freebsd-skq/sys/dev/nvme/nvme_ctrlr.c
chuck fa895cb8d2 Make NVMe compatible with the original API
The original NVMe API used bit-fields to represent fields in data
structures defined by the specification (e.g. the op-code in the command
data structure). The implementation targeted x86_64 processors and
defined the bit fields for little endian dwords (i.e. 32 bits).

This approach does not work as-is for big endian architectures and was
changed to use a combination of bit shifts and masks to support PowerPC.
Unfortunately, this changed the NVMe API and forces #ifdef's based on
the OS revision level in user space code.

This change reverts to something that looks like the original API, but
it uses bytes instead of bit-fields inside the packed command structure.
As a bonus, this works as-is for both big and little endian CPU
architectures.

Bump __FreeBSD_version to 1200081 due to API change

Reviewed by: imp, kbowling, smh, mav
Approved by: imp (mentor)
Differential Revision: https://reviews.freebsd.org/D16404
2018-08-22 04:29:24 +00:00

1416 lines
38 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2012-2016 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cam.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/uio.h>
#include <sys/endian.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include "nvme_private.h"
#define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */
static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
struct nvme_async_event_request *aer);
static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
static int
nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
{
ctrlr->resource_id = PCIR_BAR(0);
ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
&ctrlr->resource_id, RF_ACTIVE);
if(ctrlr->resource == NULL) {
nvme_printf(ctrlr, "unable to allocate pci resource\n");
return (ENOMEM);
}
ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
/*
* The NVMe spec allows for the MSI-X table to be placed behind
* BAR 4/5, separate from the control/doorbell registers. Always
* try to map this bar, because it must be mapped prior to calling
* pci_alloc_msix(). If the table isn't behind BAR 4/5,
* bus_alloc_resource() will just return NULL which is OK.
*/
ctrlr->bar4_resource_id = PCIR_BAR(4);
ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
&ctrlr->bar4_resource_id, RF_ACTIVE);
return (0);
}
static int
nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
{
struct nvme_qpair *qpair;
uint32_t num_entries;
int error;
qpair = &ctrlr->adminq;
num_entries = NVME_ADMIN_ENTRIES;
TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
/*
* If admin_entries was overridden to an invalid value, revert it
* back to our default value.
*/
if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
num_entries > NVME_MAX_ADMIN_ENTRIES) {
nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
"specified\n", num_entries);
num_entries = NVME_ADMIN_ENTRIES;
}
/*
* The admin queue's max xfer size is treated differently than the
* max I/O xfer size. 16KB is sufficient here - maybe even less?
*/
error = nvme_qpair_construct(qpair,
0, /* qpair ID */
0, /* vector */
num_entries,
NVME_ADMIN_TRACKERS,
ctrlr);
return (error);
}
static int
nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_qpair *qpair;
uint32_t cap_lo;
uint16_t mqes;
int i, error, num_entries, num_trackers;
num_entries = NVME_IO_ENTRIES;
TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
/*
* NVMe spec sets a hard limit of 64K max entries, but
* devices may specify a smaller limit, so we need to check
* the MQES field in the capabilities register.
*/
cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
mqes = (cap_lo >> NVME_CAP_LO_REG_MQES_SHIFT) & NVME_CAP_LO_REG_MQES_MASK;
num_entries = min(num_entries, mqes + 1);
num_trackers = NVME_IO_TRACKERS;
TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
/*
* No need to have more trackers than entries in the submit queue.
* Note also that for a queue size of N, we can only have (N-1)
* commands outstanding, hence the "-1" here.
*/
num_trackers = min(num_trackers, (num_entries-1));
/*
* Our best estimate for the maximum number of I/Os that we should
* noramlly have in flight at one time. This should be viewed as a hint,
* not a hard limit and will need to be revisitted when the upper layers
* of the storage system grows multi-queue support.
*/
ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
/*
* This was calculated previously when setting up interrupts, but
* a controller could theoretically support fewer I/O queues than
* MSI-X vectors. So calculate again here just to be safe.
*/
ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
M_NVME, M_ZERO | M_WAITOK);
for (i = 0; i < ctrlr->num_io_queues; i++) {
qpair = &ctrlr->ioq[i];
/*
* Admin queue has ID=0. IO queues start at ID=1 -
* hence the 'i+1' here.
*
* For I/O queues, use the controller-wide max_xfer_size
* calculated in nvme_attach().
*/
error = nvme_qpair_construct(qpair,
i+1, /* qpair ID */
ctrlr->msix_enabled ? i+1 : 0, /* vector */
num_entries,
num_trackers,
ctrlr);
if (error)
return (error);
/*
* Do not bother binding interrupts if we only have one I/O
* interrupt thread for this controller.
*/
if (ctrlr->num_io_queues > 1)
bus_bind_intr(ctrlr->dev, qpair->res,
i * ctrlr->num_cpus_per_ioq);
}
return (0);
}
static void
nvme_ctrlr_fail(struct nvme_controller *ctrlr)
{
int i;
ctrlr->is_failed = TRUE;
nvme_qpair_fail(&ctrlr->adminq);
if (ctrlr->ioq != NULL) {
for (i = 0; i < ctrlr->num_io_queues; i++)
nvme_qpair_fail(&ctrlr->ioq[i]);
}
nvme_notify_fail_consumers(ctrlr);
}
void
nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
struct nvme_request *req)
{
mtx_lock(&ctrlr->lock);
STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
mtx_unlock(&ctrlr->lock);
taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
}
static void
nvme_ctrlr_fail_req_task(void *arg, int pending)
{
struct nvme_controller *ctrlr = arg;
struct nvme_request *req;
mtx_lock(&ctrlr->lock);
while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
mtx_unlock(&ctrlr->lock);
nvme_qpair_manual_complete_request(req->qpair, req,
NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
mtx_lock(&ctrlr->lock);
}
mtx_unlock(&ctrlr->lock);
}
static int
nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
{
int ms_waited;
uint32_t csts;
csts = nvme_mmio_read_4(ctrlr, csts);
ms_waited = 0;
while (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) != desired_val) {
if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
nvme_printf(ctrlr, "controller ready did not become %d "
"within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
return (ENXIO);
}
DELAY(1000);
csts = nvme_mmio_read_4(ctrlr, csts);
}
return (0);
}
static int
nvme_ctrlr_disable(struct nvme_controller *ctrlr)
{
uint32_t cc;
uint32_t csts;
uint8_t en, rdy;
int err;
cc = nvme_mmio_read_4(ctrlr, cc);
csts = nvme_mmio_read_4(ctrlr, csts);
en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
/*
* Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
* when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
* CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
* isn't the desired value. Short circuit if we're already disabled.
*/
if (en == 1) {
if (rdy == 0) {
/* EN == 1, wait for RDY == 1 or fail */
err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
if (err != 0)
return (err);
}
} else {
/* EN == 0 already wait for RDY == 0 */
if (rdy == 0)
return (0);
else
return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
}
cc &= ~NVME_CC_REG_EN_MASK;
nvme_mmio_write_4(ctrlr, cc, cc);
/*
* Some drives have issues with accessing the mmio after we
* disable, so delay for a bit after we write the bit to
* cope with these issues.
*/
if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
}
static int
nvme_ctrlr_enable(struct nvme_controller *ctrlr)
{
uint32_t cc;
uint32_t csts;
uint32_t aqa;
uint32_t qsize;
uint8_t en, rdy;
int err;
cc = nvme_mmio_read_4(ctrlr, cc);
csts = nvme_mmio_read_4(ctrlr, csts);
en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
/*
* See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
*/
if (en == 1) {
if (rdy == 1)
return (0);
else
return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
} else {
/* EN == 0 already wait for RDY == 0 or fail */
err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
if (err != 0)
return (err);
}
nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
DELAY(5000);
nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
DELAY(5000);
/* acqs and asqs are 0-based. */
qsize = ctrlr->adminq.num_entries - 1;
aqa = 0;
aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
nvme_mmio_write_4(ctrlr, aqa, aqa);
DELAY(5000);
/* Initialization values for CC */
cc = 0;
cc |= 1 << NVME_CC_REG_EN_SHIFT;
cc |= 0 << NVME_CC_REG_CSS_SHIFT;
cc |= 0 << NVME_CC_REG_AMS_SHIFT;
cc |= 0 << NVME_CC_REG_SHN_SHIFT;
cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
/* This evaluates to 0, which is according to spec. */
cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
nvme_mmio_write_4(ctrlr, cc, cc);
return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
}
int
nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
{
int i, err;
nvme_admin_qpair_disable(&ctrlr->adminq);
/*
* I/O queues are not allocated before the initial HW
* reset, so do not try to disable them. Use is_initialized
* to determine if this is the initial HW reset.
*/
if (ctrlr->is_initialized) {
for (i = 0; i < ctrlr->num_io_queues; i++)
nvme_io_qpair_disable(&ctrlr->ioq[i]);
}
DELAY(100*1000);
err = nvme_ctrlr_disable(ctrlr);
if (err != 0)
return err;
return (nvme_ctrlr_enable(ctrlr));
}
void
nvme_ctrlr_reset(struct nvme_controller *ctrlr)
{
int cmpset;
cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
if (cmpset == 0 || ctrlr->is_failed)
/*
* Controller is already resetting or has failed. Return
* immediately since there is no need to kick off another
* reset in these cases.
*/
return;
taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
}
static int
nvme_ctrlr_identify(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
status.done = 0;
nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
nvme_completion_poll_cb, &status);
while (!atomic_load_acq_int(&status.done))
pause("nvme", 1);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
return (ENXIO);
}
/* Convert data to host endian */
nvme_controller_data_swapbytes(&ctrlr->cdata);
/*
* Use MDTS to ensure our default max_xfer_size doesn't exceed what the
* controller supports.
*/
if (ctrlr->cdata.mdts > 0)
ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
return (0);
}
static int
nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
int cq_allocated, sq_allocated;
status.done = 0;
nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
nvme_completion_poll_cb, &status);
while (!atomic_load_acq_int(&status.done))
pause("nvme", 1);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
return (ENXIO);
}
/*
* Data in cdw0 is 0-based.
* Lower 16-bits indicate number of submission queues allocated.
* Upper 16-bits indicate number of completion queues allocated.
*/
sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
cq_allocated = (status.cpl.cdw0 >> 16) + 1;
/*
* Controller may allocate more queues than we requested,
* so use the minimum of the number requested and what was
* actually allocated.
*/
ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
return (0);
}
static int
nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
struct nvme_qpair *qpair;
int i;
for (i = 0; i < ctrlr->num_io_queues; i++) {
qpair = &ctrlr->ioq[i];
status.done = 0;
nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
nvme_completion_poll_cb, &status);
while (!atomic_load_acq_int(&status.done))
pause("nvme", 1);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
return (ENXIO);
}
status.done = 0;
nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
nvme_completion_poll_cb, &status);
while (!atomic_load_acq_int(&status.done))
pause("nvme", 1);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
return (ENXIO);
}
}
return (0);
}
static int
nvme_ctrlr_destroy_qpair(struct nvme_controller *ctrlr, struct nvme_qpair *qpair)
{
struct nvme_completion_poll_status status;
status.done = 0;
nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
nvme_completion_poll_cb, &status);
while (!atomic_load_acq_int(&status.done))
pause("nvme", 1);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
return (ENXIO);
}
status.done = 0;
nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
nvme_completion_poll_cb, &status);
while (!atomic_load_acq_int(&status.done))
pause("nvme", 1);
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
return (ENXIO);
}
return (0);
}
static int
nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
{
struct nvme_namespace *ns;
uint32_t i;
for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
ns = &ctrlr->ns[i];
nvme_ns_construct(ns, i+1, ctrlr);
}
return (0);
}
static boolean_t
is_log_page_id_valid(uint8_t page_id)
{
switch (page_id) {
case NVME_LOG_ERROR:
case NVME_LOG_HEALTH_INFORMATION:
case NVME_LOG_FIRMWARE_SLOT:
case NVME_LOG_CHANGED_NAMESPACE:
return (TRUE);
}
return (FALSE);
}
static uint32_t
nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
{
uint32_t log_page_size;
switch (page_id) {
case NVME_LOG_ERROR:
log_page_size = min(
sizeof(struct nvme_error_information_entry) *
(ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
break;
case NVME_LOG_HEALTH_INFORMATION:
log_page_size = sizeof(struct nvme_health_information_page);
break;
case NVME_LOG_FIRMWARE_SLOT:
log_page_size = sizeof(struct nvme_firmware_page);
break;
case NVME_LOG_CHANGED_NAMESPACE:
log_page_size = sizeof(struct nvme_ns_list);
break;
default:
log_page_size = 0;
break;
}
return (log_page_size);
}
static void
nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
uint8_t state)
{
if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
nvme_printf(ctrlr, "available spare space below threshold\n");
if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
nvme_printf(ctrlr, "temperature above threshold\n");
if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
nvme_printf(ctrlr, "device reliability degraded\n");
if (state & NVME_CRIT_WARN_ST_READ_ONLY)
nvme_printf(ctrlr, "media placed in read only mode\n");
if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
nvme_printf(ctrlr, "volatile memory backup device failed\n");
if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
nvme_printf(ctrlr,
"unknown critical warning(s): state = 0x%02x\n", state);
}
static void
nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
{
struct nvme_async_event_request *aer = arg;
struct nvme_health_information_page *health_info;
struct nvme_ns_list *nsl;
struct nvme_error_information_entry *err;
int i;
/*
* If the log page fetch for some reason completed with an error,
* don't pass log page data to the consumers. In practice, this case
* should never happen.
*/
if (nvme_completion_is_error(cpl))
nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
aer->log_page_id, NULL, 0);
else {
/* Convert data to host endian */
switch (aer->log_page_id) {
case NVME_LOG_ERROR:
err = (struct nvme_error_information_entry *)aer->log_page_buffer;
for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
nvme_error_information_entry_swapbytes(err++);
break;
case NVME_LOG_HEALTH_INFORMATION:
nvme_health_information_page_swapbytes(
(struct nvme_health_information_page *)aer->log_page_buffer);
break;
case NVME_LOG_FIRMWARE_SLOT:
nvme_firmware_page_swapbytes(
(struct nvme_firmware_page *)aer->log_page_buffer);
break;
case NVME_LOG_CHANGED_NAMESPACE:
nvme_ns_list_swapbytes(
(struct nvme_ns_list *)aer->log_page_buffer);
break;
case INTEL_LOG_TEMP_STATS:
intel_log_temp_stats_swapbytes(
(struct intel_log_temp_stats *)aer->log_page_buffer);
break;
default:
break;
}
if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
health_info = (struct nvme_health_information_page *)
aer->log_page_buffer;
nvme_ctrlr_log_critical_warnings(aer->ctrlr,
health_info->critical_warning);
/*
* Critical warnings reported through the
* SMART/health log page are persistent, so
* clear the associated bits in the async event
* config so that we do not receive repeated
* notifications for the same event.
*/
aer->ctrlr->async_event_config &=
~health_info->critical_warning;
nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
aer->ctrlr->async_event_config, NULL, NULL);
} else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
!nvme_use_nvd) {
nsl = (struct nvme_ns_list *)aer->log_page_buffer;
for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
if (nsl->ns[i] > NVME_MAX_NAMESPACES)
break;
nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
}
}
/*
* Pass the cpl data from the original async event completion,
* not the log page fetch.
*/
nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
}
/*
* Repost another asynchronous event request to replace the one
* that just completed.
*/
nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
}
static void
nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
{
struct nvme_async_event_request *aer = arg;
if (nvme_completion_is_error(cpl)) {
/*
* Do not retry failed async event requests. This avoids
* infinite loops where a new async event request is submitted
* to replace the one just failed, only to fail again and
* perpetuate the loop.
*/
return;
}
/* Associated log page is in bits 23:16 of completion entry dw0. */
aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
" page 0x%02x)\n", (cpl->cdw0 & 0x03), (cpl->cdw0 & 0xFF00) >> 8,
aer->log_page_id);
if (is_log_page_id_valid(aer->log_page_id)) {
aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
aer->log_page_id);
memcpy(&aer->cpl, cpl, sizeof(*cpl));
nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
aer);
/* Wait to notify consumers until after log page is fetched. */
} else {
nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
NULL, 0);
/*
* Repost another asynchronous event request to replace the one
* that just completed.
*/
nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
}
}
static void
nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
struct nvme_async_event_request *aer)
{
struct nvme_request *req;
aer->ctrlr = ctrlr;
req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
aer->req = req;
/*
* Disable timeout here, since asynchronous event requests should by
* nature never be timed out.
*/
req->timeout = FALSE;
req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static void
nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
struct nvme_async_event_request *aer;
uint32_t i;
ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
NVME_CRIT_WARN_ST_READ_ONLY |
NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
if (ctrlr->cdata.ver >= NVME_REV(1, 2))
ctrlr->async_event_config |= 0x300;
status.done = 0;
nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
0, NULL, 0, nvme_completion_poll_cb, &status);
while (!atomic_load_acq_int(&status.done))
pause("nvme", 1);
if (nvme_completion_is_error(&status.cpl) ||
(status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
(status.cpl.cdw0 & 0xFFFF) == 0x0000) {
nvme_printf(ctrlr, "temperature threshold not supported\n");
} else
ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
nvme_ctrlr_cmd_set_async_event_config(ctrlr,
ctrlr->async_event_config, NULL, NULL);
/* aerl is a zero-based value, so we need to add 1 here. */
ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
for (i = 0; i < ctrlr->num_aers; i++) {
aer = &ctrlr->aer[i];
nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
}
}
static void
nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
{
ctrlr->int_coal_time = 0;
TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
&ctrlr->int_coal_time);
ctrlr->int_coal_threshold = 0;
TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
&ctrlr->int_coal_threshold);
nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
ctrlr->int_coal_threshold, NULL, NULL);
}
static void
nvme_ctrlr_start(void *ctrlr_arg)
{
struct nvme_controller *ctrlr = ctrlr_arg;
uint32_t old_num_io_queues;
int i;
/*
* Only reset adminq here when we are restarting the
* controller after a reset. During initialization,
* we have already submitted admin commands to get
* the number of I/O queues supported, so cannot reset
* the adminq again here.
*/
if (ctrlr->is_resetting) {
nvme_qpair_reset(&ctrlr->adminq);
}
for (i = 0; i < ctrlr->num_io_queues; i++)
nvme_qpair_reset(&ctrlr->ioq[i]);
nvme_admin_qpair_enable(&ctrlr->adminq);
if (nvme_ctrlr_identify(ctrlr) != 0) {
nvme_ctrlr_fail(ctrlr);
return;
}
/*
* The number of qpairs are determined during controller initialization,
* including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
* HW limit. We call SET_FEATURES again here so that it gets called
* after any reset for controllers that depend on the driver to
* explicit specify how many queues it will use. This value should
* never change between resets, so panic if somehow that does happen.
*/
if (ctrlr->is_resetting) {
old_num_io_queues = ctrlr->num_io_queues;
if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
nvme_ctrlr_fail(ctrlr);
return;
}
if (old_num_io_queues != ctrlr->num_io_queues) {
panic("num_io_queues changed from %u to %u",
old_num_io_queues, ctrlr->num_io_queues);
}
}
if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
nvme_ctrlr_fail(ctrlr);
return;
}
if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
nvme_ctrlr_fail(ctrlr);
return;
}
nvme_ctrlr_configure_aer(ctrlr);
nvme_ctrlr_configure_int_coalescing(ctrlr);
for (i = 0; i < ctrlr->num_io_queues; i++)
nvme_io_qpair_enable(&ctrlr->ioq[i]);
}
void
nvme_ctrlr_start_config_hook(void *arg)
{
struct nvme_controller *ctrlr = arg;
nvme_qpair_reset(&ctrlr->adminq);
nvme_admin_qpair_enable(&ctrlr->adminq);
if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
nvme_ctrlr_start(ctrlr);
else
nvme_ctrlr_fail(ctrlr);
nvme_sysctl_initialize_ctrlr(ctrlr);
config_intrhook_disestablish(&ctrlr->config_hook);
ctrlr->is_initialized = 1;
nvme_notify_new_controller(ctrlr);
}
static void
nvme_ctrlr_reset_task(void *arg, int pending)
{
struct nvme_controller *ctrlr = arg;
int status;
nvme_printf(ctrlr, "resetting controller\n");
status = nvme_ctrlr_hw_reset(ctrlr);
/*
* Use pause instead of DELAY, so that we yield to any nvme interrupt
* handlers on this CPU that were blocked on a qpair lock. We want
* all nvme interrupts completed before proceeding with restarting the
* controller.
*
* XXX - any way to guarantee the interrupt handlers have quiesced?
*/
pause("nvmereset", hz / 10);
if (status == 0)
nvme_ctrlr_start(ctrlr);
else
nvme_ctrlr_fail(ctrlr);
atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
}
/*
* Poll all the queues enabled on the device for completion.
*/
void
nvme_ctrlr_poll(struct nvme_controller *ctrlr)
{
int i;
nvme_qpair_process_completions(&ctrlr->adminq);
for (i = 0; i < ctrlr->num_io_queues; i++)
if (ctrlr->ioq && ctrlr->ioq[i].cpl)
nvme_qpair_process_completions(&ctrlr->ioq[i]);
}
/*
* Poll the single-vector intertrupt case: num_io_queues will be 1 and
* there's only a single vector. While we're polling, we mask further
* interrupts in the controller.
*/
void
nvme_ctrlr_intx_handler(void *arg)
{
struct nvme_controller *ctrlr = arg;
nvme_mmio_write_4(ctrlr, intms, 1);
nvme_ctrlr_poll(ctrlr);
nvme_mmio_write_4(ctrlr, intmc, 1);
}
static int
nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
{
ctrlr->msix_enabled = 0;
ctrlr->num_io_queues = 1;
ctrlr->num_cpus_per_ioq = mp_ncpus;
ctrlr->rid = 0;
ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
&ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
if (ctrlr->res == NULL) {
nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
return (ENOMEM);
}
bus_setup_intr(ctrlr->dev, ctrlr->res,
INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
ctrlr, &ctrlr->tag);
if (ctrlr->tag == NULL) {
nvme_printf(ctrlr, "unable to setup intx handler\n");
return (ENOMEM);
}
return (0);
}
static void
nvme_pt_done(void *arg, const struct nvme_completion *cpl)
{
struct nvme_pt_command *pt = arg;
struct mtx *mtx = pt->driver_lock;
uint16_t status;
bzero(&pt->cpl, sizeof(pt->cpl));
pt->cpl.cdw0 = cpl->cdw0;
status = cpl->status;
status &= ~NVME_STATUS_P_MASK;
pt->cpl.status = status;
mtx_lock(mtx);
pt->driver_lock = NULL;
wakeup(pt);
mtx_unlock(mtx);
}
int
nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
int is_admin_cmd)
{
struct nvme_request *req;
struct mtx *mtx;
struct buf *buf = NULL;
int ret = 0;
vm_offset_t addr, end;
if (pt->len > 0) {
/*
* vmapbuf calls vm_fault_quick_hold_pages which only maps full
* pages. Ensure this request has fewer than MAXPHYS bytes when
* extended to full pages.
*/
addr = (vm_offset_t)pt->buf;
end = round_page(addr + pt->len);
addr = trunc_page(addr);
if (end - addr > MAXPHYS)
return EIO;
if (pt->len > ctrlr->max_xfer_size) {
nvme_printf(ctrlr, "pt->len (%d) "
"exceeds max_xfer_size (%d)\n", pt->len,
ctrlr->max_xfer_size);
return EIO;
}
if (is_user_buffer) {
/*
* Ensure the user buffer is wired for the duration of
* this passthrough command.
*/
PHOLD(curproc);
buf = getpbuf(NULL);
buf->b_data = pt->buf;
buf->b_bufsize = pt->len;
buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
#ifdef NVME_UNMAPPED_BIO_SUPPORT
if (vmapbuf(buf, 1) < 0) {
#else
if (vmapbuf(buf) < 0) {
#endif
ret = EFAULT;
goto err;
}
req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
nvme_pt_done, pt);
} else
req = nvme_allocate_request_vaddr(pt->buf, pt->len,
nvme_pt_done, pt);
} else
req = nvme_allocate_request_null(nvme_pt_done, pt);
/* Assume userspace already converted to little-endian */
req->cmd.opc = pt->cmd.opc;
req->cmd.fuse = pt->cmd.fuse;
req->cmd.cdw10 = pt->cmd.cdw10;
req->cmd.cdw11 = pt->cmd.cdw11;
req->cmd.cdw12 = pt->cmd.cdw12;
req->cmd.cdw13 = pt->cmd.cdw13;
req->cmd.cdw14 = pt->cmd.cdw14;
req->cmd.cdw15 = pt->cmd.cdw15;
req->cmd.nsid = htole32(nsid);
mtx = mtx_pool_find(mtxpool_sleep, pt);
pt->driver_lock = mtx;
if (is_admin_cmd)
nvme_ctrlr_submit_admin_request(ctrlr, req);
else
nvme_ctrlr_submit_io_request(ctrlr, req);
mtx_lock(mtx);
while (pt->driver_lock != NULL)
mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
mtx_unlock(mtx);
err:
if (buf != NULL) {
relpbuf(buf, NULL);
PRELE(curproc);
}
return (ret);
}
static int
nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
struct thread *td)
{
struct nvme_controller *ctrlr;
struct nvme_pt_command *pt;
ctrlr = cdev->si_drv1;
switch (cmd) {
case NVME_RESET_CONTROLLER:
nvme_ctrlr_reset(ctrlr);
break;
case NVME_PASSTHROUGH_CMD:
pt = (struct nvme_pt_command *)arg;
return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1 /* is_user_buffer */, 1 /* is_admin_cmd */));
default:
return (ENOTTY);
}
return (0);
}
static struct cdevsw nvme_ctrlr_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_ioctl = nvme_ctrlr_ioctl
};
static void
nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
{
device_t dev;
int per_cpu_io_queues;
int min_cpus_per_ioq;
int num_vectors_requested, num_vectors_allocated;
int num_vectors_available;
dev = ctrlr->dev;
min_cpus_per_ioq = 1;
TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
if (min_cpus_per_ioq < 1) {
min_cpus_per_ioq = 1;
} else if (min_cpus_per_ioq > mp_ncpus) {
min_cpus_per_ioq = mp_ncpus;
}
per_cpu_io_queues = 1;
TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
if (per_cpu_io_queues == 0) {
min_cpus_per_ioq = mp_ncpus;
}
ctrlr->force_intx = 0;
TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
/*
* FreeBSD currently cannot allocate more than about 190 vectors at
* boot, meaning that systems with high core count and many devices
* requesting per-CPU interrupt vectors will not get their full
* allotment. So first, try to allocate as many as we may need to
* understand what is available, then immediately release them.
* Then figure out how many of those we will actually use, based on
* assigning an equal number of cores to each I/O queue.
*/
/* One vector for per core I/O queue, plus one vector for admin queue. */
num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
num_vectors_available = 0;
}
pci_release_msi(dev);
if (ctrlr->force_intx || num_vectors_available < 2) {
nvme_ctrlr_configure_intx(ctrlr);
return;
}
/*
* Do not use all vectors for I/O queues - one must be saved for the
* admin queue.
*/
ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
howmany(mp_ncpus, num_vectors_available - 1));
ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
num_vectors_requested = ctrlr->num_io_queues + 1;
num_vectors_allocated = num_vectors_requested;
/*
* Now just allocate the number of vectors we need. This should
* succeed, since we previously called pci_alloc_msix()
* successfully returning at least this many vectors, but just to
* be safe, if something goes wrong just revert to INTx.
*/
if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
nvme_ctrlr_configure_intx(ctrlr);
return;
}
if (num_vectors_allocated < num_vectors_requested) {
pci_release_msi(dev);
nvme_ctrlr_configure_intx(ctrlr);
return;
}
ctrlr->msix_enabled = 1;
}
int
nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
{
struct make_dev_args md_args;
uint32_t cap_lo;
uint32_t cap_hi;
uint8_t to;
uint8_t dstrd;
uint8_t mpsmin;
int status, timeout_period;
ctrlr->dev = dev;
mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
status = nvme_ctrlr_allocate_bar(ctrlr);
if (status != 0)
return (status);
/*
* Software emulators may set the doorbell stride to something
* other than zero, but this driver is not set up to handle that.
*/
cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
dstrd = (cap_hi >> NVME_CAP_HI_REG_DSTRD_SHIFT) & NVME_CAP_HI_REG_DSTRD_MASK;
if (dstrd != 0)
return (ENXIO);
mpsmin = (cap_hi >> NVME_CAP_HI_REG_MPSMIN_SHIFT) & NVME_CAP_HI_REG_MPSMIN_MASK;
ctrlr->min_page_size = 1 << (12 + mpsmin);
/* Get ready timeout value from controller, in units of 500ms. */
cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
to = (cap_lo >> NVME_CAP_LO_REG_TO_SHIFT) & NVME_CAP_LO_REG_TO_MASK;
ctrlr->ready_timeout_in_ms = to * 500;
timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
ctrlr->timeout_period = timeout_period;
nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
ctrlr->enable_aborts = 0;
TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
nvme_ctrlr_setup_interrupts(ctrlr);
ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
return (ENXIO);
ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
taskqueue_thread_enqueue, &ctrlr->taskqueue);
taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
ctrlr->is_resetting = 0;
ctrlr->is_initialized = 0;
ctrlr->notification_sent = 0;
TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
STAILQ_INIT(&ctrlr->fail_req);
ctrlr->is_failed = FALSE;
make_dev_args_init(&md_args);
md_args.mda_devsw = &nvme_ctrlr_cdevsw;
md_args.mda_uid = UID_ROOT;
md_args.mda_gid = GID_WHEEL;
md_args.mda_mode = 0600;
md_args.mda_unit = device_get_unit(dev);
md_args.mda_si_drv1 = (void *)ctrlr;
status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
device_get_unit(dev));
if (status != 0)
return (ENXIO);
return (0);
}
void
nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
{
int i;
if (ctrlr->resource == NULL)
goto nores;
nvme_notify_fail_consumers(ctrlr);
for (i = 0; i < NVME_MAX_NAMESPACES; i++)
nvme_ns_destruct(&ctrlr->ns[i]);
if (ctrlr->cdev)
destroy_dev(ctrlr->cdev);
for (i = 0; i < ctrlr->num_io_queues; i++) {
nvme_ctrlr_destroy_qpair(ctrlr, &ctrlr->ioq[i]);
nvme_io_qpair_destroy(&ctrlr->ioq[i]);
}
free(ctrlr->ioq, M_NVME);
nvme_admin_qpair_destroy(&ctrlr->adminq);
/*
* Notify the controller of a shutdown, even though this is due to
* a driver unload, not a system shutdown (this path is not invoked
* during shutdown). This ensures the controller receives a
* shutdown notification in case the system is shutdown before
* reloading the driver.
*/
nvme_ctrlr_shutdown(ctrlr);
nvme_ctrlr_disable(ctrlr);
if (ctrlr->taskqueue)
taskqueue_free(ctrlr->taskqueue);
if (ctrlr->tag)
bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
if (ctrlr->res)
bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
rman_get_rid(ctrlr->res), ctrlr->res);
if (ctrlr->msix_enabled)
pci_release_msi(dev);
if (ctrlr->bar4_resource != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
ctrlr->bar4_resource_id, ctrlr->bar4_resource);
}
bus_release_resource(dev, SYS_RES_MEMORY,
ctrlr->resource_id, ctrlr->resource);
nores:
mtx_destroy(&ctrlr->lock);
}
void
nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
{
uint32_t cc;
uint32_t csts;
int ticks = 0;
cc = nvme_mmio_read_4(ctrlr, cc);
cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
nvme_mmio_write_4(ctrlr, cc, cc);
csts = nvme_mmio_read_4(ctrlr, csts);
while ((NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
pause("nvme shn", 1);
csts = nvme_mmio_read_4(ctrlr, csts);
}
if (NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE)
nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
"of notification\n");
}
void
nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
struct nvme_request *req)
{
nvme_qpair_submit_request(&ctrlr->adminq, req);
}
void
nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
struct nvme_request *req)
{
struct nvme_qpair *qpair;
qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
nvme_qpair_submit_request(qpair, req);
}
device_t
nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
{
return (ctrlr->dev);
}
const struct nvme_controller_data *
nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
{
return (&ctrlr->cdata);
}