freebsd-skq/sys/dev/nxge/xgehal/xgehal-mgmt.c
Robert Watson 3be4cb0b4a Merge Neterion if_nxge driver version 2.0.9.11230 with the following
changes:

  01 -  Enhanced LRO:
  LRO feature is extended to support multi-buffer mode. Previously,
  Ethernet frames received in contiguous buffers were offloaded.
  Now, frames received in multiple non-contiguous buffers can be
  offloaded, as well. The driver now supports LRO for jumbo frames.

  02 - Locks Optimization:
  The driver code was re-organized to limit the use of locks.
  Moreover, lock contention was reduced by replacing wait locks
  with try locks.

  03 - Code Optimization:
  The driver code was re-factored  to eliminate some memcpy
  operations.  Fast path loops were optimized.

  04 - Tag Creations:
  Physical Buffer Tags are now optimized based upon frame size.
  For better performance, Physical Memory Maps are now re-used.

  05 - Configuration:
  Features such as TSO, LRO, and Interrupt Mode can be configured
  either at load or at run time. Rx buffer mode (mode 1 or mode 2)
  can be configured at load time through kenv.

  06 - Driver Statistics:
  Run time statistics are enhanced to provide better visibility
  into the driver performance.

  07 - Bug Fixes:
  The driver contains fixes for the problems discovered and
  reported since last submission.

  08 - MSI support:
  Added Message Signaled Interrupt feature which currently uses 1
  message.

  09  Removed feature:
  Rx 3 buffer mode feature has been removed. Driver now supports 1,
  2 and 5 buffer modes of which 2 and 5 buffer modes can be used
  for header separation.

  10  Compiler warning:
  Fixed compiler warning when compiled for 32 bit system.

  11 Copyright notice:
  Source files are updated with the proper copyright notice.

MFC after:	3 days
Submitted by:	Alicia Pena <Alicia dot Pena at neterion dot com>,
		Muhammad Shafiq <Muhammad dot Shafiq at neterion dot com>
2007-10-29 14:19:32 +00:00

1765 lines
52 KiB
C

/*-
* Copyright (c) 2002-2007 Neterion, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <dev/nxge/include/xgehal-mgmt.h>
#include <dev/nxge/include/xgehal-driver.h>
#include <dev/nxge/include/xgehal-device.h>
/**
* xge_hal_mgmt_about - Retrieve about info.
* @devh: HAL device handle.
* @about_info: Filled in by HAL. See xge_hal_mgmt_about_info_t{}.
* @size: Size of the @about_info buffer. HAL will return error if the
* size is smaller than sizeof(xge_hal_mgmt_about_info_t).
*
* Retrieve information such as PCI device and vendor IDs, board
* revision number, HAL version number, etc.
*
* Returns: XGE_HAL_OK - success;
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
* XGE_HAL_FAIL - Failed to retrieve the information.
*
* See also: xge_hal_mgmt_about_info_t{}.
*/
xge_hal_status_e
xge_hal_mgmt_about(xge_hal_device_h devh, xge_hal_mgmt_about_info_t *about_info,
int size)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (size != sizeof(xge_hal_mgmt_about_info_t)) {
return XGE_HAL_ERR_VERSION_CONFLICT;
}
xge_os_pci_read16(hldev->pdev, hldev->cfgh,
xge_offsetof(xge_hal_pci_config_le_t, vendor_id),
&about_info->vendor);
xge_os_pci_read16(hldev->pdev, hldev->cfgh,
xge_offsetof(xge_hal_pci_config_le_t, device_id),
&about_info->device);
xge_os_pci_read16(hldev->pdev, hldev->cfgh,
xge_offsetof(xge_hal_pci_config_le_t, subsystem_vendor_id),
&about_info->subsys_vendor);
xge_os_pci_read16(hldev->pdev, hldev->cfgh,
xge_offsetof(xge_hal_pci_config_le_t, subsystem_id),
&about_info->subsys_device);
xge_os_pci_read8(hldev->pdev, hldev->cfgh,
xge_offsetof(xge_hal_pci_config_le_t, revision),
&about_info->board_rev);
xge_os_strcpy(about_info->vendor_name, XGE_DRIVER_VENDOR);
xge_os_strcpy(about_info->chip_name, XGE_CHIP_FAMILY);
xge_os_strcpy(about_info->media, XGE_SUPPORTED_MEDIA_0);
xge_os_strcpy(about_info->hal_major, XGE_HAL_VERSION_MAJOR);
xge_os_strcpy(about_info->hal_minor, XGE_HAL_VERSION_MINOR);
xge_os_strcpy(about_info->hal_fix, XGE_HAL_VERSION_FIX);
xge_os_strcpy(about_info->hal_build, XGE_HAL_VERSION_BUILD);
xge_os_strcpy(about_info->ll_major, XGELL_VERSION_MAJOR);
xge_os_strcpy(about_info->ll_minor, XGELL_VERSION_MINOR);
xge_os_strcpy(about_info->ll_fix, XGELL_VERSION_FIX);
xge_os_strcpy(about_info->ll_build, XGELL_VERSION_BUILD);
about_info->transponder_temperature =
xge_hal_read_xfp_current_temp(devh);
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_reg_read - Read Xframe register.
* @devh: HAL device handle.
* @bar_id: 0 - for BAR0, 1- for BAR1.
* @offset: Register offset in the Base Address Register (BAR) space.
* @value: Register value. Returned by HAL.
* Read Xframe register.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_INVALID_OFFSET - Register offset in the BAR space is not
* valid.
* XGE_HAL_ERR_INVALID_BAR_ID - BAR id is not valid.
*
* See also: xge_hal_aux_bar0_read(), xge_hal_aux_bar1_read().
*/
xge_hal_status_e
xge_hal_mgmt_reg_read(xge_hal_device_h devh, int bar_id, unsigned int offset,
u64 *value)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (bar_id == 0) {
if (offset > sizeof(xge_hal_pci_bar0_t)-8) {
return XGE_HAL_ERR_INVALID_OFFSET;
}
*value = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
(void *)(hldev->bar0 + offset));
} else if (bar_id == 1 &&
(xge_hal_device_check_id(hldev) == XGE_HAL_CARD_XENA ||
xge_hal_device_check_id(hldev) == XGE_HAL_CARD_HERC)) {
int i;
for (i=0; i<XGE_HAL_MAX_FIFO_NUM_HERC; i++) {
if (offset == i*0x2000 || offset == i*0x2000+0x18) {
break;
}
}
if (i == XGE_HAL_MAX_FIFO_NUM_HERC) {
return XGE_HAL_ERR_INVALID_OFFSET;
}
*value = xge_os_pio_mem_read64(hldev->pdev, hldev->regh1,
(void *)(hldev->bar1 + offset));
} else if (bar_id == 1) {
/* FIXME: check TITAN BAR1 offsets */
} else {
return XGE_HAL_ERR_INVALID_BAR_ID;
}
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_reg_write - Write Xframe register.
* @devh: HAL device handle.
* @bar_id: 0 - for BAR0, 1- for BAR1.
* @offset: Register offset in the Base Address Register (BAR) space.
* @value: Register value.
*
* Write Xframe register.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_INVALID_OFFSET - Register offset in the BAR space is not
* valid.
* XGE_HAL_ERR_INVALID_BAR_ID - BAR id is not valid.
*
* See also: xge_hal_aux_bar0_write().
*/
xge_hal_status_e
xge_hal_mgmt_reg_write(xge_hal_device_h devh, int bar_id, unsigned int offset,
u64 value)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (bar_id == 0) {
if (offset > sizeof(xge_hal_pci_bar0_t)-8) {
return XGE_HAL_ERR_INVALID_OFFSET;
}
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, value,
(void *)(hldev->bar0 + offset));
} else if (bar_id == 1 &&
(xge_hal_device_check_id(hldev) == XGE_HAL_CARD_XENA ||
xge_hal_device_check_id(hldev) == XGE_HAL_CARD_HERC)) {
int i;
for (i=0; i<XGE_HAL_MAX_FIFO_NUM_HERC; i++) {
if (offset == i*0x2000 || offset == i*0x2000+0x18) {
break;
}
}
if (i == XGE_HAL_MAX_FIFO_NUM_HERC) {
return XGE_HAL_ERR_INVALID_OFFSET;
}
xge_os_pio_mem_write64(hldev->pdev, hldev->regh1, value,
(void *)(hldev->bar1 + offset));
} else if (bar_id == 1) {
/* FIXME: check TITAN BAR1 offsets */
} else {
return XGE_HAL_ERR_INVALID_BAR_ID;
}
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_hw_stats - Get Xframe hardware statistics.
* @devh: HAL device handle.
* @hw_stats: Hardware statistics. Returned by HAL.
* See xge_hal_stats_hw_info_t{}.
* @size: Size of the @hw_stats buffer. HAL will return an error
* if the size is smaller than sizeof(xge_hal_stats_hw_info_t).
* Get Xframe hardware statistics.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
*
* See also: xge_hal_mgmt_sw_stats().
*/
xge_hal_status_e
xge_hal_mgmt_hw_stats(xge_hal_device_h devh, xge_hal_mgmt_hw_stats_t *hw_stats,
int size)
{
xge_hal_status_e status;
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_stats_hw_info_t *hw_info;
xge_assert(xge_hal_device_check_id(hldev) != XGE_HAL_CARD_TITAN);
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (size != sizeof(xge_hal_stats_hw_info_t)) {
return XGE_HAL_ERR_VERSION_CONFLICT;
}
if ((status = xge_hal_stats_hw (devh, &hw_info)) != XGE_HAL_OK) {
return status;
}
xge_os_memcpy(hw_stats, hw_info, sizeof(xge_hal_stats_hw_info_t));
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_hw_stats_off - TBD.
* @devh: HAL device handle.
* @off: TBD
* @size: TBD
* @out: TBD
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
*
* See also: xge_hal_mgmt_sw_stats().
*/
xge_hal_status_e
xge_hal_mgmt_hw_stats_off(xge_hal_device_h devh, int off, int size, char *out)
{
xge_hal_status_e status;
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_stats_hw_info_t *hw_info;
xge_assert(xge_hal_device_check_id(hldev) != XGE_HAL_CARD_TITAN);
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (off > sizeof(xge_hal_stats_hw_info_t)-4 ||
size > 8) {
return XGE_HAL_ERR_INVALID_OFFSET;
}
if ((status = xge_hal_stats_hw (devh, &hw_info)) != XGE_HAL_OK) {
return status;
}
xge_os_memcpy(out, (char*)hw_info + off, size);
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_pcim_stats - Get Titan hardware statistics.
* @devh: HAL device handle.
* @pcim_stats: PCIM statistics. Returned by HAL.
* See xge_hal_stats_hw_info_t{}.
* @size: Size of the @hw_stats buffer. HAL will return an error
* if the size is smaller than sizeof(xge_hal_stats_hw_info_t).
* Get Xframe hardware statistics.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
*
* See also: xge_hal_mgmt_sw_stats().
*/
xge_hal_status_e
xge_hal_mgmt_pcim_stats(xge_hal_device_h devh,
xge_hal_mgmt_pcim_stats_t *pcim_stats, int size)
{
xge_hal_status_e status;
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_stats_pcim_info_t *pcim_info;
xge_assert(xge_hal_device_check_id(hldev) == XGE_HAL_CARD_TITAN);
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (size != sizeof(xge_hal_stats_pcim_info_t)) {
return XGE_HAL_ERR_VERSION_CONFLICT;
}
if ((status = xge_hal_stats_pcim (devh, &pcim_info)) != XGE_HAL_OK) {
return status;
}
xge_os_memcpy(pcim_stats, pcim_info,
sizeof(xge_hal_stats_pcim_info_t));
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_pcim_stats_off - TBD.
* @devh: HAL device handle.
* @off: TBD
* @size: TBD
* @out: TBD
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
*
* See also: xge_hal_mgmt_sw_stats().
*/
xge_hal_status_e
xge_hal_mgmt_pcim_stats_off(xge_hal_device_h devh, int off, int size,
char *out)
{
xge_hal_status_e status;
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_stats_pcim_info_t *pcim_info;
xge_assert(xge_hal_device_check_id(hldev) == XGE_HAL_CARD_TITAN);
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (off > sizeof(xge_hal_stats_pcim_info_t)-8 ||
size > 8) {
return XGE_HAL_ERR_INVALID_OFFSET;
}
if ((status = xge_hal_stats_pcim (devh, &pcim_info)) != XGE_HAL_OK) {
return status;
}
xge_os_memcpy(out, (char*)pcim_info + off, size);
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_sw_stats - Get per-device software statistics.
* @devh: HAL device handle.
* @sw_stats: Hardware statistics. Returned by HAL.
* See xge_hal_stats_sw_err_t{}.
* @size: Size of the @sw_stats buffer. HAL will return an error
* if the size is smaller than sizeof(xge_hal_stats_sw_err_t).
* Get device software statistics, including ECC and Parity error
* counters, etc.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
*
* See also: xge_hal_stats_sw_err_t{}, xge_hal_mgmt_hw_stats().
*/
xge_hal_status_e
xge_hal_mgmt_sw_stats(xge_hal_device_h devh, xge_hal_mgmt_sw_stats_t *sw_stats,
int size)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (size != sizeof(xge_hal_stats_sw_err_t)) {
return XGE_HAL_ERR_VERSION_CONFLICT;
}
if (!hldev->stats.is_initialized ||
!hldev->stats.is_enabled) {
return XGE_HAL_INF_STATS_IS_NOT_READY;
}
/* Updating xpak stats value */
__hal_updt_stats_xpak(hldev);
xge_os_memcpy(sw_stats, &hldev->stats.sw_dev_err_stats,
sizeof(xge_hal_stats_sw_err_t));
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_device_stats - Get HAL device statistics.
* @devh: HAL device handle.
* @device_stats: HAL device "soft" statistics. Maintained by HAL itself.
* (as opposed to xge_hal_mgmt_hw_stats() - those are
* maintained by the Xframe hardware).
* Returned by HAL.
* See xge_hal_stats_device_info_t{}.
* @size: Size of the @device_stats buffer. HAL will return an error
* if the size is smaller than sizeof(xge_hal_stats_device_info_t).
*
* Get HAL (layer) statistic counters.
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
* XGE_HAL_INF_STATS_IS_NOT_READY - Statistics information is not
* currently available.
*
*/
xge_hal_status_e
xge_hal_mgmt_device_stats(xge_hal_device_h devh,
xge_hal_mgmt_device_stats_t *device_stats, int size)
{
xge_hal_status_e status;
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_stats_device_info_t *device_info;
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (size != sizeof(xge_hal_stats_device_info_t)) {
return XGE_HAL_ERR_VERSION_CONFLICT;
}
if ((status = xge_hal_stats_device (devh, &device_info)) !=
XGE_HAL_OK) {
return status;
}
xge_os_memcpy(device_stats, device_info,
sizeof(xge_hal_stats_device_info_t));
return XGE_HAL_OK;
}
/*
* __hal_update_ring_bump - Update the ring bump counter for the
* particular channel.
* @hldev: HAL device handle.
* @queue: the queue who's data is to be collected.
* @chinfo: pointer to the statistics structure of the given channel.
* Usage: See xge_hal_aux_stats_hal_read{}
*/
static void
__hal_update_ring_bump(xge_hal_device_t *hldev, int queue,
xge_hal_stats_channel_info_t *chinfo)
{
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 rbc = 0;
int reg = (queue / 4);
void * addr;
addr = (reg == 1)? (&bar0->ring_bump_counter2) :
(&bar0->ring_bump_counter1);
rbc = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0, addr);
chinfo->ring_bump_cnt = XGE_HAL_RING_BUMP_CNT(queue, rbc);
}
/**
* xge_hal_mgmt_channel_stats - Get HAL channel statistics.
* @channelh: HAL channel handle.
* @channel_stats: HAL channel statistics. Maintained by HAL itself
* (as opposed to xge_hal_mgmt_hw_stats() - those are
* maintained by the Xframe hardware).
* Returned by HAL.
* See xge_hal_stats_channel_info_t{}.
* @size: Size of the @channel_stats buffer. HAL will return an error
* if the size is smaller than sizeof(xge_hal_mgmt_channel_stats_t).
*
* Get HAL per-channel statistic counters.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
* XGE_HAL_INF_STATS_IS_NOT_READY - Statistics information is not
* currently available.
*
*/
xge_hal_status_e
xge_hal_mgmt_channel_stats(xge_hal_channel_h channelh,
xge_hal_mgmt_channel_stats_t *channel_stats, int size)
{
xge_hal_status_e status;
xge_hal_stats_channel_info_t *channel_info;
xge_hal_channel_t *channel = (xge_hal_channel_t* ) channelh;
if (size != sizeof(xge_hal_stats_channel_info_t)) {
return XGE_HAL_ERR_VERSION_CONFLICT;
}
if ((status = xge_hal_stats_channel (channelh, &channel_info)) !=
XGE_HAL_OK) {
return status;
}
if (xge_hal_device_check_id(channel->devh) == XGE_HAL_CARD_HERC) {
__hal_update_ring_bump( (xge_hal_device_t *) channel->devh, channel->post_qid, channel_info);
}
xge_os_memcpy(channel_stats, channel_info,
sizeof(xge_hal_stats_channel_info_t));
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_pcireg_read - Read PCI configuration at a specified
* offset.
* @devh: HAL device handle.
* @offset: Offset in the 256 byte PCI configuration space.
* @value_bits: 8, 16, or 32 (bits) to read.
* @value: Value returned by HAL.
*
* Read PCI configuration, given device and offset in the PCI space.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_INVALID_OFFSET - Register offset in the BAR space is not
* valid.
* XGE_HAL_ERR_INVALID_VALUE_BIT_SIZE - Invalid bits size. Valid
* values(8/16/32).
*
*/
xge_hal_status_e
xge_hal_mgmt_pcireg_read(xge_hal_device_h devh, unsigned int offset,
int value_bits, u32 *value)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (offset > sizeof(xge_hal_pci_config_t)-value_bits/8) {
return XGE_HAL_ERR_INVALID_OFFSET;
}
if (value_bits == 8) {
xge_os_pci_read8(hldev->pdev, hldev->cfgh, offset, (u8*)value);
} else if (value_bits == 16) {
xge_os_pci_read16(hldev->pdev, hldev->cfgh, offset,
(u16*)value);
} else if (value_bits == 32) {
xge_os_pci_read32(hldev->pdev, hldev->cfgh, offset, value);
} else {
return XGE_HAL_ERR_INVALID_VALUE_BIT_SIZE;
}
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_device_config - Retrieve device configuration.
* @devh: HAL device handle.
* @dev_config: Device configuration, see xge_hal_device_config_t{}.
* @size: Size of the @dev_config buffer. HAL will return an error
* if the size is smaller than sizeof(xge_hal_mgmt_device_config_t).
*
* Get device configuration. Permits to retrieve at run-time configuration
* values that were used to initialize and configure the device.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
*
* See also: xge_hal_device_config_t{}, xge_hal_mgmt_driver_config().
*/
xge_hal_status_e
xge_hal_mgmt_device_config(xge_hal_device_h devh,
xge_hal_mgmt_device_config_t *dev_config, int size)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (size != sizeof(xge_hal_mgmt_device_config_t)) {
return XGE_HAL_ERR_VERSION_CONFLICT;
}
xge_os_memcpy(dev_config, &hldev->config,
sizeof(xge_hal_device_config_t));
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_driver_config - Retrieve driver configuration.
* @drv_config: Device configuration, see xge_hal_driver_config_t{}.
* @size: Size of the @dev_config buffer. HAL will return an error
* if the size is smaller than sizeof(xge_hal_mgmt_driver_config_t).
*
* Get driver configuration. Permits to retrieve at run-time configuration
* values that were used to configure the device at load-time.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_DRIVER_NOT_INITIALIZED - HAL is not initialized.
* XGE_HAL_ERR_VERSION_CONFLICT - Version is not maching.
*
* See also: xge_hal_driver_config_t{}, xge_hal_mgmt_device_config().
*/
xge_hal_status_e
xge_hal_mgmt_driver_config(xge_hal_mgmt_driver_config_t *drv_config, int size)
{
if (g_xge_hal_driver == NULL) {
return XGE_HAL_ERR_DRIVER_NOT_INITIALIZED;
}
if (size != sizeof(xge_hal_mgmt_driver_config_t)) {
return XGE_HAL_ERR_VERSION_CONFLICT;
}
xge_os_memcpy(drv_config, &g_xge_hal_driver->config,
sizeof(xge_hal_mgmt_driver_config_t));
return XGE_HAL_OK;
}
/**
* xge_hal_mgmt_pci_config - Retrieve PCI configuration.
* @devh: HAL device handle.
* @pci_config: 256 byte long buffer for PCI configuration space.
* @size: Size of the @ buffer. HAL will return an error
* if the size is smaller than sizeof(xge_hal_mgmt_pci_config_t).
*
* Get PCI configuration. Permits to retrieve at run-time configuration
* values that were used to configure the device at load-time.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_ERR_INVALID_DEVICE - Device is not valid.
* XGE_HAL_ERR_VERSION_CONFLICT - Version it not maching.
*
*/
xge_hal_status_e
xge_hal_mgmt_pci_config(xge_hal_device_h devh,
xge_hal_mgmt_pci_config_t *pci_config, int size)
{
int i;
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
if ((hldev == NULL) || (hldev->magic != XGE_HAL_MAGIC)) {
return XGE_HAL_ERR_INVALID_DEVICE;
}
if (size != sizeof(xge_hal_mgmt_pci_config_t)) {
return XGE_HAL_ERR_VERSION_CONFLICT;
}
/* refresh PCI config space */
for (i = 0; i < 0x68/4+1; i++) {
xge_os_pci_read32(hldev->pdev, hldev->cfgh, i*4,
(u32*)&hldev->pci_config_space + i);
}
xge_os_memcpy(pci_config, &hldev->pci_config_space,
sizeof(xge_hal_mgmt_pci_config_t));
return XGE_HAL_OK;
}
#ifdef XGE_TRACE_INTO_CIRCULAR_ARR
/**
* xge_hal_mgmt_trace_read - Read trace buffer contents.
* @buffer: Buffer to store the trace buffer contents.
* @buf_size: Size of the buffer.
* @offset: Offset in the internal trace buffer to read data.
* @read_length: Size of the valid data in the buffer.
*
* Read HAL trace buffer contents starting from the offset
* upto the size of the buffer or till EOF is reached.
*
* Returns: XGE_HAL_OK - success.
* XGE_HAL_EOF_TRACE_BUF - No more data in the trace buffer.
*
*/
xge_hal_status_e
xge_hal_mgmt_trace_read (char *buffer,
unsigned buf_size,
unsigned *offset,
unsigned *read_length)
{
int data_offset;
int start_offset;
if ((g_xge_os_tracebuf == NULL) ||
(g_xge_os_tracebuf->offset == g_xge_os_tracebuf->size - 2)) {
return XGE_HAL_EOF_TRACE_BUF;
}
data_offset = g_xge_os_tracebuf->offset + 1;
if (*offset >= (unsigned)xge_os_strlen(g_xge_os_tracebuf->data +
data_offset)) {
return XGE_HAL_EOF_TRACE_BUF;
}
xge_os_memzero(buffer, buf_size);
start_offset = data_offset + *offset;
*read_length = xge_os_strlen(g_xge_os_tracebuf->data +
start_offset);
if (*read_length >= buf_size) {
*read_length = buf_size - 1;
}
xge_os_memcpy(buffer, g_xge_os_tracebuf->data + start_offset,
*read_length);
*offset += *read_length;
(*read_length) ++;
return XGE_HAL_OK;
}
#endif
/**
* xge_hal_restore_link_led - Restore link LED to its original state.
* @devh: HAL device handle.
*/
void
xge_hal_restore_link_led(xge_hal_device_h devh)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 val64;
/*
* If the current link state is UP, switch on LED else make it
* off.
*/
/*
* For Xena 3 and lower revision cards, adapter control needs to be
* used for making LED ON/OFF.
*/
if ((xge_hal_device_check_id(hldev) == XGE_HAL_CARD_XENA) &&
(xge_hal_device_rev(hldev) <= 3)) {
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->adapter_control);
if (hldev->link_state == XGE_HAL_LINK_UP) {
val64 |= XGE_HAL_ADAPTER_LED_ON;
} else {
val64 &= ~XGE_HAL_ADAPTER_LED_ON;
}
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->adapter_control);
return;
}
/*
* Use beacon control register to control the LED.
* LED link output corresponds to bit 8 of the beacon control
* register. Note that, in the case of Xena, beacon control register
* represents the gpio control register. In the case of Herc, LED
* handling is done by beacon control register as opposed to gpio
* control register in Xena. Beacon control is used only to toggle
* and the value written into it does not depend on the link state.
* It is upto the ULD to toggle the LED even number of times which
* brings the LED to it's original state.
*/
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->beacon_control);
val64 |= 0x0000800000000000ULL;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
val64, &bar0->beacon_control);
}
/**
* xge_hal_flick_link_led - Flick (blink) link LED.
* @devh: HAL device handle.
*
* Depending on the card revision flicker the link LED by using the
* beacon control or the adapter_control register.
*/
void
xge_hal_flick_link_led(xge_hal_device_h devh)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 val64 = 0;
/*
* For Xena 3 and lower revision cards, adapter control needs to be
* used for making LED ON/OFF.
*/
if ((xge_hal_device_check_id(hldev) == XGE_HAL_CARD_XENA) &&
(xge_hal_device_rev(hldev) <= 3)) {
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->adapter_control);
val64 ^= XGE_HAL_ADAPTER_LED_ON;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->adapter_control);
return;
}
/*
* Use beacon control register to control the Link LED.
* Note that, in the case of Xena, beacon control register represents
* the gpio control register. In the case of Herc, LED handling is
* done by beacon control register as opposed to gpio control register
* in Xena.
*/
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->beacon_control);
val64 ^= XGE_HAL_GPIO_CTRL_GPIO_0;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->beacon_control);
}
/**
* xge_hal_read_eeprom - Read 4 bytes of data from user given offset.
* @devh: HAL device handle.
* @off: offset at which the data must be written
* @data: output parameter where the data is stored.
*
* Read 4 bytes of data from the user given offset and return the
* read data.
* Note: will allow to read only part of the EEPROM visible through the
* I2C bus.
* Returns: -1 on failure, 0 on success.
*/
xge_hal_status_e
xge_hal_read_eeprom(xge_hal_device_h devh, int off, u32* data)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_status_e ret = XGE_HAL_FAIL;
u32 exit_cnt = 0;
u64 val64;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
val64 = XGE_HAL_I2C_CONTROL_DEV_ID(XGE_DEV_ID) |
XGE_HAL_I2C_CONTROL_ADDR(off) |
XGE_HAL_I2C_CONTROL_BYTE_CNT(0x3) |
XGE_HAL_I2C_CONTROL_READ | XGE_HAL_I2C_CONTROL_CNTL_START;
__hal_serial_mem_write64(hldev, val64, &bar0->i2c_control);
while (exit_cnt < 5) {
val64 = __hal_serial_mem_read64(hldev, &bar0->i2c_control);
if (XGE_HAL_I2C_CONTROL_CNTL_END(val64)) {
*data = XGE_HAL_I2C_CONTROL_GET_DATA(val64);
ret = XGE_HAL_OK;
break;
}
exit_cnt++;
}
return ret;
}
/*
* xge_hal_write_eeprom - actually writes the relevant part of the data
value.
* @devh: HAL device handle.
* @off: offset at which the data must be written
* @data : The data that is to be written
* @cnt : Number of bytes of the data that are actually to be written into
* the Eeprom. (max of 3)
*
* Actually writes the relevant part of the data value into the Eeprom
* through the I2C bus.
* Return value:
* 0 on success, -1 on failure.
*/
xge_hal_status_e
xge_hal_write_eeprom(xge_hal_device_h devh, int off, u32 data, int cnt)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_status_e ret = XGE_HAL_FAIL;
u32 exit_cnt = 0;
u64 val64;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
val64 = XGE_HAL_I2C_CONTROL_DEV_ID(XGE_DEV_ID) |
XGE_HAL_I2C_CONTROL_ADDR(off) |
XGE_HAL_I2C_CONTROL_BYTE_CNT(cnt) |
XGE_HAL_I2C_CONTROL_SET_DATA(data) |
XGE_HAL_I2C_CONTROL_CNTL_START;
__hal_serial_mem_write64(hldev, val64, &bar0->i2c_control);
while (exit_cnt < 5) {
val64 = __hal_serial_mem_read64(hldev, &bar0->i2c_control);
if (XGE_HAL_I2C_CONTROL_CNTL_END(val64)) {
if (!(val64 & XGE_HAL_I2C_CONTROL_NACK))
ret = XGE_HAL_OK;
break;
}
exit_cnt++;
}
return ret;
}
/*
* xge_hal_register_test - reads and writes into all clock domains.
* @hldev : private member of the device structure.
* xge_nic structure.
* @data : variable that returns the result of each of the test conducted b
* by the driver.
*
* Read and write into all clock domains. The NIC has 3 clock domains,
* see that registers in all the three regions are accessible.
* Return value:
* 0 on success.
*/
xge_hal_status_e
xge_hal_register_test(xge_hal_device_h devh, u64 *data)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 val64 = 0;
int fail = 0;
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->pif_rd_swapper_fb);
if (val64 != 0x123456789abcdefULL) {
fail = 1;
xge_debug_osdep(XGE_TRACE, "Read Test level 1 fails");
}
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->rmac_pause_cfg);
if (val64 != 0xc000ffff00000000ULL) {
fail = 1;
xge_debug_osdep(XGE_TRACE, "Read Test level 2 fails");
}
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->rx_queue_cfg);
if (val64 != 0x0808080808080808ULL) {
fail = 1;
xge_debug_osdep(XGE_TRACE, "Read Test level 3 fails");
}
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->xgxs_efifo_cfg);
if (val64 != 0x000000001923141EULL) {
fail = 1;
xge_debug_osdep(XGE_TRACE, "Read Test level 4 fails");
}
val64 = 0x5A5A5A5A5A5A5A5AULL;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->xmsi_data);
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->xmsi_data);
if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
fail = 1;
xge_debug_osdep(XGE_ERR, "Write Test level 1 fails");
}
val64 = 0xA5A5A5A5A5A5A5A5ULL;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->xmsi_data);
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->xmsi_data);
if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
fail = 1;
xge_debug_osdep(XGE_ERR, "Write Test level 2 fails");
}
*data = fail;
return XGE_HAL_OK;
}
/*
* xge_hal_rldram_test - offline test for access to the RldRam chip on
the NIC
* @devh: HAL device handle.
* @data: variable that returns the result of each of the test
* conducted by the driver.
*
* This is one of the offline test that tests the read and write
* access to the RldRam chip on the NIC.
* Return value:
* 0 on success.
*/
xge_hal_status_e
xge_hal_rldram_test(xge_hal_device_h devh, u64 *data)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 val64;
int cnt, iteration = 0, test_pass = 0;
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->adapter_control);
val64 &= ~XGE_HAL_ADAPTER_ECC_EN;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->adapter_control);
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->mc_rldram_test_ctrl);
val64 |= XGE_HAL_MC_RLDRAM_TEST_MODE;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->mc_rldram_test_ctrl);
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->mc_rldram_mrs);
val64 |= XGE_HAL_MC_RLDRAM_QUEUE_SIZE_ENABLE;
__hal_serial_mem_write64(hldev, val64, &bar0->i2c_control);
val64 |= XGE_HAL_MC_RLDRAM_MRS_ENABLE;
__hal_serial_mem_write64(hldev, val64, &bar0->i2c_control);
while (iteration < 2) {
val64 = 0x55555555aaaa0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->mc_rldram_test_d0);
val64 = 0xaaaa5a5555550000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->mc_rldram_test_d1);
val64 = 0x55aaaaaaaa5a0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->mc_rldram_test_d2);
val64 = (u64) (0x0000003fffff0000ULL);
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->mc_rldram_test_add);
val64 = XGE_HAL_MC_RLDRAM_TEST_MODE;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->mc_rldram_test_ctrl);
val64 |=
XGE_HAL_MC_RLDRAM_TEST_MODE | XGE_HAL_MC_RLDRAM_TEST_WRITE |
XGE_HAL_MC_RLDRAM_TEST_GO;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->mc_rldram_test_ctrl);
for (cnt = 0; cnt < 5; cnt++) {
val64 = xge_os_pio_mem_read64(hldev->pdev,
hldev->regh0, &bar0->mc_rldram_test_ctrl);
if (val64 & XGE_HAL_MC_RLDRAM_TEST_DONE)
break;
xge_os_mdelay(200);
}
if (cnt == 5)
break;
val64 = XGE_HAL_MC_RLDRAM_TEST_MODE;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->mc_rldram_test_ctrl);
val64 |= XGE_HAL_MC_RLDRAM_TEST_MODE |
XGE_HAL_MC_RLDRAM_TEST_GO;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0, val64,
&bar0->mc_rldram_test_ctrl);
for (cnt = 0; cnt < 5; cnt++) {
val64 = xge_os_pio_mem_read64(hldev->pdev,
hldev->regh0, &bar0->mc_rldram_test_ctrl);
if (val64 & XGE_HAL_MC_RLDRAM_TEST_DONE)
break;
xge_os_mdelay(500);
}
if (cnt == 5)
break;
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->mc_rldram_test_ctrl);
if (val64 & XGE_HAL_MC_RLDRAM_TEST_PASS)
test_pass = 1;
iteration++;
}
if (!test_pass)
*data = 1;
else
*data = 0;
return XGE_HAL_OK;
}
/*
* xge_hal_pma_loopback - Enable or disable PMA loopback
* @devh: HAL device handle.
* @enable:Boolean set to 1 to enable and 0 to disable.
*
* Enable or disable PMA loopback.
* Return value:
* 0 on success.
*/
xge_hal_status_e
xge_hal_pma_loopback( xge_hal_device_h devh, int enable )
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 val64;
u16 data;
/*
* This code if for MAC loopbak
* Should be enabled through another parameter
*/
#if 0
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->mac_cfg);
if ( enable )
{
val64 |= ( XGE_HAL_MAC_CFG_TMAC_LOOPBACK | XGE_HAL_MAC_CFG_RMAC_PROM_ENABLE );
}
__hal_pio_mem_write32_upper(hldev->pdev, hldev->regh0,
(u32)(val64 >> 32), (char*)&bar0->mac_cfg);
xge_os_mdelay(1);
#endif
val64 = XGE_HAL_MDIO_CONTROL_MMD_INDX_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_DEV_ADDR(1) |
XGE_HAL_MDIO_CONTROL_MMD_PRT_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_CTRL(0) |
XGE_HAL_MDIO_CONTROL_MMD_OP(XGE_HAL_MDIO_OP_ADDRESS);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 |= XGE_HAL_MDIO_CONTROL_MMD_CTRL(XGE_HAL_MDIO_CTRL_START);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 = XGE_HAL_MDIO_CONTROL_MMD_INDX_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_DEV_ADDR(1) |
XGE_HAL_MDIO_CONTROL_MMD_PRT_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_CTRL(0) |
XGE_HAL_MDIO_CONTROL_MMD_OP(XGE_HAL_MDIO_OP_READ);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 |= XGE_HAL_MDIO_CONTROL_MMD_CTRL(XGE_HAL_MDIO_CTRL_START);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 = __hal_serial_mem_read64(hldev, &bar0->mdio_control);
data = (u16)XGE_HAL_MDIO_CONTROL_MMD_DATA_GET(val64);
#define _HAL_LOOPBK_PMA 1
if( enable )
data |= 1;
else
data &= 0xfe;
val64 = XGE_HAL_MDIO_CONTROL_MMD_INDX_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_DEV_ADDR(1) |
XGE_HAL_MDIO_CONTROL_MMD_PRT_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_CTRL(0) |
XGE_HAL_MDIO_CONTROL_MMD_OP(XGE_HAL_MDIO_OP_ADDRESS);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 |= XGE_HAL_MDIO_CONTROL_MMD_CTRL(XGE_HAL_MDIO_CTRL_START);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 = XGE_HAL_MDIO_CONTROL_MMD_INDX_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_DEV_ADDR(1) |
XGE_HAL_MDIO_CONTROL_MMD_PRT_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_DATA(data) |
XGE_HAL_MDIO_CONTROL_MMD_CTRL(0x0) |
XGE_HAL_MDIO_CONTROL_MMD_OP(XGE_HAL_MDIO_OP_WRITE);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 |= XGE_HAL_MDIO_CONTROL_MMD_CTRL(XGE_HAL_MDIO_CTRL_START);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 = XGE_HAL_MDIO_CONTROL_MMD_INDX_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_DEV_ADDR(1) |
XGE_HAL_MDIO_CONTROL_MMD_PRT_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_CTRL(0x0) |
XGE_HAL_MDIO_CONTROL_MMD_OP(XGE_HAL_MDIO_OP_READ);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 |= XGE_HAL_MDIO_CONTROL_MMD_CTRL(XGE_HAL_MDIO_CTRL_START);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
return XGE_HAL_OK;
}
u16
xge_hal_mdio_read( xge_hal_device_h devh, u32 mmd_type, u64 addr )
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 val64 = 0x0;
u16 rval16 = 0x0;
u8 i = 0;
/* address transaction */
val64 = XGE_HAL_MDIO_CONTROL_MMD_INDX_ADDR(addr) |
XGE_HAL_MDIO_CONTROL_MMD_DEV_ADDR(mmd_type) |
XGE_HAL_MDIO_CONTROL_MMD_PRT_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_OP(XGE_HAL_MDIO_OP_ADDRESS);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 |= XGE_HAL_MDIO_CONTROL_MMD_CTRL(XGE_HAL_MDIO_CTRL_START);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
do
{
val64 = __hal_serial_mem_read64(hldev, &bar0->mdio_control);
if (i++ > 10)
{
break;
}
}while((val64 & XGE_HAL_MDIO_CONTROL_MMD_CTRL(0xF)) != XGE_HAL_MDIO_CONTROL_MMD_CTRL(1));
/* Data transaction */
val64 = XGE_HAL_MDIO_CONTROL_MMD_INDX_ADDR(addr) |
XGE_HAL_MDIO_CONTROL_MMD_DEV_ADDR(mmd_type) |
XGE_HAL_MDIO_CONTROL_MMD_PRT_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_OP(XGE_HAL_MDIO_OP_READ);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 |= XGE_HAL_MDIO_CONTROL_MMD_CTRL(XGE_HAL_MDIO_CTRL_START);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
i = 0;
do
{
val64 = __hal_serial_mem_read64(hldev, &bar0->mdio_control);
if (i++ > 10)
{
break;
}
}while((val64 & XGE_HAL_MDIO_CONTROL_MMD_CTRL(0xF)) != XGE_HAL_MDIO_CONTROL_MMD_CTRL(1));
rval16 = (u16)XGE_HAL_MDIO_CONTROL_MMD_DATA_GET(val64);
return rval16;
}
xge_hal_status_e
xge_hal_mdio_write( xge_hal_device_h devh, u32 mmd_type, u64 addr, u32 value )
{
u64 val64 = 0x0;
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u8 i = 0;
/* address transaction */
val64 = XGE_HAL_MDIO_CONTROL_MMD_INDX_ADDR(addr) |
XGE_HAL_MDIO_CONTROL_MMD_DEV_ADDR(mmd_type) |
XGE_HAL_MDIO_CONTROL_MMD_PRT_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_OP(XGE_HAL_MDIO_OP_ADDRESS);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 |= XGE_HAL_MDIO_CONTROL_MMD_CTRL(XGE_HAL_MDIO_CTRL_START);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
do
{
val64 = __hal_serial_mem_read64(hldev, &bar0->mdio_control);
if (i++ > 10)
{
break;
}
} while((val64 & XGE_HAL_MDIO_CONTROL_MMD_CTRL(0xF)) !=
XGE_HAL_MDIO_CONTROL_MMD_CTRL(1));
/* Data transaction */
val64 = 0x0;
val64 = XGE_HAL_MDIO_CONTROL_MMD_INDX_ADDR(addr) |
XGE_HAL_MDIO_CONTROL_MMD_DEV_ADDR(mmd_type) |
XGE_HAL_MDIO_CONTROL_MMD_PRT_ADDR(0) |
XGE_HAL_MDIO_CONTROL_MMD_DATA(value) |
XGE_HAL_MDIO_CONTROL_MMD_OP(XGE_HAL_MDIO_OP_WRITE);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
val64 |= XGE_HAL_MDIO_CONTROL_MMD_CTRL(XGE_HAL_MDIO_CTRL_START);
__hal_serial_mem_write64(hldev, val64, &bar0->mdio_control);
i = 0;
do
{
val64 = __hal_serial_mem_read64(hldev, &bar0->mdio_control);
if (i++ > 10)
{
break;
}
}while((val64 & XGE_HAL_MDIO_CONTROL_MMD_CTRL(0xF)) != XGE_HAL_MDIO_CONTROL_MMD_CTRL(1));
return XGE_HAL_OK;
}
/*
* xge_hal_eeprom_test - to verify that EEprom in the xena can be
programmed.
* @devh: HAL device handle.
* @data:variable that returns the result of each of the test conducted by
* the driver.
*
* Verify that EEPROM in the xena can be programmed using I2C_CONTROL
* register.
* Return value:
* 0 on success.
*/
xge_hal_status_e
xge_hal_eeprom_test(xge_hal_device_h devh, u64 *data)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
int fail = 0;
u32 ret_data = 0;
/* Test Write Error at offset 0 */
if (!xge_hal_write_eeprom(hldev, 0, 0, 3))
fail = 1;
/* Test Write at offset 4f0 */
if (xge_hal_write_eeprom(hldev, 0x4F0, 0x01234567, 3))
fail = 1;
if (xge_hal_read_eeprom(hldev, 0x4F0, &ret_data))
fail = 1;
if (ret_data != 0x01234567)
fail = 1;
/* Reset the EEPROM data go FFFF */
(void) xge_hal_write_eeprom(hldev, 0x4F0, 0xFFFFFFFF, 3);
/* Test Write Request Error at offset 0x7c */
if (!xge_hal_write_eeprom(hldev, 0x07C, 0, 3))
fail = 1;
/* Test Write Request at offset 0x7fc */
if (xge_hal_write_eeprom(hldev, 0x7FC, 0x01234567, 3))
fail = 1;
if (xge_hal_read_eeprom(hldev, 0x7FC, &ret_data))
fail = 1;
if (ret_data != 0x01234567)
fail = 1;
/* Reset the EEPROM data go FFFF */
(void) xge_hal_write_eeprom(hldev, 0x7FC, 0xFFFFFFFF, 3);
/* Test Write Error at offset 0x80 */
if (!xge_hal_write_eeprom(hldev, 0x080, 0, 3))
fail = 1;
/* Test Write Error at offset 0xfc */
if (!xge_hal_write_eeprom(hldev, 0x0FC, 0, 3))
fail = 1;
/* Test Write Error at offset 0x100 */
if (!xge_hal_write_eeprom(hldev, 0x100, 0, 3))
fail = 1;
/* Test Write Error at offset 4ec */
if (!xge_hal_write_eeprom(hldev, 0x4EC, 0, 3))
fail = 1;
*data = fail;
return XGE_HAL_OK;
}
/*
* xge_hal_bist_test - invokes the MemBist test of the card .
* @devh: HAL device handle.
* xge_nic structure.
* @data:variable that returns the result of each of the test conducted by
* the driver.
*
* This invokes the MemBist test of the card. We give around
* 2 secs time for the Test to complete. If it's still not complete
* within this peiod, we consider that the test failed.
* Return value:
* 0 on success and -1 on failure.
*/
xge_hal_status_e
xge_hal_bist_test(xge_hal_device_h devh, u64 *data)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
u8 bist = 0;
int cnt = 0;
xge_hal_status_e ret = XGE_HAL_FAIL;
xge_os_pci_read8(hldev->pdev, hldev->cfgh, 0x0f, &bist);
bist |= 0x40;
xge_os_pci_write8(hldev->pdev, hldev->cfgh, 0x0f, bist);
while (cnt < 20) {
xge_os_pci_read8(hldev->pdev, hldev->cfgh, 0x0f, &bist);
if (!(bist & 0x40)) {
*data = (bist & 0x0f);
ret = XGE_HAL_OK;
break;
}
xge_os_mdelay(100);
cnt++;
}
return ret;
}
/*
* xge_hal_link_test - verifies the link state of the nic
* @devh: HAL device handle.
* @data: variable that returns the result of each of the test conducted by
* the driver.
*
* Verify the link state of the NIC and updates the input
* argument 'data' appropriately.
* Return value:
* 0 on success.
*/
xge_hal_status_e
xge_hal_link_test(xge_hal_device_h devh, u64 *data)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 val64;
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->adapter_status);
if (val64 & XGE_HAL_ADAPTER_STATUS_RMAC_LOCAL_FAULT)
*data = 1;
return XGE_HAL_OK;
}
/**
* xge_hal_getpause_data -Pause frame frame generation and reception.
* @devh: HAL device handle.
* @tx : A field to return the pause generation capability of the NIC.
* @rx : A field to return the pause reception capability of the NIC.
*
* Returns the Pause frame generation and reception capability of the NIC.
* Return value:
* void
*/
void xge_hal_getpause_data(xge_hal_device_h devh, int *tx, int *rx)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 val64;
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->rmac_pause_cfg);
if (val64 & XGE_HAL_RMAC_PAUSE_GEN_EN)
*tx = 1;
if (val64 & XGE_HAL_RMAC_PAUSE_RCV_EN)
*rx = 1;
}
/**
* xge_hal_setpause_data - set/reset pause frame generation.
* @devh: HAL device handle.
* @tx: A field that indicates the pause generation capability to be
* set on the NIC.
* @rx: A field that indicates the pause reception capability to be
* set on the NIC.
*
* It can be used to set or reset Pause frame generation or reception
* support of the NIC.
* Return value:
* int, returns 0 on Success
*/
int xge_hal_setpause_data(xge_hal_device_h devh, int tx, int rx)
{
xge_hal_device_t *hldev = (xge_hal_device_t*)devh;
xge_hal_pci_bar0_t *bar0 = (xge_hal_pci_bar0_t *)hldev->bar0;
u64 val64;
val64 = xge_os_pio_mem_read64(hldev->pdev, hldev->regh0,
&bar0->rmac_pause_cfg);
if (tx)
val64 |= XGE_HAL_RMAC_PAUSE_GEN_EN;
else
val64 &= ~XGE_HAL_RMAC_PAUSE_GEN_EN;
if (rx)
val64 |= XGE_HAL_RMAC_PAUSE_RCV_EN;
else
val64 &= ~XGE_HAL_RMAC_PAUSE_RCV_EN;
xge_os_pio_mem_write64(hldev->pdev, hldev->regh0,
val64, &bar0->rmac_pause_cfg);
return 0;
}
/**
* xge_hal_read_xfp_current_temp -
* @hldev: HAL device handle.
*
* This routine only gets the temperature for XFP modules. Also, updating of the
* NVRAM can sometimes fail and so the reading we might get may not be uptodate.
*/
u32 xge_hal_read_xfp_current_temp(xge_hal_device_h hldev)
{
u16 val_1, val_2, i = 0;
u32 actual;
/* First update the NVRAM table of XFP. */
(void) xge_hal_mdio_write(hldev, XGE_HAL_MDIO_MMD_PMA_DEV_ADDR, 0x8000, 0x3);
/* Now wait for the transfer to complete */
do
{
xge_os_mdelay( 50 ); // wait 50 milliseonds
val_1 = xge_hal_mdio_read(hldev, XGE_HAL_MDIO_MMD_PMA_DEV_ADDR, 0x8000);
if ( i++ > 10 )
{
// waited 500 ms which should be plenty of time.
break;
}
}while (( val_1 & 0x000C ) != 0x0004);
/* Now NVRAM table of XFP should be updated, so read the temp */
val_1 = (u8) xge_hal_mdio_read(hldev, XGE_HAL_MDIO_MMD_PMA_DEV_ADDR, 0x8067);
val_2 = (u8) xge_hal_mdio_read(hldev, XGE_HAL_MDIO_MMD_PMA_DEV_ADDR, 0x8068);
actual = ((val_1 << 8) | val_2);
if (actual >= 32768)
actual = actual- 65536;
actual = actual/256;
return actual;
}
/**
* __hal_chk_xpak_counter - check the Xpak error count and log the msg.
* @hldev: pointer to xge_hal_device_t structure
* @type: xpak stats error type
* @value: xpak stats value
*
* It is used to log the error message based on the xpak stats value
* Return value:
* None
*/
void __hal_chk_xpak_counter(xge_hal_device_t *hldev, int type, u32 value)
{
/*
* If the value is high for three consecutive cylce,
* log a error message
*/
if(value == 3)
{
switch(type)
{
case 1:
hldev->stats.sw_dev_err_stats.xpak_counter.
excess_temp = 0;
/*
* Notify the ULD on Excess Xpak temperature alarm msg
*/
if (g_xge_hal_driver->uld_callbacks.xpak_alarm_log) {
g_xge_hal_driver->uld_callbacks.xpak_alarm_log(
hldev->upper_layer_info,
XGE_HAL_XPAK_ALARM_EXCESS_TEMP);
}
break;
case 2:
hldev->stats.sw_dev_err_stats.xpak_counter.
excess_bias_current = 0;
/*
* Notify the ULD on Excess xpak bias current alarm msg
*/
if (g_xge_hal_driver->uld_callbacks.xpak_alarm_log) {
g_xge_hal_driver->uld_callbacks.xpak_alarm_log(
hldev->upper_layer_info,
XGE_HAL_XPAK_ALARM_EXCESS_BIAS_CURRENT);
}
break;
case 3:
hldev->stats.sw_dev_err_stats.xpak_counter.
excess_laser_output = 0;
/*
* Notify the ULD on Excess Xpak Laser o/p power
* alarm msg
*/
if (g_xge_hal_driver->uld_callbacks.xpak_alarm_log) {
g_xge_hal_driver->uld_callbacks.xpak_alarm_log(
hldev->upper_layer_info,
XGE_HAL_XPAK_ALARM_EXCESS_LASER_OUTPUT);
}
break;
default:
xge_debug_osdep(XGE_TRACE, "Incorrect XPAK Alarm "
"type ");
}
}
}
/**
* __hal_updt_stats_xpak - update the Xpak error count.
* @hldev: pointer to xge_hal_device_t structure
*
* It is used to update the xpak stats value
* Return value:
* None
*/
void __hal_updt_stats_xpak(xge_hal_device_t *hldev)
{
u16 val_1;
u64 addr;
/* Check the communication with the MDIO slave */
addr = 0x0000;
val_1 = 0x0;
val_1 = xge_hal_mdio_read(hldev, XGE_HAL_MDIO_MMD_PMA_DEV_ADDR, addr);
if((val_1 == 0xFFFF) || (val_1 == 0x0000))
{
xge_debug_osdep(XGE_TRACE, "ERR: MDIO slave access failed - "
"Returned %x", val_1);
return;
}
/* Check for the expected value of 2040 at PMA address 0x0000 */
if(val_1 != 0x2040)
{
xge_debug_osdep(XGE_TRACE, "Incorrect value at PMA address 0x0000 - ");
xge_debug_osdep(XGE_TRACE, "Returned: %llx- Expected: 0x2040",
(unsigned long long)(unsigned long)val_1);
return;
}
/* Loading the DOM register to MDIO register */
addr = 0xA100;
(void) xge_hal_mdio_write(hldev, XGE_HAL_MDIO_MMD_PMA_DEV_ADDR, addr, 0x0);
val_1 = xge_hal_mdio_read(hldev, XGE_HAL_MDIO_MMD_PMA_DEV_ADDR, addr);
/*
* Reading the Alarm flags
*/
addr = 0xA070;
val_1 = 0x0;
val_1 = xge_hal_mdio_read(hldev, XGE_HAL_MDIO_MMD_PMA_DEV_ADDR, addr);
if(CHECKBIT(val_1, 0x7))
{
hldev->stats.sw_dev_err_stats.stats_xpak.
alarm_transceiver_temp_high++;
hldev->stats.sw_dev_err_stats.xpak_counter.excess_temp++;
__hal_chk_xpak_counter(hldev, 0x1,
hldev->stats.sw_dev_err_stats.xpak_counter.excess_temp);
} else {
hldev->stats.sw_dev_err_stats.xpak_counter.excess_temp = 0;
}
if(CHECKBIT(val_1, 0x6))
hldev->stats.sw_dev_err_stats.stats_xpak.
alarm_transceiver_temp_low++;
if(CHECKBIT(val_1, 0x3))
{
hldev->stats.sw_dev_err_stats.stats_xpak.
alarm_laser_bias_current_high++;
hldev->stats.sw_dev_err_stats.xpak_counter.
excess_bias_current++;
__hal_chk_xpak_counter(hldev, 0x2,
hldev->stats.sw_dev_err_stats.xpak_counter.
excess_bias_current);
} else {
hldev->stats.sw_dev_err_stats.xpak_counter.
excess_bias_current = 0;
}
if(CHECKBIT(val_1, 0x2))
hldev->stats.sw_dev_err_stats.stats_xpak.
alarm_laser_bias_current_low++;
if(CHECKBIT(val_1, 0x1))
{
hldev->stats.sw_dev_err_stats.stats_xpak.
alarm_laser_output_power_high++;
hldev->stats.sw_dev_err_stats.xpak_counter.
excess_laser_output++;
__hal_chk_xpak_counter(hldev, 0x3,
hldev->stats.sw_dev_err_stats.xpak_counter.
excess_laser_output);
} else {
hldev->stats.sw_dev_err_stats.xpak_counter.
excess_laser_output = 0;
}
if(CHECKBIT(val_1, 0x0))
hldev->stats.sw_dev_err_stats.stats_xpak.
alarm_laser_output_power_low++;
/*
* Reading the warning flags
*/
addr = 0xA074;
val_1 = 0x0;
val_1 = xge_hal_mdio_read(hldev, XGE_HAL_MDIO_MMD_PMA_DEV_ADDR, addr);
if(CHECKBIT(val_1, 0x7))
hldev->stats.sw_dev_err_stats.stats_xpak.
warn_transceiver_temp_high++;
if(CHECKBIT(val_1, 0x6))
hldev->stats.sw_dev_err_stats.stats_xpak.
warn_transceiver_temp_low++;
if(CHECKBIT(val_1, 0x3))
hldev->stats.sw_dev_err_stats.stats_xpak.
warn_laser_bias_current_high++;
if(CHECKBIT(val_1, 0x2))
hldev->stats.sw_dev_err_stats.stats_xpak.
warn_laser_bias_current_low++;
if(CHECKBIT(val_1, 0x1))
hldev->stats.sw_dev_err_stats.stats_xpak.
warn_laser_output_power_high++;
if(CHECKBIT(val_1, 0x0))
hldev->stats.sw_dev_err_stats.stats_xpak.
warn_laser_output_power_low++;
}