
return (error);
}
SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
static int
reset_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
{
int error, v;
if (first_free_mprof_buf == 0)
return (0);
v = 0;
error = sysctl_handle_int(oidp, &v, 0, req);
if (error)
return (error);
if (req->newptr == NULL)
return (error);
if (v == 0)
return (0);
mtx_lock_spin(&mprof_mtx);
bzero(mprof_buf, sizeof(*mprof_buf) * first_free_mprof_buf);
bzero(mprof_hash, sizeof(struct mtx *) * MPROF_HASH_SIZE);
first_free_mprof_buf = 0;
mtx_unlock_spin(&mprof_mtx);
return (0);
}
SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
NULL, 0, reset_mutex_prof_stats, "I", "Reset mutex profiling statistics");
#endif
/*
* Function versions of the inlined __mtx_* macros. These are used by
* modules and can also be called from assembly language if needed.
*/
void
_mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
{
MPASS(curthread != NULL);
KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
file, line));
WITNESS_CHECKORDER(&m->mtx_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
file, line);
_get_sleep_lock(m, curthread, opts, file, line);
LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
line);
WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
#ifdef MUTEX_PROFILING
/* don't reset the timer when/if recursing */
if (m->mtx_acqtime == 0) {
m->mtx_filename = file;
m->mtx_lineno = line;
m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
++mutex_prof_acquisitions;
}
#endif
}
void
_mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
{
MPASS(curthread != NULL);
KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
file, line));
WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
line);
mtx_assert(m, MA_OWNED);
#ifdef MUTEX_PROFILING
if (m->mtx_acqtime != 0) {
static const char *unknown = "(unknown)";
struct mutex_prof *mpp;
u_int64_t acqtime, now;
const char *p, *q;
volatile u_int hash;
now = nanoseconds();
acqtime = m->mtx_acqtime;
m->mtx_acqtime = 0;
if (now <= acqtime)
goto out;
for (p = m->mtx_filename;
p != NULL && strncmp(p, "../", 3) == 0; p += 3)
/* nothing */ ;
if (p == NULL || *p == '\0')
p = unknown;
for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
mtx_lock_spin(&mprof_mtx);
for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
if (mpp->line == m->mtx_lineno &&
strcmp(mpp->file, p) == 0)
break;
if (mpp == NULL) {
/* Just exit if we cannot get a trace buffer */
if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
++mutex_prof_rejected;
goto unlock;
}
mpp = &mprof_buf[first_free_mprof_buf++];
mpp->name = mtx_name(m);
mpp->file = p;
mpp->line = m->mtx_lineno;
mpp->next = mprof_hash[hash];
if (mprof_hash[hash] != NULL)
++mutex_prof_collisions;
mprof_hash[hash] = mpp;
++mutex_prof_records;
}
/*
* Record if the mutex has been held longer now than ever
* before.
*/
if (now - acqtime > mpp->cnt_max)
mpp->cnt_max = now - acqtime;
mpp->cnt_tot += now - acqtime;
mpp->cnt_cur++;
/*
* There's a small race, really we should cmpxchg
* 0 with the current value, but that would bill
* the contention to the wrong lock instance if
* it followed this also.
*/
mpp->cnt_contest_holding += m->mtx_contest_holding;
m->mtx_contest_holding = 0;
mpp->cnt_contest_locking += m->mtx_contest_locking;
m->mtx_contest_locking = 0;
unlock:
mtx_unlock_spin(&mprof_mtx);
}
out:
#endif
_rel_sleep_lock(m, curthread, opts, file, line);
}
void
_mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
{
MPASS(curthread != NULL);
KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
("mtx_lock_spin() of sleep mutex %s @ %s:%d",
m->mtx_object.lo_name, file, line));
WITNESS_CHECKORDER(&m->mtx_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
file, line);
_get_spin_lock(m, curthread, opts, file, line);
LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
line);
WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
}
void
_mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
{
MPASS(curthread != NULL);
KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
m->mtx_object.lo_name, file, line));
WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
line);
mtx_assert(m, MA_OWNED);
_rel_spin_lock(m);
}
/*
* The important part of mtx_trylock{,_flags}()
* Tries to acquire lock `m.' If this function is called on a mutex that
* is already owned, it will recursively acquire the lock.
*/
int
_mtx_trylock(struct mtx *m, int opts, const char *file, int line)
{
int rval;
MPASS(curthread != NULL);
if (mtx_owned(m) && (m->mtx_object.lo_flags & LO_RECURSABLE) != 0) {
m->mtx_recurse++;
atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
rval = 1;
} else
rval = _obtain_lock(m, curthread);
LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
if (rval)
WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
file, line);
return (rval);
}
/*
* _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
*
* We call this if the lock is either contested (i.e. we need to go to
* sleep waiting for it), or if we need to recurse on it.
*/
void
_mtx_lock_sleep(struct mtx *m, struct thread *td, int opts, const char *file,
int line)
{
#if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
struct thread *owner;
#endif
uintptr_t v;
#ifdef KTR
int cont_logged = 0;
#endif
#ifdef MUTEX_PROFILING
int contested;
#endif
if (mtx_owned(m)) {
KASSERT((m->mtx_object.lo_flags & LO_RECURSABLE) != 0,
("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
m->mtx_object.lo_name, file, line));
m->mtx_recurse++;
atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
return;
}
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR4(KTR_LOCK,
"_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
#ifdef MUTEX_PROFILING
contested = 0;
#endif
while (!_obtain_lock(m, td)) {
#ifdef MUTEX_PROFILING
contested = 1;
atomic_add_int(&m->mtx_contest_holding, 1);
#endif
turnstile_lock(&m->mtx_object);
v = m->mtx_lock;
/*
* Check if the lock has been released while spinning for
* the turnstile chain lock.
*/
if (v == MTX_UNOWNED) {
turnstile_release(&m->mtx_object);
cpu_spinwait();
continue;
}
#ifdef MUTEX_WAKE_ALL
MPASS(v != MTX_CONTESTED);
#else
/*
* The mutex was marked contested on release. This means that
* there are other threads blocked on it. Grab ownership of
* it and propagate its priority to the current thread if
* necessary.
*/
if (v == MTX_CONTESTED) {
m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
turnstile_claim(&m->mtx_object);
break;
}
#endif
/*
* If the mutex isn't already contested and a failure occurs
* setting the contested bit, the mutex was either released
* or the state of the MTX_RECURSED bit changed.
*/
if ((v & MTX_CONTESTED) == 0 &&
!atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
(void *)(v | MTX_CONTESTED))) {
turnstile_release(&m->mtx_object);
cpu_spinwait();
continue;
}
#if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
/*
* If the current owner of the lock is executing on another
* CPU, spin instead of blocking.
*/
owner = (struct thread *)(v & MTX_FLAGMASK);
#ifdef ADAPTIVE_GIANT
if (TD_IS_RUNNING(owner)) {
#else
if (m != &Giant && TD_IS_RUNNING(owner)) {
#endif
turnstile_release(&m->mtx_object);
while (mtx_owner(m) == owner && TD_IS_RUNNING(owner)) {
cpu_spinwait();
}
continue;
}
#endif /* SMP && !NO_ADAPTIVE_MUTEXES */
/*
* We definitely must sleep for this lock.
*/
mtx_assert(m, MA_NOTOWNED);
#ifdef KTR
if (!cont_logged) {
CTR6(KTR_CONTENTION,
"contention: %p at %s:%d wants %s, taken by %s:%d",
td, file, line, m->mtx_object.lo_name,
WITNESS_FILE(&m->mtx_object),
WITNESS_LINE(&m->mtx_object));
cont_logged = 1;
}
#endif
/*
* Block on the turnstile.
*/
turnstile_wait(&m->mtx_object, mtx_owner(m));
}
#ifdef KTR
if (cont_logged) {
CTR4(KTR_CONTENTION,
"contention end: %s acquired by %p at %s:%d",
m->mtx_object.lo_name, td, file, line);
}
#endif
#ifdef MUTEX_PROFILING
if (contested)
m->mtx_contest_locking++;
m->mtx_contest_holding = 0;
#endif
return;
}
#ifdef SMP
/*
* _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
*
* This is only called if we need to actually spin for the lock. Recursion
* is handled inline.
*/
void
_mtx_lock_spin(struct mtx *m, struct thread *td, int opts, const char *file,
int line)
{
int i = 0;
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
for (;;) {
if (_obtain_lock(m, td))
break;
/* Give interrupts a chance while we spin. */
critical_exit();
while (m->mtx_lock != MTX_UNOWNED) {
if (i++ < 10000000) {
cpu_spinwait();
continue;
}
if (i < 60000000)
DELAY(1);
else if (!kdb_active) {
printf("spin lock %s held by %p for > 5 seconds\n",
m->mtx_object.lo_name, (void *)m->mtx_lock);
#ifdef WITNESS
witness_display_spinlock(&m->mtx_object,
mtx_owner(m));
#endif
panic("spin lock held too long");
}
cpu_spinwait();
}
critical_enter();
}
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
return;
}
#endif /* SMP */
/*
* _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
*
* We are only called here if the lock is recursed or contested (i.e. we
* need to wake up a blocked thread).
*/
void
_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
{
struct turnstile *ts;
#ifndef PREEMPTION
struct thread *td, *td1;
#endif
if (mtx_recursed(m)) {
if (--(m->mtx_recurse) == 0)
atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
return;
}
turnstile_lock(&m->mtx_object);
ts = turnstile_lookup(&m->mtx_object);
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
#if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
if (ts == NULL) {
_release_lock_quick(m);
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
turnstile_release(&m->mtx_object);
return;
}
#else
MPASS(ts != NULL);
#endif
#ifndef PREEMPTION
/* XXX */
td1 = turnstile_head(ts);
#endif
#ifdef MUTEX_WAKE_ALL
turnstile_broadcast(ts);
_release_lock_quick(m);
#else
if (turnstile_signal(ts)) {
_release_lock_quick(m);
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
} else {
m->mtx_lock = MTX_CONTESTED;
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p still contested",
m);
}
#endif
turnstile_unpend(ts);
#ifndef PREEMPTION
/*
* XXX: This is just a hack until preemption is done. However,
* once preemption is done we need to either wrap the
* turnstile_signal() and release of the actual lock in an
* extra critical section or change the preemption code to
* always just set a flag and never do instant-preempts.
*/
td = curthread;
if (td->td_critnest > 0 || td1->td_priority >= td->td_priority)
return;
mtx_lock_spin(&sched_lock);
if (!TD_IS_RUNNING(td1)) {
#ifdef notyet
if (td->td_ithd != NULL) {
struct ithd *it = td->td_ithd;
if (it->it_interrupted) {
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR2(KTR_LOCK,
"_mtx_unlock_sleep: %p interrupted %p",
it, it->it_interrupted);
intr_thd_fixup(it);
}
}
#endif
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR2(KTR_LOCK,
"_mtx_unlock_sleep: %p switching out lock=%p", m,
(void *)m->mtx_lock);
mi_switch(SW_INVOL, NULL);
if (LOCK_LOG_TEST(&m->mtx_object, opts))
CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
m, (void *)m->mtx_lock);
}
mtx_unlock_spin(&sched_lock);
#endif
return;
}
/*
* All the unlocking of MTX_SPIN locks is done inline.
* See the _rel_spin_lock() macro for the details.
*/
/*
* The backing function for the INVARIANTS-enabled mtx_assert()
*/
#ifdef INVARIANT_SUPPORT
void
_mtx_assert(struct mtx *m, int what, const char *file, int line)
{
if (panicstr != NULL)
return;
switch (what) {
case MA_OWNED:
case MA_OWNED | MA_RECURSED:
case MA_OWNED | MA_NOTRECURSED:
if (!mtx_owned(m))
panic("mutex %s not owned at %s:%d",
m->mtx_object.lo_name, file, line);
if (mtx_recursed(m)) {
if ((what & MA_NOTRECURSED) != 0)
panic("mutex %s recursed at %s:%d",
m->mtx_object.lo_name, file, line);
} else if ((what & MA_RECURSED) != 0) {
panic("mutex %s unrecursed at %s:%d",
m->mtx_object.lo_name, file, line);
}
break;
case MA_NOTOWNED:
if (mtx_owned(m))
panic("mutex %s owned at %s:%d",
m->mtx_object.lo_name, file, line);
break;
default:
panic("unknown mtx_assert at %s:%d", file, line);
}
}
#endif
/*
* The MUTEX_DEBUG-enabled mtx_validate()
*
* Most of these checks have been moved off into the LO_INITIALIZED flag
* maintained by the witness code.
*/
#ifdef MUTEX_DEBUG
void mtx_validate(struct mtx *);
void
mtx_validate(struct mtx *m)
{
/*
* XXX: When kernacc() does not require Giant we can reenable this check
*/
#ifdef notyet
/*
* XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
* we can re-enable the kernacc() checks.
*/
#ifndef __alpha__
/*
* Can't call kernacc() from early init386(), especially when
* initializing Giant mutex, because some stuff in kernacc()
* requires Giant itself.
*/
if (!cold)
if (!kernacc((caddr_t)m, sizeof(m),
VM_PROT_READ | VM_PROT_WRITE))
panic("Can't read and write to mutex %p", m);
#endif
#endif
}
#endif
/*
* General init routine used by the MTX_SYSINIT() macro.
*/
void
mtx_sysinit(void *arg)
{
struct mtx_args *margs = arg;
mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
}
/*
* Mutex initialization routine; initialize lock `m' of type contained in
* `opts' with options contained in `opts' and name `name.' The optional
* lock type `type' is used as a general lock category name for use with
* witness.
*/
void
mtx_init(struct mtx *m, const char *name, const char *type, int opts)
{
struct lock_object *lock;
MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
MTX_NOWITNESS | MTX_DUPOK)) == 0);
#ifdef MUTEX_DEBUG
/* Diagnostic and error correction */
mtx_validate(m);
#endif
lock = &m->mtx_object;
KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
("mutex \"%s\" %p already initialized", name, m));
bzero(m, sizeof(*m));
if (opts & MTX_SPIN)
lock->lo_class = &lock_class_mtx_spin;
else
lock->lo_class = &lock_class_mtx_sleep;
lock->lo_name = name;
lock->lo_type = type != NULL ? type : name;
if (opts & MTX_QUIET)
lock->lo_flags = LO_QUIET;
if (opts & MTX_RECURSE)
lock->lo_flags |= LO_RECURSABLE;
if ((opts & MTX_NOWITNESS) == 0)
lock->lo_flags |= LO_WITNESS;
if (opts & MTX_DUPOK)
lock->lo_flags |= LO_DUPOK;
m->mtx_lock = MTX_UNOWNED;
LOCK_LOG_INIT(lock, opts);
WITNESS_INIT(lock);
}
/*
* Remove lock `m' from all_mtx queue. We don't allow MTX_QUIET to be
* passed in as a flag here because if the corresponding mtx_init() was
* called with MTX_QUIET set, then it will already be set in the mutex's
* flags.
*/
void
mtx_destroy(struct mtx *m)
{
LOCK_LOG_DESTROY(&m->mtx_object, 0);
if (!mtx_owned(m))
MPASS(mtx_unowned(m));
else {
MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
/* Tell witness this isn't locked to make it happy. */
WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
__LINE__);
}
WITNESS_DESTROY(&m->mtx_object);
}
/*
* Intialize the mutex code and system mutexes. This is called from the MD
* startup code prior to mi_startup(). The per-CPU data space needs to be
* setup before this is called.
*/
void
mutex_init(void)
{
/* Setup thread0 so that mutexes work. */
LIST_INIT(&thread0.td_contested);
/* Setup turnstiles so that sleep mutexes work. */
init_turnstiles();
/*
* Initialize mutexes.
*/
mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
mtx_lock(&Giant);
}