864 lines
24 KiB
C
864 lines
24 KiB
C
/*
|
|
* Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This module implements netmap support on top of standard,
|
|
* unmodified device drivers.
|
|
*
|
|
* A NIOCREGIF request is handled here if the device does not
|
|
* have native support. TX and RX rings are emulated as follows:
|
|
*
|
|
* NIOCREGIF
|
|
* We preallocate a block of TX mbufs (roughly as many as
|
|
* tx descriptors; the number is not critical) to speed up
|
|
* operation during transmissions. The refcount on most of
|
|
* these buffers is artificially bumped up so we can recycle
|
|
* them more easily. Also, the destructor is intercepted
|
|
* so we use it as an interrupt notification to wake up
|
|
* processes blocked on a poll().
|
|
*
|
|
* For each receive ring we allocate one "struct mbq"
|
|
* (an mbuf tailq plus a spinlock). We intercept packets
|
|
* (through if_input)
|
|
* on the receive path and put them in the mbq from which
|
|
* netmap receive routines can grab them.
|
|
*
|
|
* TX:
|
|
* in the generic_txsync() routine, netmap buffers are copied
|
|
* (or linked, in a future) to the preallocated mbufs
|
|
* and pushed to the transmit queue. Some of these mbufs
|
|
* (those with NS_REPORT, or otherwise every half ring)
|
|
* have the refcount=1, others have refcount=2.
|
|
* When the destructor is invoked, we take that as
|
|
* a notification that all mbufs up to that one in
|
|
* the specific ring have been completed, and generate
|
|
* the equivalent of a transmit interrupt.
|
|
*
|
|
* RX:
|
|
*
|
|
*/
|
|
|
|
#ifdef __FreeBSD__
|
|
|
|
#include <sys/cdefs.h> /* prerequisite */
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h> /* PROT_EXEC */
|
|
#include <sys/rwlock.h>
|
|
#include <sys/socket.h> /* sockaddrs */
|
|
#include <sys/selinfo.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */
|
|
|
|
// XXX temporary - D() defined here
|
|
#include <net/netmap.h>
|
|
#include <dev/netmap/netmap_kern.h>
|
|
#include <dev/netmap/netmap_mem2.h>
|
|
|
|
#define rtnl_lock() ND("rtnl_lock called")
|
|
#define rtnl_unlock() ND("rtnl_unlock called")
|
|
#define MBUF_TXQ(m) ((m)->m_pkthdr.flowid)
|
|
#define MBUF_RXQ(m) ((m)->m_pkthdr.flowid)
|
|
#define smp_mb()
|
|
|
|
/*
|
|
* FreeBSD mbuf allocator/deallocator in emulation mode:
|
|
*
|
|
* We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
|
|
* so that the destructor, if invoked, will not free the packet.
|
|
* In principle we should set the destructor only on demand,
|
|
* but since there might be a race we better do it on allocation.
|
|
* As a consequence, we also need to set the destructor or we
|
|
* would leak buffers.
|
|
*/
|
|
|
|
/*
|
|
* mbuf wrappers
|
|
*/
|
|
|
|
/* mbuf destructor, also need to change the type to EXT_EXTREF,
|
|
* add an M_NOFREE flag, and then clear the flag and
|
|
* chain into uma_zfree(zone_pack, mf)
|
|
* (or reinstall the buffer ?)
|
|
*/
|
|
#define SET_MBUF_DESTRUCTOR(m, fn) do { \
|
|
(m)->m_ext.ext_free = (void *)fn; \
|
|
(m)->m_ext.ext_type = EXT_EXTREF; \
|
|
} while (0)
|
|
|
|
static void
|
|
netmap_default_mbuf_destructor(struct mbuf *m)
|
|
{
|
|
/* restore original mbuf */
|
|
m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1;
|
|
m->m_ext.ext_arg1 = NULL;
|
|
m->m_ext.ext_type = EXT_PACKET;
|
|
m->m_ext.ext_free = NULL;
|
|
if (GET_MBUF_REFCNT(m) == 0)
|
|
SET_MBUF_REFCNT(m, 1);
|
|
uma_zfree(zone_pack, m);
|
|
}
|
|
|
|
static inline struct mbuf *
|
|
netmap_get_mbuf(int len)
|
|
{
|
|
struct mbuf *m;
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR | M_NOFREE);
|
|
if (m) {
|
|
m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save
|
|
m->m_ext.ext_free = (void *)netmap_default_mbuf_destructor;
|
|
m->m_ext.ext_type = EXT_EXTREF;
|
|
ND(5, "create m %p refcnt %d", m, GET_MBUF_REFCNT(m));
|
|
}
|
|
return m;
|
|
}
|
|
|
|
|
|
|
|
#else /* linux */
|
|
|
|
#include "bsd_glue.h"
|
|
|
|
#include <linux/rtnetlink.h> /* rtnl_[un]lock() */
|
|
#include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */
|
|
#include <linux/hrtimer.h>
|
|
|
|
//#define REG_RESET
|
|
|
|
#endif /* linux */
|
|
|
|
|
|
/* Common headers. */
|
|
#include <net/netmap.h>
|
|
#include <dev/netmap/netmap_kern.h>
|
|
#include <dev/netmap/netmap_mem2.h>
|
|
|
|
|
|
|
|
/* ======================== usage stats =========================== */
|
|
|
|
#ifdef RATE_GENERIC
|
|
#define IFRATE(x) x
|
|
struct rate_stats {
|
|
unsigned long txpkt;
|
|
unsigned long txsync;
|
|
unsigned long txirq;
|
|
unsigned long rxpkt;
|
|
unsigned long rxirq;
|
|
unsigned long rxsync;
|
|
};
|
|
|
|
struct rate_context {
|
|
unsigned refcount;
|
|
struct timer_list timer;
|
|
struct rate_stats new;
|
|
struct rate_stats old;
|
|
};
|
|
|
|
#define RATE_PRINTK(_NAME_) \
|
|
printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
|
|
#define RATE_PERIOD 2
|
|
static void rate_callback(unsigned long arg)
|
|
{
|
|
struct rate_context * ctx = (struct rate_context *)arg;
|
|
struct rate_stats cur = ctx->new;
|
|
int r;
|
|
|
|
RATE_PRINTK(txpkt);
|
|
RATE_PRINTK(txsync);
|
|
RATE_PRINTK(txirq);
|
|
RATE_PRINTK(rxpkt);
|
|
RATE_PRINTK(rxsync);
|
|
RATE_PRINTK(rxirq);
|
|
printk("\n");
|
|
|
|
ctx->old = cur;
|
|
r = mod_timer(&ctx->timer, jiffies +
|
|
msecs_to_jiffies(RATE_PERIOD * 1000));
|
|
if (unlikely(r))
|
|
D("[v1000] Error: mod_timer()");
|
|
}
|
|
|
|
static struct rate_context rate_ctx;
|
|
|
|
void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
|
|
{
|
|
if (txp) rate_ctx.new.txpkt++;
|
|
if (txs) rate_ctx.new.txsync++;
|
|
if (txi) rate_ctx.new.txirq++;
|
|
if (rxp) rate_ctx.new.rxpkt++;
|
|
if (rxs) rate_ctx.new.rxsync++;
|
|
if (rxi) rate_ctx.new.rxirq++;
|
|
}
|
|
|
|
#else /* !RATE */
|
|
#define IFRATE(x)
|
|
#endif /* !RATE */
|
|
|
|
|
|
/* =============== GENERIC NETMAP ADAPTER SUPPORT ================= */
|
|
|
|
/*
|
|
* Wrapper used by the generic adapter layer to notify
|
|
* the poller threads. Differently from netmap_rx_irq(), we check
|
|
* only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
|
|
*/
|
|
static void
|
|
netmap_generic_irq(struct ifnet *ifp, u_int q, u_int *work_done)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
if (unlikely(!nm_netmap_on(na)))
|
|
return;
|
|
|
|
netmap_common_irq(ifp, q, work_done);
|
|
}
|
|
|
|
|
|
/* Enable/disable netmap mode for a generic network interface. */
|
|
static int
|
|
generic_netmap_register(struct netmap_adapter *na, int enable)
|
|
{
|
|
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
|
|
struct mbuf *m;
|
|
int error;
|
|
int i, r;
|
|
|
|
if (!na)
|
|
return EINVAL;
|
|
|
|
#ifdef REG_RESET
|
|
error = ifp->netdev_ops->ndo_stop(ifp);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
#endif /* REG_RESET */
|
|
|
|
if (enable) { /* Enable netmap mode. */
|
|
/* Init the mitigation support on all the rx queues. */
|
|
gna->mit = malloc(na->num_rx_rings * sizeof(struct nm_generic_mit),
|
|
M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (!gna->mit) {
|
|
D("mitigation allocation failed");
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
for (r=0; r<na->num_rx_rings; r++)
|
|
netmap_mitigation_init(&gna->mit[r], r, na);
|
|
|
|
/* Initialize the rx queue, as generic_rx_handler() can
|
|
* be called as soon as netmap_catch_rx() returns.
|
|
*/
|
|
for (r=0; r<na->num_rx_rings; r++) {
|
|
mbq_safe_init(&na->rx_rings[r].rx_queue);
|
|
}
|
|
|
|
/*
|
|
* Preallocate packet buffers for the tx rings.
|
|
*/
|
|
for (r=0; r<na->num_tx_rings; r++)
|
|
na->tx_rings[r].tx_pool = NULL;
|
|
for (r=0; r<na->num_tx_rings; r++) {
|
|
na->tx_rings[r].tx_pool = malloc(na->num_tx_desc * sizeof(struct mbuf *),
|
|
M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (!na->tx_rings[r].tx_pool) {
|
|
D("tx_pool allocation failed");
|
|
error = ENOMEM;
|
|
goto free_tx_pools;
|
|
}
|
|
for (i=0; i<na->num_tx_desc; i++)
|
|
na->tx_rings[r].tx_pool[i] = NULL;
|
|
for (i=0; i<na->num_tx_desc; i++) {
|
|
m = netmap_get_mbuf(NETMAP_BUF_SIZE(na));
|
|
if (!m) {
|
|
D("tx_pool[%d] allocation failed", i);
|
|
error = ENOMEM;
|
|
goto free_tx_pools;
|
|
}
|
|
na->tx_rings[r].tx_pool[i] = m;
|
|
}
|
|
}
|
|
rtnl_lock();
|
|
/* Prepare to intercept incoming traffic. */
|
|
error = netmap_catch_rx(na, 1);
|
|
if (error) {
|
|
D("netdev_rx_handler_register() failed (%d)", error);
|
|
goto register_handler;
|
|
}
|
|
na->na_flags |= NAF_NETMAP_ON;
|
|
|
|
/* Make netmap control the packet steering. */
|
|
netmap_catch_tx(gna, 1);
|
|
|
|
rtnl_unlock();
|
|
|
|
#ifdef RATE_GENERIC
|
|
if (rate_ctx.refcount == 0) {
|
|
D("setup_timer()");
|
|
memset(&rate_ctx, 0, sizeof(rate_ctx));
|
|
setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
|
|
if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
|
|
D("Error: mod_timer()");
|
|
}
|
|
}
|
|
rate_ctx.refcount++;
|
|
#endif /* RATE */
|
|
|
|
} else if (na->tx_rings[0].tx_pool) {
|
|
/* Disable netmap mode. We enter here only if the previous
|
|
generic_netmap_register(na, 1) was successfull.
|
|
If it was not, na->tx_rings[0].tx_pool was set to NULL by the
|
|
error handling code below. */
|
|
rtnl_lock();
|
|
|
|
na->na_flags &= ~NAF_NETMAP_ON;
|
|
|
|
/* Release packet steering control. */
|
|
netmap_catch_tx(gna, 0);
|
|
|
|
/* Do not intercept packets on the rx path. */
|
|
netmap_catch_rx(na, 0);
|
|
|
|
rtnl_unlock();
|
|
|
|
/* Free the mbufs going to the netmap rings */
|
|
for (r=0; r<na->num_rx_rings; r++) {
|
|
mbq_safe_purge(&na->rx_rings[r].rx_queue);
|
|
mbq_safe_destroy(&na->rx_rings[r].rx_queue);
|
|
}
|
|
|
|
for (r=0; r<na->num_rx_rings; r++)
|
|
netmap_mitigation_cleanup(&gna->mit[r]);
|
|
free(gna->mit, M_DEVBUF);
|
|
|
|
for (r=0; r<na->num_tx_rings; r++) {
|
|
for (i=0; i<na->num_tx_desc; i++) {
|
|
m_freem(na->tx_rings[r].tx_pool[i]);
|
|
}
|
|
free(na->tx_rings[r].tx_pool, M_DEVBUF);
|
|
}
|
|
|
|
#ifdef RATE_GENERIC
|
|
if (--rate_ctx.refcount == 0) {
|
|
D("del_timer()");
|
|
del_timer(&rate_ctx.timer);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef REG_RESET
|
|
error = ifp->netdev_ops->ndo_open(ifp);
|
|
if (error) {
|
|
goto free_tx_pools;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
register_handler:
|
|
rtnl_unlock();
|
|
free_tx_pools:
|
|
for (r=0; r<na->num_tx_rings; r++) {
|
|
if (na->tx_rings[r].tx_pool == NULL)
|
|
continue;
|
|
for (i=0; i<na->num_tx_desc; i++)
|
|
if (na->tx_rings[r].tx_pool[i])
|
|
m_freem(na->tx_rings[r].tx_pool[i]);
|
|
free(na->tx_rings[r].tx_pool, M_DEVBUF);
|
|
na->tx_rings[r].tx_pool = NULL;
|
|
}
|
|
for (r=0; r<na->num_rx_rings; r++) {
|
|
netmap_mitigation_cleanup(&gna->mit[r]);
|
|
mbq_safe_destroy(&na->rx_rings[r].rx_queue);
|
|
}
|
|
free(gna->mit, M_DEVBUF);
|
|
out:
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Callback invoked when the device driver frees an mbuf used
|
|
* by netmap to transmit a packet. This usually happens when
|
|
* the NIC notifies the driver that transmission is completed.
|
|
*/
|
|
static void
|
|
generic_mbuf_destructor(struct mbuf *m)
|
|
{
|
|
netmap_generic_irq(MBUF_IFP(m), MBUF_TXQ(m), NULL);
|
|
#ifdef __FreeBSD__
|
|
if (netmap_verbose)
|
|
RD(5, "Tx irq (%p) queue %d index %d" , m, MBUF_TXQ(m), (int)(uintptr_t)m->m_ext.ext_arg1);
|
|
netmap_default_mbuf_destructor(m);
|
|
#endif /* __FreeBSD__ */
|
|
IFRATE(rate_ctx.new.txirq++);
|
|
}
|
|
|
|
extern int netmap_adaptive_io;
|
|
|
|
/* Record completed transmissions and update hwtail.
|
|
*
|
|
* The oldest tx buffer not yet completed is at nr_hwtail + 1,
|
|
* nr_hwcur is the first unsent buffer.
|
|
*/
|
|
static u_int
|
|
generic_netmap_tx_clean(struct netmap_kring *kring)
|
|
{
|
|
u_int const lim = kring->nkr_num_slots - 1;
|
|
u_int nm_i = nm_next(kring->nr_hwtail, lim);
|
|
u_int hwcur = kring->nr_hwcur;
|
|
u_int n = 0;
|
|
struct mbuf **tx_pool = kring->tx_pool;
|
|
|
|
while (nm_i != hwcur) { /* buffers not completed */
|
|
struct mbuf *m = tx_pool[nm_i];
|
|
|
|
if (unlikely(m == NULL)) {
|
|
/* this is done, try to replenish the entry */
|
|
tx_pool[nm_i] = m = netmap_get_mbuf(NETMAP_BUF_SIZE(kring->na));
|
|
if (unlikely(m == NULL)) {
|
|
D("mbuf allocation failed, XXX error");
|
|
// XXX how do we proceed ? break ?
|
|
return -ENOMEM;
|
|
}
|
|
} else if (GET_MBUF_REFCNT(m) != 1) {
|
|
break; /* This mbuf is still busy: its refcnt is 2. */
|
|
}
|
|
n++;
|
|
nm_i = nm_next(nm_i, lim);
|
|
#if 0 /* rate adaptation */
|
|
if (netmap_adaptive_io > 1) {
|
|
if (n >= netmap_adaptive_io)
|
|
break;
|
|
} else if (netmap_adaptive_io) {
|
|
/* if hwcur - nm_i < lim/8 do an early break
|
|
* so we prevent the sender from stalling. See CVT.
|
|
*/
|
|
if (hwcur >= nm_i) {
|
|
if (hwcur - nm_i < lim/2)
|
|
break;
|
|
} else {
|
|
if (hwcur + lim + 1 - nm_i < lim/2)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
kring->nr_hwtail = nm_prev(nm_i, lim);
|
|
ND("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
|
|
|
|
return n;
|
|
}
|
|
|
|
|
|
/*
|
|
* We have pending packets in the driver between nr_hwtail +1 and hwcur.
|
|
* Compute a position in the middle, to be used to generate
|
|
* a notification.
|
|
*/
|
|
static inline u_int
|
|
generic_tx_event_middle(struct netmap_kring *kring, u_int hwcur)
|
|
{
|
|
u_int n = kring->nkr_num_slots;
|
|
u_int ntc = nm_next(kring->nr_hwtail, n-1);
|
|
u_int e;
|
|
|
|
if (hwcur >= ntc) {
|
|
e = (hwcur + ntc) / 2;
|
|
} else { /* wrap around */
|
|
e = (hwcur + n + ntc) / 2;
|
|
if (e >= n) {
|
|
e -= n;
|
|
}
|
|
}
|
|
|
|
if (unlikely(e >= n)) {
|
|
D("This cannot happen");
|
|
e = 0;
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* We have pending packets in the driver between nr_hwtail+1 and hwcur.
|
|
* Schedule a notification approximately in the middle of the two.
|
|
* There is a race but this is only called within txsync which does
|
|
* a double check.
|
|
*/
|
|
static void
|
|
generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
|
|
{
|
|
struct mbuf *m;
|
|
u_int e;
|
|
|
|
if (nm_next(kring->nr_hwtail, kring->nkr_num_slots -1) == hwcur) {
|
|
return; /* all buffers are free */
|
|
}
|
|
e = generic_tx_event_middle(kring, hwcur);
|
|
|
|
m = kring->tx_pool[e];
|
|
ND(5, "Request Event at %d mbuf %p refcnt %d", e, m, m ? GET_MBUF_REFCNT(m) : -2 );
|
|
if (m == NULL) {
|
|
/* This can happen if there is already an event on the netmap
|
|
slot 'e': There is nothing to do. */
|
|
return;
|
|
}
|
|
kring->tx_pool[e] = NULL;
|
|
SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
|
|
|
|
// XXX wmb() ?
|
|
/* Decrement the refcount an free it if we have the last one. */
|
|
m_freem(m);
|
|
smp_mb();
|
|
}
|
|
|
|
|
|
/*
|
|
* generic_netmap_txsync() transforms netmap buffers into mbufs
|
|
* and passes them to the standard device driver
|
|
* (ndo_start_xmit() or ifp->if_transmit() ).
|
|
* On linux this is not done directly, but using dev_queue_xmit(),
|
|
* since it implements the TX flow control (and takes some locks).
|
|
*/
|
|
static int
|
|
generic_netmap_txsync(struct netmap_kring *kring, int flags)
|
|
{
|
|
struct netmap_adapter *na = kring->na;
|
|
struct ifnet *ifp = na->ifp;
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int nm_i; /* index into the netmap ring */ // j
|
|
u_int const lim = kring->nkr_num_slots - 1;
|
|
u_int const head = kring->rhead;
|
|
u_int ring_nr = kring->ring_id;
|
|
|
|
IFRATE(rate_ctx.new.txsync++);
|
|
|
|
// TODO: handle the case of mbuf allocation failure
|
|
|
|
rmb();
|
|
|
|
/*
|
|
* First part: process new packets to send.
|
|
*/
|
|
nm_i = kring->nr_hwcur;
|
|
if (nm_i != head) { /* we have new packets to send */
|
|
while (nm_i != head) {
|
|
struct netmap_slot *slot = &ring->slot[nm_i];
|
|
u_int len = slot->len;
|
|
void *addr = NMB(na, slot);
|
|
|
|
/* device-specific */
|
|
struct mbuf *m;
|
|
int tx_ret;
|
|
|
|
NM_CHECK_ADDR_LEN(na, addr, len);
|
|
|
|
/* Tale a mbuf from the tx pool and copy in the user packet. */
|
|
m = kring->tx_pool[nm_i];
|
|
if (unlikely(!m)) {
|
|
RD(5, "This should never happen");
|
|
kring->tx_pool[nm_i] = m = netmap_get_mbuf(NETMAP_BUF_SIZE(na));
|
|
if (unlikely(m == NULL)) {
|
|
D("mbuf allocation failed");
|
|
break;
|
|
}
|
|
}
|
|
/* XXX we should ask notifications when NS_REPORT is set,
|
|
* or roughly every half frame. We can optimize this
|
|
* by lazily requesting notifications only when a
|
|
* transmission fails. Probably the best way is to
|
|
* break on failures and set notifications when
|
|
* ring->cur == ring->tail || nm_i != cur
|
|
*/
|
|
tx_ret = generic_xmit_frame(ifp, m, addr, len, ring_nr);
|
|
if (unlikely(tx_ret)) {
|
|
ND(5, "start_xmit failed: err %d [nm_i %u, head %u, hwtail %u]",
|
|
tx_ret, nm_i, head, kring->nr_hwtail);
|
|
/*
|
|
* No room for this mbuf in the device driver.
|
|
* Request a notification FOR A PREVIOUS MBUF,
|
|
* then call generic_netmap_tx_clean(kring) to do the
|
|
* double check and see if we can free more buffers.
|
|
* If there is space continue, else break;
|
|
* NOTE: the double check is necessary if the problem
|
|
* occurs in the txsync call after selrecord().
|
|
* Also, we need some way to tell the caller that not
|
|
* all buffers were queued onto the device (this was
|
|
* not a problem with native netmap driver where space
|
|
* is preallocated). The bridge has a similar problem
|
|
* and we solve it there by dropping the excess packets.
|
|
*/
|
|
generic_set_tx_event(kring, nm_i);
|
|
if (generic_netmap_tx_clean(kring)) { /* space now available */
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
|
|
nm_i = nm_next(nm_i, lim);
|
|
IFRATE(rate_ctx.new.txpkt ++);
|
|
}
|
|
|
|
/* Update hwcur to the next slot to transmit. */
|
|
kring->nr_hwcur = nm_i; /* not head, we could break early */
|
|
}
|
|
|
|
/*
|
|
* Second, reclaim completed buffers
|
|
*/
|
|
if (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring)) {
|
|
/* No more available slots? Set a notification event
|
|
* on a netmap slot that will be cleaned in the future.
|
|
* No doublecheck is performed, since txsync() will be
|
|
* called twice by netmap_poll().
|
|
*/
|
|
generic_set_tx_event(kring, nm_i);
|
|
}
|
|
ND("tx #%d, hwtail = %d", n, kring->nr_hwtail);
|
|
|
|
generic_netmap_tx_clean(kring);
|
|
|
|
nm_txsync_finalize(kring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* This handler is registered (through netmap_catch_rx())
|
|
* within the attached network interface
|
|
* in the RX subsystem, so that every mbuf passed up by
|
|
* the driver can be stolen to the network stack.
|
|
* Stolen packets are put in a queue where the
|
|
* generic_netmap_rxsync() callback can extract them.
|
|
*/
|
|
void
|
|
generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
|
|
u_int work_done;
|
|
u_int rr = MBUF_RXQ(m); // receive ring number
|
|
|
|
if (rr >= na->num_rx_rings) {
|
|
rr = rr % na->num_rx_rings; // XXX expensive...
|
|
}
|
|
|
|
/* limit the size of the queue */
|
|
if (unlikely(mbq_len(&na->rx_rings[rr].rx_queue) > 1024)) {
|
|
m_freem(m);
|
|
} else {
|
|
mbq_safe_enqueue(&na->rx_rings[rr].rx_queue, m);
|
|
}
|
|
|
|
if (netmap_generic_mit < 32768) {
|
|
/* no rx mitigation, pass notification up */
|
|
netmap_generic_irq(na->ifp, rr, &work_done);
|
|
IFRATE(rate_ctx.new.rxirq++);
|
|
} else {
|
|
/* same as send combining, filter notification if there is a
|
|
* pending timer, otherwise pass it up and start a timer.
|
|
*/
|
|
if (likely(netmap_mitigation_active(&gna->mit[rr]))) {
|
|
/* Record that there is some pending work. */
|
|
gna->mit[rr].mit_pending = 1;
|
|
} else {
|
|
netmap_generic_irq(na->ifp, rr, &work_done);
|
|
IFRATE(rate_ctx.new.rxirq++);
|
|
netmap_mitigation_start(&gna->mit[rr]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* generic_netmap_rxsync() extracts mbufs from the queue filled by
|
|
* generic_netmap_rx_handler() and puts their content in the netmap
|
|
* receive ring.
|
|
* Access must be protected because the rx handler is asynchronous,
|
|
*/
|
|
static int
|
|
generic_netmap_rxsync(struct netmap_kring *kring, int flags)
|
|
{
|
|
struct netmap_ring *ring = kring->ring;
|
|
struct netmap_adapter *na = kring->na;
|
|
u_int nm_i; /* index into the netmap ring */ //j,
|
|
u_int n;
|
|
u_int const lim = kring->nkr_num_slots - 1;
|
|
u_int const head = nm_rxsync_prologue(kring);
|
|
int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
|
|
|
|
if (head > lim)
|
|
return netmap_ring_reinit(kring);
|
|
|
|
/*
|
|
* First part: import newly received packets.
|
|
*/
|
|
if (netmap_no_pendintr || force_update) {
|
|
/* extract buffers from the rx queue, stop at most one
|
|
* slot before nr_hwcur (stop_i)
|
|
*/
|
|
uint16_t slot_flags = kring->nkr_slot_flags;
|
|
u_int stop_i = nm_prev(kring->nr_hwcur, lim);
|
|
|
|
nm_i = kring->nr_hwtail; /* first empty slot in the receive ring */
|
|
for (n = 0; nm_i != stop_i; n++) {
|
|
int len;
|
|
void *addr = NMB(na, &ring->slot[nm_i]);
|
|
struct mbuf *m;
|
|
|
|
/* we only check the address here on generic rx rings */
|
|
if (addr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
|
|
return netmap_ring_reinit(kring);
|
|
}
|
|
/*
|
|
* Call the locked version of the function.
|
|
* XXX Ideally we could grab a batch of mbufs at once
|
|
* and save some locking overhead.
|
|
*/
|
|
m = mbq_safe_dequeue(&kring->rx_queue);
|
|
if (!m) /* no more data */
|
|
break;
|
|
len = MBUF_LEN(m);
|
|
m_copydata(m, 0, len, addr);
|
|
ring->slot[nm_i].len = len;
|
|
ring->slot[nm_i].flags = slot_flags;
|
|
m_freem(m);
|
|
nm_i = nm_next(nm_i, lim);
|
|
}
|
|
if (n) {
|
|
kring->nr_hwtail = nm_i;
|
|
IFRATE(rate_ctx.new.rxpkt += n);
|
|
}
|
|
kring->nr_kflags &= ~NKR_PENDINTR;
|
|
}
|
|
|
|
// XXX should we invert the order ?
|
|
/*
|
|
* Second part: skip past packets that userspace has released.
|
|
*/
|
|
nm_i = kring->nr_hwcur;
|
|
if (nm_i != head) {
|
|
/* Userspace has released some packets. */
|
|
for (n = 0; nm_i != head; n++) {
|
|
struct netmap_slot *slot = &ring->slot[nm_i];
|
|
|
|
slot->flags &= ~NS_BUF_CHANGED;
|
|
nm_i = nm_next(nm_i, lim);
|
|
}
|
|
kring->nr_hwcur = head;
|
|
}
|
|
/* tell userspace that there might be new packets. */
|
|
nm_rxsync_finalize(kring);
|
|
IFRATE(rate_ctx.new.rxsync++);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
generic_netmap_dtor(struct netmap_adapter *na)
|
|
{
|
|
struct ifnet *ifp = na->ifp;
|
|
struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
|
|
struct netmap_adapter *prev_na = gna->prev;
|
|
|
|
if (prev_na != NULL) {
|
|
D("Released generic NA %p", gna);
|
|
if_rele(na->ifp);
|
|
netmap_adapter_put(prev_na);
|
|
}
|
|
if (ifp != NULL) {
|
|
WNA(ifp) = prev_na;
|
|
D("Restored native NA %p", prev_na);
|
|
na->ifp = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* generic_netmap_attach() makes it possible to use netmap on
|
|
* a device without native netmap support.
|
|
* This is less performant than native support but potentially
|
|
* faster than raw sockets or similar schemes.
|
|
*
|
|
* In this "emulated" mode, netmap rings do not necessarily
|
|
* have the same size as those in the NIC. We use a default
|
|
* value and possibly override it if the OS has ways to fetch the
|
|
* actual configuration.
|
|
*/
|
|
int
|
|
generic_netmap_attach(struct ifnet *ifp)
|
|
{
|
|
struct netmap_adapter *na;
|
|
struct netmap_generic_adapter *gna;
|
|
int retval;
|
|
u_int num_tx_desc, num_rx_desc;
|
|
|
|
num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
|
|
|
|
generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
|
|
ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc);
|
|
if (num_tx_desc == 0 || num_rx_desc == 0) {
|
|
D("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
|
|
return EINVAL;
|
|
}
|
|
|
|
gna = malloc(sizeof(*gna), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (gna == NULL) {
|
|
D("no memory on attach, give up");
|
|
return ENOMEM;
|
|
}
|
|
na = (struct netmap_adapter *)gna;
|
|
na->ifp = ifp;
|
|
na->num_tx_desc = num_tx_desc;
|
|
na->num_rx_desc = num_rx_desc;
|
|
na->nm_register = &generic_netmap_register;
|
|
na->nm_txsync = &generic_netmap_txsync;
|
|
na->nm_rxsync = &generic_netmap_rxsync;
|
|
na->nm_dtor = &generic_netmap_dtor;
|
|
/* when using generic, NAF_NETMAP_ON is set so we force
|
|
* NAF_SKIP_INTR to use the regular interrupt handler
|
|
*/
|
|
na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
|
|
|
|
ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
|
|
ifp->num_tx_queues, ifp->real_num_tx_queues,
|
|
ifp->tx_queue_len);
|
|
ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
|
|
ifp->num_rx_queues, ifp->real_num_rx_queues);
|
|
|
|
generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
|
|
|
|
retval = netmap_attach_common(na);
|
|
if (retval) {
|
|
free(gna, M_DEVBUF);
|
|
}
|
|
|
|
return retval;
|
|
}
|