freebsd-skq/sys/vm/vm_meter.c
markj 094736f08f Provide separate accounting for user-wired pages.
Historically we have not distinguished between kernel wirings and user
wirings for accounting purposes.  User wirings (via mlock(2)) were
subject to a global limit on the number of wired pages, so if large
swaths of physical memory were wired by the kernel, as happens with
the ZFS ARC among other things, the limit could be exceeded, causing
user wirings to fail.

The change adds a new counter, v_user_wire_count, which counts the
number of virtual pages wired by user processes via mlock(2) and
mlockall(2).  Only user-wired pages are subject to the system-wide
limit which helps provide some safety against deadlocks.  In
particular, while sources of kernel wirings typically support some
backpressure mechanism, there is no way to reclaim user-wired pages
shorting of killing the wiring process.  The limit is exported as
vm.max_user_wired, renamed from vm.max_wired, and changed from u_int
to u_long.

The choice to count virtual user-wired pages rather than physical
pages was done for simplicity.  There are mechanisms that can cause
user-wired mappings to be destroyed while maintaining a wiring of
the backing physical page; these make it difficult to accurately
track user wirings at the physical page layer.

The change also closes some holes which allowed user wirings to succeed
even when they would cause the system limit to be exceeded.  For
instance, mmap() may now fail with ENOMEM in a process that has called
mlockall(MCL_FUTURE) if the new mapping would cause the user wiring
limit to be exceeded.

Note that bhyve -S is subject to the user wiring limit, which defaults
to 1/3 of physical RAM.  Users that wish to exceed the limit must tune
vm.max_user_wired.

Reviewed by:	kib, ngie (mlock() test changes)
Tested by:	pho (earlier version)
MFC after:	45 days
Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D19908
2019-05-13 16:38:48 +00:00

569 lines
18 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_meter.c 8.4 (Berkeley) 1/4/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/rwlock.h>
#include <sys/sx.h>
#include <sys/vmmeter.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_extern.h>
#include <vm/vm_param.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <sys/sysctl.h>
struct vmmeter __read_mostly vm_cnt = {
.v_swtch = EARLY_COUNTER,
.v_trap = EARLY_COUNTER,
.v_syscall = EARLY_COUNTER,
.v_intr = EARLY_COUNTER,
.v_soft = EARLY_COUNTER,
.v_vm_faults = EARLY_COUNTER,
.v_io_faults = EARLY_COUNTER,
.v_cow_faults = EARLY_COUNTER,
.v_cow_optim = EARLY_COUNTER,
.v_zfod = EARLY_COUNTER,
.v_ozfod = EARLY_COUNTER,
.v_swapin = EARLY_COUNTER,
.v_swapout = EARLY_COUNTER,
.v_swappgsin = EARLY_COUNTER,
.v_swappgsout = EARLY_COUNTER,
.v_vnodein = EARLY_COUNTER,
.v_vnodeout = EARLY_COUNTER,
.v_vnodepgsin = EARLY_COUNTER,
.v_vnodepgsout = EARLY_COUNTER,
.v_intrans = EARLY_COUNTER,
.v_reactivated = EARLY_COUNTER,
.v_pdwakeups = EARLY_COUNTER,
.v_pdpages = EARLY_COUNTER,
.v_pdshortfalls = EARLY_COUNTER,
.v_dfree = EARLY_COUNTER,
.v_pfree = EARLY_COUNTER,
.v_tfree = EARLY_COUNTER,
.v_forks = EARLY_COUNTER,
.v_vforks = EARLY_COUNTER,
.v_rforks = EARLY_COUNTER,
.v_kthreads = EARLY_COUNTER,
.v_forkpages = EARLY_COUNTER,
.v_vforkpages = EARLY_COUNTER,
.v_rforkpages = EARLY_COUNTER,
.v_kthreadpages = EARLY_COUNTER,
.v_wire_count = EARLY_COUNTER,
};
u_long __exclusive_cache_line vm_user_wire_count;
static void
vmcounter_startup(void)
{
counter_u64_t *cnt = (counter_u64_t *)&vm_cnt;
COUNTER_ARRAY_ALLOC(cnt, VM_METER_NCOUNTERS, M_WAITOK);
}
SYSINIT(counter, SI_SUB_KMEM, SI_ORDER_FIRST, vmcounter_startup, NULL);
SYSCTL_UINT(_vm, VM_V_FREE_MIN, v_free_min,
CTLFLAG_RW, &vm_cnt.v_free_min, 0, "Minimum low-free-pages threshold");
SYSCTL_UINT(_vm, VM_V_FREE_TARGET, v_free_target,
CTLFLAG_RW, &vm_cnt.v_free_target, 0, "Desired free pages");
SYSCTL_UINT(_vm, VM_V_FREE_RESERVED, v_free_reserved,
CTLFLAG_RW, &vm_cnt.v_free_reserved, 0, "Pages reserved for deadlock");
SYSCTL_UINT(_vm, VM_V_INACTIVE_TARGET, v_inactive_target,
CTLFLAG_RW, &vm_cnt.v_inactive_target, 0, "Pages desired inactive");
SYSCTL_UINT(_vm, VM_V_PAGEOUT_FREE_MIN, v_pageout_free_min,
CTLFLAG_RW, &vm_cnt.v_pageout_free_min, 0, "Min pages reserved for kernel");
SYSCTL_UINT(_vm, OID_AUTO, v_free_severe,
CTLFLAG_RW, &vm_cnt.v_free_severe, 0, "Severe page depletion point");
static int
sysctl_vm_loadavg(SYSCTL_HANDLER_ARGS)
{
#ifdef SCTL_MASK32
u_int32_t la[4];
if (req->flags & SCTL_MASK32) {
la[0] = averunnable.ldavg[0];
la[1] = averunnable.ldavg[1];
la[2] = averunnable.ldavg[2];
la[3] = averunnable.fscale;
return SYSCTL_OUT(req, la, sizeof(la));
} else
#endif
return SYSCTL_OUT(req, &averunnable, sizeof(averunnable));
}
SYSCTL_PROC(_vm, VM_LOADAVG, loadavg, CTLTYPE_STRUCT | CTLFLAG_RD |
CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_loadavg, "S,loadavg",
"Machine loadaverage history");
/*
* This function aims to determine if the object is mapped,
* specifically, if it is referenced by a vm_map_entry. Because
* objects occasionally acquire transient references that do not
* represent a mapping, the method used here is inexact. However, it
* has very low overhead and is good enough for the advisory
* vm.vmtotal sysctl.
*/
static bool
is_object_active(vm_object_t obj)
{
return (obj->ref_count > obj->shadow_count);
}
#if defined(COMPAT_FREEBSD11)
struct vmtotal11 {
int16_t t_rq;
int16_t t_dw;
int16_t t_pw;
int16_t t_sl;
int16_t t_sw;
int32_t t_vm;
int32_t t_avm;
int32_t t_rm;
int32_t t_arm;
int32_t t_vmshr;
int32_t t_avmshr;
int32_t t_rmshr;
int32_t t_armshr;
int32_t t_free;
};
#endif
static int
vmtotal(SYSCTL_HANDLER_ARGS)
{
struct vmtotal total;
#if defined(COMPAT_FREEBSD11)
struct vmtotal11 total11;
#endif
vm_object_t object;
struct proc *p;
struct thread *td;
if (req->oldptr == NULL) {
#if defined(COMPAT_FREEBSD11)
if (curproc->p_osrel < P_OSREL_VMTOTAL64)
return (SYSCTL_OUT(req, NULL, sizeof(total11)));
#endif
return (SYSCTL_OUT(req, NULL, sizeof(total)));
}
bzero(&total, sizeof(total));
/*
* Calculate process statistics.
*/
sx_slock(&allproc_lock);
FOREACH_PROC_IN_SYSTEM(p) {
if ((p->p_flag & P_SYSTEM) != 0)
continue;
PROC_LOCK(p);
if (p->p_state != PRS_NEW) {
FOREACH_THREAD_IN_PROC(p, td) {
thread_lock(td);
switch (td->td_state) {
case TDS_INHIBITED:
if (TD_IS_SWAPPED(td))
total.t_sw++;
else if (TD_IS_SLEEPING(td)) {
if (td->td_priority <= PZERO)
total.t_dw++;
else
total.t_sl++;
}
break;
case TDS_CAN_RUN:
total.t_sw++;
break;
case TDS_RUNQ:
case TDS_RUNNING:
total.t_rq++;
break;
default:
break;
}
thread_unlock(td);
}
}
PROC_UNLOCK(p);
}
sx_sunlock(&allproc_lock);
/*
* Calculate object memory usage statistics.
*/
mtx_lock(&vm_object_list_mtx);
TAILQ_FOREACH(object, &vm_object_list, object_list) {
/*
* Perform unsynchronized reads on the object. In
* this case, the lack of synchronization should not
* impair the accuracy of the reported statistics.
*/
if ((object->flags & OBJ_FICTITIOUS) != 0) {
/*
* Devices, like /dev/mem, will badly skew our totals.
*/
continue;
}
if (object->ref_count == 0) {
/*
* Also skip unreferenced objects, including
* vnodes representing mounted file systems.
*/
continue;
}
if (object->ref_count == 1 &&
(object->flags & OBJ_NOSPLIT) != 0) {
/*
* Also skip otherwise unreferenced swap
* objects backing tmpfs vnodes, and POSIX or
* SysV shared memory.
*/
continue;
}
total.t_vm += object->size;
total.t_rm += object->resident_page_count;
if (is_object_active(object)) {
total.t_avm += object->size;
total.t_arm += object->resident_page_count;
}
if (object->shadow_count > 1) {
/* shared object */
total.t_vmshr += object->size;
total.t_rmshr += object->resident_page_count;
if (is_object_active(object)) {
total.t_avmshr += object->size;
total.t_armshr += object->resident_page_count;
}
}
}
mtx_unlock(&vm_object_list_mtx);
total.t_pw = vm_wait_count();
total.t_free = vm_free_count();
#if defined(COMPAT_FREEBSD11)
/* sysctl(8) allocates twice as much memory as reported by sysctl(3) */
if (curproc->p_osrel < P_OSREL_VMTOTAL64 && (req->oldlen ==
sizeof(total11) || req->oldlen == 2 * sizeof(total11))) {
bzero(&total11, sizeof(total11));
total11.t_rq = total.t_rq;
total11.t_dw = total.t_dw;
total11.t_pw = total.t_pw;
total11.t_sl = total.t_sl;
total11.t_sw = total.t_sw;
total11.t_vm = total.t_vm; /* truncate */
total11.t_avm = total.t_avm; /* truncate */
total11.t_rm = total.t_rm; /* truncate */
total11.t_arm = total.t_arm; /* truncate */
total11.t_vmshr = total.t_vmshr; /* truncate */
total11.t_avmshr = total.t_avmshr; /* truncate */
total11.t_rmshr = total.t_rmshr; /* truncate */
total11.t_armshr = total.t_armshr; /* truncate */
total11.t_free = total.t_free; /* truncate */
return (SYSCTL_OUT(req, &total11, sizeof(total11)));
}
#endif
return (SYSCTL_OUT(req, &total, sizeof(total)));
}
SYSCTL_PROC(_vm, VM_TOTAL, vmtotal, CTLTYPE_OPAQUE | CTLFLAG_RD |
CTLFLAG_MPSAFE, NULL, 0, vmtotal, "S,vmtotal",
"System virtual memory statistics");
SYSCTL_NODE(_vm, OID_AUTO, stats, CTLFLAG_RW, 0, "VM meter stats");
static SYSCTL_NODE(_vm_stats, OID_AUTO, sys, CTLFLAG_RW, 0,
"VM meter sys stats");
static SYSCTL_NODE(_vm_stats, OID_AUTO, vm, CTLFLAG_RW, 0,
"VM meter vm stats");
SYSCTL_NODE(_vm_stats, OID_AUTO, misc, CTLFLAG_RW, 0, "VM meter misc stats");
static int
sysctl_handle_vmstat(SYSCTL_HANDLER_ARGS)
{
uint64_t val;
#ifdef COMPAT_FREEBSD11
uint32_t val32;
#endif
val = counter_u64_fetch(*(counter_u64_t *)arg1);
#ifdef COMPAT_FREEBSD11
if (req->oldlen == sizeof(val32)) {
val32 = val; /* truncate */
return (SYSCTL_OUT(req, &val32, sizeof(val32)));
}
#endif
return (SYSCTL_OUT(req, &val, sizeof(val)));
}
#define VM_STATS(parent, var, descr) \
SYSCTL_OID(parent, OID_AUTO, var, CTLTYPE_U64 | CTLFLAG_MPSAFE | \
CTLFLAG_RD, &vm_cnt.var, 0, sysctl_handle_vmstat, "QU", descr)
#define VM_STATS_VM(var, descr) VM_STATS(_vm_stats_vm, var, descr)
#define VM_STATS_SYS(var, descr) VM_STATS(_vm_stats_sys, var, descr)
VM_STATS_SYS(v_swtch, "Context switches");
VM_STATS_SYS(v_trap, "Traps");
VM_STATS_SYS(v_syscall, "System calls");
VM_STATS_SYS(v_intr, "Device interrupts");
VM_STATS_SYS(v_soft, "Software interrupts");
VM_STATS_VM(v_vm_faults, "Address memory faults");
VM_STATS_VM(v_io_faults, "Page faults requiring I/O");
VM_STATS_VM(v_cow_faults, "Copy-on-write faults");
VM_STATS_VM(v_cow_optim, "Optimized COW faults");
VM_STATS_VM(v_zfod, "Pages zero-filled on demand");
VM_STATS_VM(v_ozfod, "Optimized zero fill pages");
VM_STATS_VM(v_swapin, "Swap pager pageins");
VM_STATS_VM(v_swapout, "Swap pager pageouts");
VM_STATS_VM(v_swappgsin, "Swap pages swapped in");
VM_STATS_VM(v_swappgsout, "Swap pages swapped out");
VM_STATS_VM(v_vnodein, "Vnode pager pageins");
VM_STATS_VM(v_vnodeout, "Vnode pager pageouts");
VM_STATS_VM(v_vnodepgsin, "Vnode pages paged in");
VM_STATS_VM(v_vnodepgsout, "Vnode pages paged out");
VM_STATS_VM(v_intrans, "In transit page faults");
VM_STATS_VM(v_reactivated, "Pages reactivated by pagedaemon");
VM_STATS_VM(v_pdwakeups, "Pagedaemon wakeups");
VM_STATS_VM(v_pdshortfalls, "Page reclamation shortfalls");
VM_STATS_VM(v_dfree, "Pages freed by pagedaemon");
VM_STATS_VM(v_pfree, "Pages freed by exiting processes");
VM_STATS_VM(v_tfree, "Total pages freed");
VM_STATS_VM(v_forks, "Number of fork() calls");
VM_STATS_VM(v_vforks, "Number of vfork() calls");
VM_STATS_VM(v_rforks, "Number of rfork() calls");
VM_STATS_VM(v_kthreads, "Number of fork() calls by kernel");
VM_STATS_VM(v_forkpages, "VM pages affected by fork()");
VM_STATS_VM(v_vforkpages, "VM pages affected by vfork()");
VM_STATS_VM(v_rforkpages, "VM pages affected by rfork()");
VM_STATS_VM(v_kthreadpages, "VM pages affected by fork() by kernel");
static int
sysctl_handle_vmstat_proc(SYSCTL_HANDLER_ARGS)
{
u_int (*fn)(void);
uint32_t val;
fn = arg1;
val = fn();
return (SYSCTL_OUT(req, &val, sizeof(val)));
}
#define VM_STATS_PROC(var, descr, fn) \
SYSCTL_OID(_vm_stats_vm, OID_AUTO, var, CTLTYPE_U32 | CTLFLAG_MPSAFE | \
CTLFLAG_RD, fn, 0, sysctl_handle_vmstat_proc, "IU", descr)
#define VM_STATS_UINT(var, descr) \
SYSCTL_UINT(_vm_stats_vm, OID_AUTO, var, CTLFLAG_RD, &vm_cnt.var, 0, descr)
#define VM_STATS_ULONG(var, descr) \
SYSCTL_ULONG(_vm_stats_vm, OID_AUTO, var, CTLFLAG_RD, &vm_cnt.var, 0, descr)
VM_STATS_UINT(v_page_size, "Page size in bytes");
VM_STATS_UINT(v_page_count, "Total number of pages in system");
VM_STATS_UINT(v_free_reserved, "Pages reserved for deadlock");
VM_STATS_UINT(v_free_target, "Pages desired free");
VM_STATS_UINT(v_free_min, "Minimum low-free-pages threshold");
VM_STATS_PROC(v_free_count, "Free pages", vm_free_count);
VM_STATS_PROC(v_wire_count, "Wired pages", vm_wire_count);
VM_STATS_PROC(v_active_count, "Active pages", vm_active_count);
VM_STATS_UINT(v_inactive_target, "Desired inactive pages");
VM_STATS_PROC(v_inactive_count, "Inactive pages", vm_inactive_count);
VM_STATS_PROC(v_laundry_count, "Pages eligible for laundering",
vm_laundry_count);
VM_STATS_UINT(v_pageout_free_min, "Min pages reserved for kernel");
VM_STATS_UINT(v_interrupt_free_min, "Reserved pages for interrupt code");
VM_STATS_UINT(v_free_severe, "Severe page depletion point");
SYSCTL_ULONG(_vm_stats_vm, OID_AUTO, v_user_wire_count, CTLFLAG_RD,
&vm_user_wire_count, 0, "User-wired virtual memory");
#ifdef COMPAT_FREEBSD11
/*
* Provide compatibility sysctls for the benefit of old utilities which exit
* with an error if they cannot be found.
*/
SYSCTL_UINT(_vm_stats_vm, OID_AUTO, v_cache_count, CTLFLAG_RD,
SYSCTL_NULL_UINT_PTR, 0, "Dummy for compatibility");
SYSCTL_UINT(_vm_stats_vm, OID_AUTO, v_tcached, CTLFLAG_RD,
SYSCTL_NULL_UINT_PTR, 0, "Dummy for compatibility");
#endif
u_int
vm_free_count(void)
{
u_int v;
int i;
v = 0;
for (i = 0; i < vm_ndomains; i++)
v += vm_dom[i].vmd_free_count;
return (v);
}
static u_int
vm_pagequeue_count(int pq)
{
u_int v;
int i;
v = 0;
for (i = 0; i < vm_ndomains; i++)
v += vm_dom[i].vmd_pagequeues[pq].pq_cnt;
return (v);
}
u_int
vm_active_count(void)
{
return (vm_pagequeue_count(PQ_ACTIVE));
}
u_int
vm_inactive_count(void)
{
return (vm_pagequeue_count(PQ_INACTIVE));
}
u_int
vm_laundry_count(void)
{
return (vm_pagequeue_count(PQ_LAUNDRY));
}
static int
sysctl_vm_pdpages(SYSCTL_HANDLER_ARGS)
{
struct vm_pagequeue *pq;
uint64_t ret;
int dom, i;
ret = counter_u64_fetch(vm_cnt.v_pdpages);
for (dom = 0; dom < vm_ndomains; dom++)
for (i = 0; i < PQ_COUNT; i++) {
pq = &VM_DOMAIN(dom)->vmd_pagequeues[i];
ret += pq->pq_pdpages;
}
return (SYSCTL_OUT(req, &ret, sizeof(ret)));
}
SYSCTL_PROC(_vm_stats_vm, OID_AUTO, v_pdpages,
CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_vm_pdpages, "QU",
"Pages analyzed by pagedaemon");
static void
vm_domain_stats_init(struct vm_domain *vmd, struct sysctl_oid *parent)
{
struct sysctl_oid *oid;
vmd->vmd_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(parent), OID_AUTO,
vmd->vmd_name, CTLFLAG_RD, NULL, "");
oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
"stats", CTLFLAG_RD, NULL, "");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"free_count", CTLFLAG_RD, &vmd->vmd_free_count, 0,
"Free pages");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"active", CTLFLAG_RD, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_cnt, 0,
"Active pages");
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"actpdpgs", CTLFLAG_RD,
&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pdpages, 0,
"Active pages scanned by the page daemon");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"inactive", CTLFLAG_RD, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt, 0,
"Inactive pages");
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"inactpdpgs", CTLFLAG_RD,
&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pdpages, 0,
"Inactive pages scanned by the page daemon");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"laundry", CTLFLAG_RD, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 0,
"laundry pages");
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"laundpdpgs", CTLFLAG_RD,
&vmd->vmd_pagequeues[PQ_LAUNDRY].pq_pdpages, 0,
"Laundry pages scanned by the page daemon");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "unswappable",
CTLFLAG_RD, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt, 0,
"Unswappable pages");
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"unswppdpgs", CTLFLAG_RD,
&vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_pdpages, 0,
"Unswappable pages scanned by the page daemon");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"inactive_target", CTLFLAG_RD, &vmd->vmd_inactive_target, 0,
"Target inactive pages");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"free_target", CTLFLAG_RD, &vmd->vmd_free_target, 0,
"Target free pages");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"free_reserved", CTLFLAG_RD, &vmd->vmd_free_reserved, 0,
"Reserved free pages");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"free_min", CTLFLAG_RD, &vmd->vmd_free_min, 0,
"Minimum free pages");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"free_severe", CTLFLAG_RD, &vmd->vmd_free_severe, 0,
"Severe free pages");
}
static void
vm_stats_init(void *arg __unused)
{
struct sysctl_oid *oid;
int i;
oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm), OID_AUTO,
"domain", CTLFLAG_RD, NULL, "");
for (i = 0; i < vm_ndomains; i++)
vm_domain_stats_init(VM_DOMAIN(i), oid);
}
SYSINIT(vmstats_init, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_stats_init, NULL);