Alexander Motin d493985afd Cleanup msleep() arguments.
Move wakeup() out of the lock.
2008-12-06 21:52:32 +00:00

1567 lines
42 KiB
C

/*-
* Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcbrvar.h>
#include "mmcbr_if.h"
#include "sdhci.h"
#define DMA_BLOCK_SIZE 4096
#define DMA_BOUNDARY 0 /* DMA reload every 4K */
/* Controller doesn't honor resets unless we touch the clock register */
#define SDHCI_QUIRK_CLOCK_BEFORE_RESET (1<<0)
/* Controller really supports DMA */
#define SDHCI_QUIRK_FORCE_DMA (1<<1)
/* Controller has unusable DMA engine */
#define SDHCI_QUIRK_BROKEN_DMA (1<<2)
/* Controller doesn't like to be reset when there is no card inserted. */
#define SDHCI_QUIRK_NO_CARD_NO_RESET (1<<3)
/* Controller has flaky internal state so reset it on each ios change */
#define SDHCI_QUIRK_RESET_ON_IOS (1<<4)
/* Controller can only DMA chunk sizes that are a multiple of 32 bits */
#define SDHCI_QUIRK_32BIT_DMA_SIZE (1<<5)
/* Controller needs to be reset after each request to stay stable */
#define SDHCI_QUIRK_RESET_AFTER_REQUEST (1<<6)
/* Controller has an off-by-one issue with timeout value */
#define SDHCI_QUIRK_INCR_TIMEOUT_CONTROL (1<<7)
/* Controller has broken read timings */
#define SDHCI_QUIRK_BROKEN_TIMINGS (1<<8)
static const struct sdhci_device {
uint32_t model;
uint16_t subvendor;
char *desc;
u_int quirks;
} sdhci_devices[] = {
{ 0x08221180, 0xffff, "RICOH R5C822 SD",
SDHCI_QUIRK_FORCE_DMA },
{ 0x8034104c, 0xffff, "TI XX21/XX11 SD",
SDHCI_QUIRK_FORCE_DMA },
{ 0x05501524, 0xffff, "ENE CB712 SD",
SDHCI_QUIRK_BROKEN_TIMINGS },
{ 0x05511524, 0xffff, "ENE CB712 SD 2",
SDHCI_QUIRK_BROKEN_TIMINGS },
{ 0x07501524, 0xffff, "ENE CB714 SD",
SDHCI_QUIRK_RESET_ON_IOS |
SDHCI_QUIRK_BROKEN_TIMINGS },
{ 0x07511524, 0xffff, "ENE CB714 SD 2",
SDHCI_QUIRK_RESET_ON_IOS |
SDHCI_QUIRK_BROKEN_TIMINGS },
{ 0x410111ab, 0xffff, "Marvell CaFe SD",
SDHCI_QUIRK_INCR_TIMEOUT_CONTROL },
{ 0x2381197B, 0xffff, "JMicron JMB38X SD",
SDHCI_QUIRK_32BIT_DMA_SIZE |
SDHCI_QUIRK_RESET_AFTER_REQUEST },
{ 0, 0xffff, NULL,
0 }
};
struct sdhci_softc;
struct sdhci_slot {
struct sdhci_softc *sc;
device_t dev; /* Slot device */
u_char num; /* Slot number */
u_char opt; /* Slot options */
#define SDHCI_HAVE_DMA 1
uint32_t max_clk; /* Max possible freq */
uint32_t timeout_clk; /* Timeout freq */
struct resource *mem_res; /* Memory resource */
int mem_rid;
bus_dma_tag_t dmatag;
bus_dmamap_t dmamap;
u_char *dmamem;
bus_addr_t paddr; /* DMA buffer address */
struct task card_task; /* Card presence check task */
struct callout card_callout; /* Card insert delay callout */
struct mmc_host host; /* Host parameters */
struct mmc_request *req; /* Current request */
struct mmc_command *curcmd; /* Current command of current request */
uint32_t intmask; /* Current interrupt mask */
uint32_t clock; /* Current clock freq. */
size_t offset; /* Data buffer offset */
uint8_t hostctrl; /* Current host control register */
u_char power; /* Current power */
u_char bus_busy; /* Bus busy status */
u_char cmd_done; /* CMD command part done flag */
u_char data_done; /* DAT command part done flag */
u_char flags; /* Request execution flags */
#define CMD_STARTED 1
#define STOP_STARTED 2
#define SDHCI_USE_DMA 4 /* Use DMA for this req. */
struct mtx mtx; /* Slot mutex */
};
struct sdhci_softc {
device_t dev; /* Controller device */
u_int quirks; /* Chip specific quirks */
struct resource *irq_res; /* IRQ resource */
int irq_rid;
void *intrhand; /* Interrupt handle */
int num_slots; /* Number of slots on this controller */
struct sdhci_slot slots[6];
};
static inline uint8_t
RD1(struct sdhci_slot *slot, bus_size_t off)
{
bus_barrier(slot->mem_res, 0, 0xFF,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return bus_read_1(slot->mem_res, off);
}
static inline void
WR1(struct sdhci_slot *slot, bus_size_t off, uint8_t val)
{
bus_barrier(slot->mem_res, 0, 0xFF,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
bus_write_1(slot->mem_res, off, val);
}
static inline uint16_t
RD2(struct sdhci_slot *slot, bus_size_t off)
{
bus_barrier(slot->mem_res, 0, 0xFF,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return bus_read_2(slot->mem_res, off);
}
static inline void
WR2(struct sdhci_slot *slot, bus_size_t off, uint16_t val)
{
bus_barrier(slot->mem_res, 0, 0xFF,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
bus_write_2(slot->mem_res, off, val);
}
static inline uint32_t
RD4(struct sdhci_slot *slot, bus_size_t off)
{
bus_barrier(slot->mem_res, 0, 0xFF,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return bus_read_4(slot->mem_res, off);
}
static inline void
WR4(struct sdhci_slot *slot, bus_size_t off, uint32_t val)
{
bus_barrier(slot->mem_res, 0, 0xFF,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
bus_write_4(slot->mem_res, off, val);
}
/* bus entry points */
static int sdhci_probe(device_t dev);
static int sdhci_attach(device_t dev);
static int sdhci_detach(device_t dev);
static void sdhci_intr(void *);
static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock);
static void sdhci_start(struct sdhci_slot *slot);
static void sdhci_start_data(struct sdhci_slot *slot, struct mmc_data *data);
static void sdhci_card_task(void *, int);
/* helper routines */
#define SDHCI_LOCK(_slot) mtx_lock(&(_slot)->mtx)
#define SDHCI_UNLOCK(_slot) mtx_unlock(&(_slot)->mtx)
#define SDHCI_LOCK_INIT(_slot) \
mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF)
#define SDHCI_LOCK_DESTROY(_slot) mtx_destroy(&_slot->mtx);
#define SDHCI_ASSERT_LOCKED(_slot) mtx_assert(&_slot->mtx, MA_OWNED);
#define SDHCI_ASSERT_UNLOCKED(_slot) mtx_assert(&_slot->mtx, MA_NOTOWNED);
static int
slot_printf(struct sdhci_slot *slot, const char * fmt, ...)
{
va_list ap;
int retval;
retval = printf("%s-slot%d: ",
device_get_nameunit(slot->sc->dev), slot->num);
va_start(ap, fmt);
retval += vprintf(fmt, ap);
va_end(ap);
return (retval);
}
static void
sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0) {
printf("getaddr: error %d\n", error);
return;
}
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static void
sdhci_dumpregs(struct sdhci_slot *slot)
{
slot_printf(slot,
"============== REGISTER DUMP ==============\n");
slot_printf(slot, "Sys addr: 0x%08x | Version: 0x%08x\n",
RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION));
slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n",
RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT));
slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n",
RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE));
slot_printf(slot, "Present: 0x%08x | Host ctl: 0x%08x\n",
RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL));
slot_printf(slot, "Power: 0x%08x | Blk gap: 0x%08x\n",
RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL));
slot_printf(slot, "Wake-up: 0x%08x | Clock: 0x%08x\n",
RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL));
slot_printf(slot, "Timeout: 0x%08x | Int stat: 0x%08x\n",
RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS));
slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n",
RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE));
slot_printf(slot, "AC12 err: 0x%08x | Slot int: 0x%08x\n",
RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_SLOT_INT_STATUS));
slot_printf(slot, "Caps: 0x%08x | Max curr: 0x%08x\n",
RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_MAX_CURRENT));
slot_printf(slot,
"===========================================\n");
}
static void
sdhci_reset(struct sdhci_slot *slot, uint8_t mask)
{
int timeout;
uint8_t res;
if (slot->sc->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
if (!(RD4(slot, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT))
return;
}
/* Some controllers need this kick or reset won't work. */
if ((mask & SDHCI_RESET_ALL) == 0 &&
(slot->sc->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) {
uint32_t clock;
/* This is to force an update */
clock = slot->clock;
slot->clock = 0;
sdhci_set_clock(slot, clock);
}
WR1(slot, SDHCI_SOFTWARE_RESET, mask);
if (mask & SDHCI_RESET_ALL) {
slot->clock = 0;
slot->power = 0;
}
/* Wait max 100 ms */
timeout = 100;
/* Controller clears the bits when it's done */
while ((res = RD1(slot, SDHCI_SOFTWARE_RESET)) & mask) {
if (timeout == 0) {
slot_printf(slot,
"Reset 0x%x never completed - 0x%x.\n",
(int)mask, (int)res);
sdhci_dumpregs(slot);
return;
}
timeout--;
DELAY(1000);
}
}
static void
sdhci_init(struct sdhci_slot *slot)
{
sdhci_reset(slot, SDHCI_RESET_ALL);
/* Enable interrupts. */
slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX |
SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT |
SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT |
SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE |
SDHCI_INT_ACMD12ERR;
WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
}
static void
sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock)
{
uint32_t res;
uint16_t clk;
int timeout;
if (clock == slot->clock)
return;
slot->clock = clock;
/* Turn off the clock. */
WR2(slot, SDHCI_CLOCK_CONTROL, 0);
/* If no clock requested - left it so. */
if (clock == 0)
return;
/* Looking for highest freq <= clock. */
res = slot->max_clk;
for (clk = 1; clk < 256; clk <<= 1) {
if (res <= clock)
break;
res >>= 1;
}
/* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */
clk >>= 1;
/* Now we have got divider, set it. */
clk <<= SDHCI_DIVIDER_SHIFT;
WR2(slot, SDHCI_CLOCK_CONTROL, clk);
/* Enable clock. */
clk |= SDHCI_CLOCK_INT_EN;
WR2(slot, SDHCI_CLOCK_CONTROL, clk);
/* Wait up to 10 ms until it stabilize. */
timeout = 10;
while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
slot_printf(slot,
"Internal clock never stabilised.\n");
sdhci_dumpregs(slot);
return;
}
timeout--;
DELAY(1000);
}
/* Pass clock signal to the bus. */
clk |= SDHCI_CLOCK_CARD_EN;
WR2(slot, SDHCI_CLOCK_CONTROL, clk);
}
static void
sdhci_set_power(struct sdhci_slot *slot, u_char power)
{
uint8_t pwr;
if (slot->power == power)
return;
slot->power = power;
/* Turn off the power. */
pwr = 0;
WR1(slot, SDHCI_POWER_CONTROL, pwr);
/* If power down requested - left it so. */
if (power == 0)
return;
/* Set voltage. */
switch (1 << power) {
case MMC_OCR_LOW_VOLTAGE:
pwr |= SDHCI_POWER_180;
break;
case MMC_OCR_290_300:
case MMC_OCR_300_310:
pwr |= SDHCI_POWER_300;
break;
case MMC_OCR_320_330:
case MMC_OCR_330_340:
pwr |= SDHCI_POWER_330;
break;
}
WR1(slot, SDHCI_POWER_CONTROL, pwr);
/* Turn on the power. */
pwr |= SDHCI_POWER_ON;
WR1(slot, SDHCI_POWER_CONTROL, pwr);
}
static void
sdhci_read_block_pio(struct sdhci_slot *slot)
{
uint32_t data;
char *buffer;
size_t left;
buffer = slot->curcmd->data->data;
buffer += slot->offset;
/* Transfer one block at a time. */
left = min(512, slot->curcmd->data->len - slot->offset);
slot->offset += left;
/* If we are too fast, broken controllers return zeroes. */
if (slot->sc->quirks & SDHCI_QUIRK_BROKEN_TIMINGS)
DELAY(10);
/* Handle unalligned and alligned buffer cases. */
if ((intptr_t)buffer & 3) {
while (left > 3) {
data = RD4(slot, SDHCI_BUFFER);
buffer[0] = data;
buffer[1] = (data >> 8);
buffer[2] = (data >> 16);
buffer[3] = (data >> 24);
buffer += 4;
left -= 4;
}
} else {
bus_read_multi_stream_4(slot->mem_res, SDHCI_BUFFER,
(uint32_t *)buffer, left >> 2);
left &= 3;
}
/* Handle uneven size case. */
if (left > 0) {
data = RD4(slot, SDHCI_BUFFER);
while (left > 0) {
*(buffer++) = data;
data >>= 8;
left--;
}
}
}
static void
sdhci_write_block_pio(struct sdhci_slot *slot)
{
uint32_t data = 0;
char *buffer;
size_t left;
buffer = slot->curcmd->data->data;
buffer += slot->offset;
/* Transfer one block at a time. */
left = min(512, slot->curcmd->data->len - slot->offset);
slot->offset += left;
/* Handle unalligned and alligned buffer cases. */
if ((intptr_t)buffer & 3) {
while (left > 3) {
data = buffer[0] +
(buffer[1] << 8) +
(buffer[2] << 16) +
(buffer[3] << 24);
left -= 4;
buffer += 4;
WR4(slot, SDHCI_BUFFER, data);
}
} else {
bus_write_multi_stream_4(slot->mem_res, SDHCI_BUFFER,
(uint32_t *)buffer, left >> 2);
left &= 3;
}
/* Handle uneven size case. */
if (left > 0) {
while (left > 0) {
data <<= 8;
data += *(buffer++);
left--;
}
WR4(slot, SDHCI_BUFFER, data);
}
}
static void
sdhci_transfer_pio(struct sdhci_slot *slot)
{
/* Read as many blocks as possible. */
if (slot->curcmd->data->flags & MMC_DATA_READ) {
while (RD4(slot, SDHCI_PRESENT_STATE) &
SDHCI_DATA_AVAILABLE) {
sdhci_read_block_pio(slot);
if (slot->offset >= slot->curcmd->data->len)
break;
}
} else {
while (RD4(slot, SDHCI_PRESENT_STATE) &
SDHCI_SPACE_AVAILABLE) {
sdhci_write_block_pio(slot);
if (slot->offset >= slot->curcmd->data->len)
break;
}
}
}
static void
sdhci_card_delay(void *arg)
{
struct sdhci_slot *slot = arg;
taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task);
}
static void
sdhci_card_task(void *arg, int pending)
{
struct sdhci_slot *slot = arg;
SDHCI_LOCK(slot);
if (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT) {
if (slot->dev == NULL) {
/* If card is present - attach mmc bus. */
slot->dev = device_add_child(slot->sc->dev, "mmc", -1);
device_set_ivars(slot->dev, slot);
SDHCI_UNLOCK(slot);
device_probe_and_attach(slot->dev);
} else
SDHCI_UNLOCK(slot);
} else {
if (slot->dev != NULL) {
/* If no card present - detach mmc bus. */
device_t d = slot->dev;
slot->dev = NULL;
SDHCI_UNLOCK(slot);
device_delete_child(slot->sc->dev, d);
} else
SDHCI_UNLOCK(slot);
}
}
static int
sdhci_probe(device_t dev)
{
uint32_t model;
uint16_t subvendor;
uint8_t class, subclass;
int i, result;
model = (uint32_t)pci_get_device(dev) << 16;
model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
subvendor = pci_get_subvendor(dev);
class = pci_get_class(dev);
subclass = pci_get_subclass(dev);
result = ENXIO;
for (i = 0; sdhci_devices[i].model != 0; i++) {
if (sdhci_devices[i].model == model &&
(sdhci_devices[i].subvendor == 0xffff ||
sdhci_devices[i].subvendor == subvendor)) {
device_set_desc(dev, sdhci_devices[i].desc);
result = BUS_PROBE_DEFAULT;
break;
}
}
if (result == ENXIO && class == PCIC_BASEPERIPH &&
subclass == PCIS_BASEPERIPH_SDHC) {
device_set_desc(dev, "Generic SD HCI");
result = BUS_PROBE_GENERIC;
}
return (result);
}
static int
sdhci_attach(device_t dev)
{
struct sdhci_softc *sc = device_get_softc(dev);
uint32_t model;
uint16_t subvendor;
uint8_t class, subclass, progif;
int err, slots, bar, i;
sc->dev = dev;
model = (uint32_t)pci_get_device(dev) << 16;
model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
subvendor = pci_get_subvendor(dev);
class = pci_get_class(dev);
subclass = pci_get_subclass(dev);
progif = pci_get_progif(dev);
/* Apply chip specific quirks. */
for (i = 0; sdhci_devices[i].model != 0; i++) {
if (sdhci_devices[i].model == model &&
(sdhci_devices[i].subvendor == 0xffff ||
sdhci_devices[i].subvendor == subvendor)) {
sc->quirks = sdhci_devices[i].quirks;
break;
}
}
/* Read slots info from PCI registers. */
slots = pci_read_config(dev, PCI_SLOT_INFO, 1);
bar = PCI_SLOT_INFO_FIRST_BAR(slots);
slots = PCI_SLOT_INFO_SLOTS(slots);
if (slots > 6 || bar > 5) {
device_printf(dev, "Incorrect slots information (%d, %d).\n",
slots, bar);
return (EINVAL);
}
/* Allocate IRQ. */
sc->irq_rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->irq_res == NULL) {
device_printf(dev, "Can't allocate IRQ\n");
return (ENOMEM);
}
/* Scan all slots. */
for (i = 0; i < slots; i++) {
struct sdhci_slot *slot = &sc->slots[sc->num_slots];
uint32_t caps;
SDHCI_LOCK_INIT(slot);
slot->sc = sc;
slot->num = sc->num_slots;
/* Allocate memory. */
slot->mem_rid = PCIR_BAR(bar + i);
slot->mem_res = bus_alloc_resource(dev,
SYS_RES_MEMORY, &slot->mem_rid, 0ul, ~0ul, 0x100, RF_ACTIVE);
if (slot->mem_res == NULL) {
device_printf(dev, "Can't allocate memory\n");
SDHCI_LOCK_DESTROY(slot);
continue;
}
/* Allocate DMA tag. */
err = bus_dma_tag_create(bus_get_dma_tag(dev),
DMA_BLOCK_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL,
DMA_BLOCK_SIZE, 1, DMA_BLOCK_SIZE,
BUS_DMA_ALLOCNOW, NULL, NULL,
&slot->dmatag);
if (err != 0) {
device_printf(dev, "Can't create DMA tag\n");
SDHCI_LOCK_DESTROY(slot);
continue;
}
/* Allocate DMA memory. */
err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem,
BUS_DMA_NOWAIT, &slot->dmamap);
if (err != 0) {
device_printf(dev, "Can't alloc DMA memory\n");
SDHCI_LOCK_DESTROY(slot);
continue;
}
/* Map the memory. */
err = bus_dmamap_load(slot->dmatag, slot->dmamap,
(void *)slot->dmamem, DMA_BLOCK_SIZE,
sdhci_getaddr, &slot->paddr, 0);
if (err != 0 || slot->paddr == 0) {
device_printf(dev, "Can't load DMA memory\n");
SDHCI_LOCK_DESTROY(slot);
continue;
}
/* Initialize slot. */
sdhci_init(slot);
caps = RD4(slot, SDHCI_CAPABILITIES);
/* Calculate base clock frequency. */
slot->max_clk =
(caps & SDHCI_CLOCK_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT;
if (slot->max_clk == 0) {
device_printf(dev, "Hardware doesn't specify base clock "
"frequency.\n");
}
slot->max_clk *= 1000000;
/* Calculate timeout clock frequency. */
slot->timeout_clk =
(caps & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT;
if (slot->timeout_clk == 0) {
device_printf(dev, "Hardware doesn't specify timeout clock "
"frequency.\n");
}
if (caps & SDHCI_TIMEOUT_CLK_UNIT)
slot->timeout_clk *= 1000;
slot->host.f_min = slot->max_clk / 256;
slot->host.f_max = slot->max_clk;
slot->host.host_ocr = 0;
if (caps & SDHCI_CAN_VDD_330)
slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340;
if (caps & SDHCI_CAN_VDD_300)
slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310;
if (caps & SDHCI_CAN_VDD_180)
slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE;
if (slot->host.host_ocr == 0) {
device_printf(dev, "Hardware doesn't report any "
"support voltages.\n");
}
slot->host.caps = MMC_CAP_4_BIT_DATA;
if (caps & SDHCI_CAN_DO_HISPD)
slot->host.caps |= MMC_CAP_HSPEED;
/* Decide if we have usable DMA. */
if (caps & SDHCI_CAN_DO_DMA)
slot->opt |= SDHCI_HAVE_DMA;
if (class == PCIC_BASEPERIPH &&
subclass == PCIS_BASEPERIPH_SDHC &&
progif != PCI_SDHCI_IFDMA)
slot->opt &= ~SDHCI_HAVE_DMA;
if (sc->quirks & SDHCI_QUIRK_BROKEN_DMA)
slot->opt &= ~SDHCI_HAVE_DMA;
if (sc->quirks & SDHCI_QUIRK_FORCE_DMA)
slot->opt |= SDHCI_HAVE_DMA;
if (bootverbose) {
slot_printf(slot, "%uMHz%s 4bits%s%s%s %s\n",
slot->max_clk / 1000000,
(caps & SDHCI_CAN_DO_HISPD) ? " HS" : "",
(caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "",
(caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "",
(caps & SDHCI_CAN_VDD_180) ? " 1.8V" : "",
(slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO");
sdhci_dumpregs(slot);
}
TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot);
callout_init(&slot->card_callout, 1);
sc->num_slots++;
}
device_printf(dev, "%d slot(s) allocated\n", sc->num_slots);
/* Activate the interrupt */
err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, sdhci_intr, sc, &sc->intrhand);
if (err)
device_printf(dev, "Can't setup IRQ\n");
pci_enable_busmaster(dev);
/* Process cards detection. */
for (i = 0; i < sc->num_slots; i++) {
struct sdhci_slot *slot = &sc->slots[i];
sdhci_card_task(slot, 0);
}
return (0);
}
static int
sdhci_detach(device_t dev)
{
struct sdhci_softc *sc = device_get_softc(dev);
int i;
bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
bus_release_resource(dev, SYS_RES_IRQ,
sc->irq_rid, sc->irq_res);
for (i = 0; i < sc->num_slots; i++) {
struct sdhci_slot *slot = &sc->slots[i];
device_t d;
callout_drain(&slot->card_callout);
taskqueue_drain(taskqueue_swi_giant, &slot->card_task);
SDHCI_LOCK(slot);
d = slot->dev;
slot->dev = NULL;
SDHCI_UNLOCK(slot);
if (d != NULL)
device_delete_child(dev, d);
SDHCI_LOCK(slot);
sdhci_reset(slot, SDHCI_RESET_ALL);
SDHCI_UNLOCK(slot);
bus_dmamap_unload(slot->dmatag, slot->dmamap);
bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
bus_dma_tag_destroy(slot->dmatag);
bus_release_resource(dev, SYS_RES_MEMORY,
slot->mem_rid, slot->mem_res);
SDHCI_LOCK_DESTROY(slot);
}
return (0);
}
static int
sdhci_suspend(device_t dev)
{
struct sdhci_softc *sc = device_get_softc(dev);
int i, err;
err = bus_generic_suspend(dev);
if (err)
return (err);
for (i = 0; i < sc->num_slots; i++)
sdhci_reset(&sc->slots[i], SDHCI_RESET_ALL);
return (0);
}
static int
sdhci_resume(device_t dev)
{
struct sdhci_softc *sc = device_get_softc(dev);
int i;
for (i = 0; i < sc->num_slots; i++)
sdhci_init(&sc->slots[i]);
return (bus_generic_resume(dev));
}
static int
sdhci_update_ios(device_t brdev, device_t reqdev)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
struct mmc_ios *ios = &slot->host.ios;
SDHCI_LOCK(slot);
/* Do full reset on bus power down to clear from any state. */
if (ios->power_mode == power_off) {
WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
sdhci_init(slot);
}
/* Configure the bus. */
sdhci_set_clock(slot, ios->clock);
sdhci_set_power(slot, (ios->power_mode == power_off)?0:ios->vdd);
if (ios->bus_width == bus_width_4)
slot->hostctrl |= SDHCI_CTRL_4BITBUS;
else
slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
if (ios->timing == bus_timing_hs)
slot->hostctrl |= SDHCI_CTRL_HISPD;
else
slot->hostctrl &= ~SDHCI_CTRL_HISPD;
WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
/* Some controllers like reset after bus changes. */
if(slot->sc->quirks & SDHCI_QUIRK_RESET_ON_IOS)
sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
SDHCI_UNLOCK(slot);
return (0);
}
static void
sdhci_set_transfer_mode(struct sdhci_slot *slot,
struct mmc_data *data)
{
uint16_t mode;
if (data == NULL)
return;
mode = SDHCI_TRNS_BLK_CNT_EN;
if (data->len > 512)
mode |= SDHCI_TRNS_MULTI;
if (data->flags & MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (slot->req->stop)
mode |= SDHCI_TRNS_ACMD12;
if (slot->flags & SDHCI_USE_DMA)
mode |= SDHCI_TRNS_DMA;
WR2(slot, SDHCI_TRANSFER_MODE, mode);
}
static void
sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd)
{
struct mmc_request *req = slot->req;
int flags, timeout;
uint32_t mask, state;
slot->curcmd = cmd;
slot->cmd_done = 0;
cmd->error = MMC_ERR_NONE;
/* This flags combination is not supported by controller. */
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
slot_printf(slot, "Unsupported response type!\n");
cmd->error = MMC_ERR_FAILED;
slot->req = NULL;
slot->curcmd = NULL;
req->done(req);
return;
}
/* Read controller present state. */
state = RD4(slot, SDHCI_PRESENT_STATE);
/* Do not issue command if there is no card, clock or power.
* Controller will not detect timeout without clock active. */
if ((state & SDHCI_CARD_PRESENT) == 0 ||
slot->power == 0 ||
slot->clock == 0) {
cmd->error = MMC_ERR_FAILED;
slot->req = NULL;
slot->curcmd = NULL;
req->done(req);
return;
}
/* Always wait for free CMD bus. */
mask = SDHCI_CMD_INHIBIT;
/* Wait for free DAT if we have data or busy signal. */
if (cmd->data || (cmd->flags & MMC_RSP_BUSY))
mask |= SDHCI_DAT_INHIBIT;
/* We shouldn't wait for DAT for stop commands. */
if (cmd == slot->req->stop)
mask &= ~SDHCI_DAT_INHIBIT;
/* Wait for bus no more then 10 ms. */
timeout = 10;
while (state & mask) {
if (timeout == 0) {
slot_printf(slot, "Controller never released "
"inhibit bit(s).\n");
sdhci_dumpregs(slot);
cmd->error = MMC_ERR_FAILED;
slot->req = NULL;
slot->curcmd = NULL;
req->done(req);
return;
}
timeout--;
DELAY(1000);
state = RD4(slot, SDHCI_PRESENT_STATE);
}
/* Prepare command flags. */
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
if (cmd->data)
flags |= SDHCI_CMD_DATA;
if (cmd->opcode == MMC_STOP_TRANSMISSION)
flags |= SDHCI_CMD_TYPE_ABORT;
/* Prepare data. */
sdhci_start_data(slot, cmd->data);
/*
* Interrupt aggregation: To reduce total number of interrupts
* group response interrupt with data interrupt when possible.
* If there going to be data interrupt, mask response one.
*/
if (slot->data_done == 0) {
WR4(slot, SDHCI_SIGNAL_ENABLE,
slot->intmask &= ~SDHCI_INT_RESPONSE);
}
/* Set command argument. */
WR4(slot, SDHCI_ARGUMENT, cmd->arg);
/* Set data transfer mode. */
sdhci_set_transfer_mode(slot, cmd->data);
/* Set command flags. */
WR1(slot, SDHCI_COMMAND_FLAGS, flags);
/* Start command. */
WR1(slot, SDHCI_COMMAND, cmd->opcode);
}
static void
sdhci_finish_command(struct sdhci_slot *slot)
{
int i;
slot->cmd_done = 1;
/* Interrupt aggregation: Restore command interrupt.
* Main restore point for the case when command interrupt
* happened first. */
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= SDHCI_INT_RESPONSE);
/* In case of error - reset host and return. */
if (slot->curcmd->error) {
sdhci_reset(slot, SDHCI_RESET_CMD);
sdhci_reset(slot, SDHCI_RESET_DATA);
sdhci_start(slot);
return;
}
/* If command has response - fetch it. */
if (slot->curcmd->flags & MMC_RSP_PRESENT) {
if (slot->curcmd->flags & MMC_RSP_136) {
/* CRC is stripped so we need one byte shift. */
uint8_t extra = 0;
for (i = 0; i < 4; i++) {
uint32_t val = RD4(slot, SDHCI_RESPONSE + i * 4);
slot->curcmd->resp[3 - i] = (val << 8) + extra;
extra = val >> 24;
}
} else
slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE);
}
/* If data ready - finish. */
if (slot->data_done)
sdhci_start(slot);
}
static void
sdhci_start_data(struct sdhci_slot *slot, struct mmc_data *data)
{
uint32_t target_timeout, current_timeout;
uint8_t div;
if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
slot->data_done = 1;
return;
}
slot->data_done = 0;
/* Calculate and set data timeout.*/
/* XXX: We should have this from mmc layer, now assume 1 sec. */
target_timeout = 1000000;
div = 0;
current_timeout = (1 << 13) * 1000 / slot->timeout_clk;
while (current_timeout < target_timeout) {
div++;
current_timeout <<= 1;
if (div >= 0xF)
break;
}
/* Compensate for an off-by-one error in the CaFe chip.*/
if (slot->sc->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)
div++;
if (div >= 0xF) {
slot_printf(slot, "Timeout too large!\n");
div = 0xE;
}
WR1(slot, SDHCI_TIMEOUT_CONTROL, div);
if (data == NULL)
return;
/* Use DMA if possible. */
if ((slot->opt & SDHCI_HAVE_DMA))
slot->flags |= SDHCI_USE_DMA;
/* If data is small, broken DMA may return zeroes instead of data, */
if ((slot->sc->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) &&
(data->len <= 512))
slot->flags &= ~SDHCI_USE_DMA;
/* Some controllers require even block sizes. */
if ((slot->sc->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) &&
((data->len) & 0x3))
slot->flags &= ~SDHCI_USE_DMA;
/* Load DMA buffer. */
if (slot->flags & SDHCI_USE_DMA) {
if (data->flags & MMC_DATA_READ)
bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREREAD);
else {
memcpy(slot->dmamem, data->data,
(data->len < DMA_BLOCK_SIZE)?data->len:DMA_BLOCK_SIZE);
bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREWRITE);
}
WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
/* Interrupt aggregation: Mask border interrupt
* for the last page and unmask else. */
if (data->len == DMA_BLOCK_SIZE)
slot->intmask &= ~SDHCI_INT_DMA_END;
else
slot->intmask |= SDHCI_INT_DMA_END;
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
}
/* Current data offset for both PIO and DMA. */
slot->offset = 0;
/* Set block size and request IRQ on 4K border. */
WR2(slot, SDHCI_BLOCK_SIZE,
SDHCI_MAKE_BLKSZ(DMA_BOUNDARY, (data->len < 512)?data->len:512));
/* Set block count. */
WR2(slot, SDHCI_BLOCK_COUNT, (data->len + 511) / 512);
}
static void
sdhci_finish_data(struct sdhci_slot *slot)
{
struct mmc_data *data = slot->curcmd->data;
slot->data_done = 1;
/* Interrupt aggregation: Restore command interrupt.
* Auxillary restore point for the case when data interrupt
* happened first. */
if (!slot->cmd_done) {
WR4(slot, SDHCI_SIGNAL_ENABLE,
slot->intmask |= SDHCI_INT_RESPONSE);
}
/* Unload rest of data from DMA buffer. */
if (slot->flags & SDHCI_USE_DMA) {
if (data->flags & MMC_DATA_READ) {
size_t left = data->len - slot->offset;
bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTREAD);
memcpy((u_char*)data->data + slot->offset, slot->dmamem,
(left < DMA_BLOCK_SIZE)?left:DMA_BLOCK_SIZE);
} else
bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
}
/* If there was error - reset the host. */
if (slot->curcmd->error) {
sdhci_reset(slot, SDHCI_RESET_CMD);
sdhci_reset(slot, SDHCI_RESET_DATA);
sdhci_start(slot);
return;
}
/* If we already have command response - finish. */
if (slot->cmd_done)
sdhci_start(slot);
}
static void
sdhci_start(struct sdhci_slot *slot)
{
struct mmc_request *req;
req = slot->req;
if (req == NULL)
return;
if (!(slot->flags & CMD_STARTED)) {
slot->flags |= CMD_STARTED;
sdhci_start_command(slot, req->cmd);
return;
}
/* We don't need this until using Auto-CMD12 feature
if (!(slot->flags & STOP_STARTED) && req->stop) {
slot->flags |= STOP_STARTED;
sdhci_start_command(slot, req->stop);
return;
}
*/
if (req->cmd->error) {
if (bootverbose) {
slot_printf(slot,
"Command error %d (opcode %u arg %u flags %u "
"dlen %u dflags %u)\n",
req->cmd->error, req->cmd->opcode, req->cmd->arg,
req->cmd->flags,
(req->cmd->data)?(u_int)req->cmd->data->len:0,
(req->cmd->data)?(u_int)req->cmd->data->flags:0);
}
} else if (slot->sc->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST) {
sdhci_reset(slot, SDHCI_RESET_CMD);
sdhci_reset(slot, SDHCI_RESET_DATA);
}
/* We must be done -- bad idea to do this while locked? */
slot->req = NULL;
slot->curcmd = NULL;
req->done(req);
}
static int
sdhci_request(device_t brdev, device_t reqdev, struct mmc_request *req)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
SDHCI_LOCK(slot);
if (slot->req != NULL) {
SDHCI_UNLOCK(slot);
return (EBUSY);
}
/* printf("%s cmd op %u arg %u flags %u data %ju\n", __func__,
req->cmd->opcode, req->cmd->arg, req->cmd->flags,
(req->cmd->data)?req->cmd->data->len:0); */
slot->req = req;
slot->flags = 0;
sdhci_start(slot);
SDHCI_UNLOCK(slot);
return (0);
}
static int
sdhci_get_ro(device_t brdev, device_t reqdev)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
uint32_t val;
SDHCI_LOCK(slot);
val = RD4(slot, SDHCI_PRESENT_STATE);
SDHCI_UNLOCK(slot);
return (!(val & SDHCI_WRITE_PROTECT));
}
static int
sdhci_acquire_host(device_t brdev, device_t reqdev)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
int err = 0;
SDHCI_LOCK(slot);
while (slot->bus_busy)
msleep(slot, &slot->mtx, 0, "sdhciah", 0);
slot->bus_busy++;
/* Activate led. */
WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED);
SDHCI_UNLOCK(slot);
return (err);
}
static int
sdhci_release_host(device_t brdev, device_t reqdev)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
SDHCI_LOCK(slot);
/* Deactivate led. */
WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED);
slot->bus_busy--;
SDHCI_UNLOCK(slot);
wakeup(slot);
return (0);
}
static void
sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask)
{
if (!slot->curcmd) {
slot_printf(slot, "Got command interrupt 0x%08x, but "
"there is no active command.\n", intmask);
sdhci_dumpregs(slot);
return;
}
if (intmask & SDHCI_INT_TIMEOUT)
slot->curcmd->error = MMC_ERR_TIMEOUT;
else if (intmask & SDHCI_INT_CRC)
slot->curcmd->error = MMC_ERR_BADCRC;
else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX))
slot->curcmd->error = MMC_ERR_FIFO;
sdhci_finish_command(slot);
}
static void
sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask)
{
if (!slot->curcmd) {
slot_printf(slot, "Got data interrupt 0x%08x, but "
"there is no active command.\n", intmask);
sdhci_dumpregs(slot);
return;
}
if (slot->curcmd->data == NULL &&
(slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
slot_printf(slot, "Got data interrupt 0x%08x, but "
"there is no active data operation.\n",
intmask);
sdhci_dumpregs(slot);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT)
slot->curcmd->error = MMC_ERR_TIMEOUT;
else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT))
slot->curcmd->error = MMC_ERR_BADCRC;
if (slot->curcmd->data == NULL &&
(intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
SDHCI_INT_DMA_END))) {
slot_printf(slot, "Got data interrupt 0x%08x, but "
"there is busy-only command.\n", intmask);
sdhci_dumpregs(slot);
slot->curcmd->error = MMC_ERR_INVALID;
}
if (slot->curcmd->error) {
/* No need to continue after any error. */
sdhci_finish_data(slot);
return;
}
/* Handle PIO interrupt. */
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL))
sdhci_transfer_pio(slot);
/* Handle DMA border. */
if (intmask & SDHCI_INT_DMA_END) {
struct mmc_data *data = slot->curcmd->data;
size_t left;
/* Unload DMA buffer... */
left = data->len - slot->offset;
if (data->flags & MMC_DATA_READ) {
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_POSTREAD);
memcpy((u_char*)data->data + slot->offset, slot->dmamem,
(left < DMA_BLOCK_SIZE)?left:DMA_BLOCK_SIZE);
} else {
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_POSTWRITE);
}
/* ... and reload it again. */
slot->offset += DMA_BLOCK_SIZE;
left = data->len - slot->offset;
if (data->flags & MMC_DATA_READ) {
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_PREREAD);
} else {
memcpy(slot->dmamem, (u_char*)data->data + slot->offset,
(left < DMA_BLOCK_SIZE)?left:DMA_BLOCK_SIZE);
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_PREWRITE);
}
/* Interrupt aggregation: Mask border interrupt
* for the last page. */
if (left == DMA_BLOCK_SIZE) {
slot->intmask &= ~SDHCI_INT_DMA_END;
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
}
/* Restart DMA. */
WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
}
/* We have got all data. */
if (intmask & SDHCI_INT_DATA_END)
sdhci_finish_data(slot);
}
static void
sdhci_acmd_irq(struct sdhci_slot *slot)
{
uint16_t err;
err = RD4(slot, SDHCI_ACMD12_ERR);
if (!slot->curcmd) {
slot_printf(slot, "Got AutoCMD12 error 0x%04x, but "
"there is no active command.\n", err);
sdhci_dumpregs(slot);
return;
}
slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", err);
sdhci_reset(slot, SDHCI_RESET_CMD);
}
static void
sdhci_intr(void *arg)
{
struct sdhci_softc *sc = (struct sdhci_softc *)arg;
int i;
for (i = 0; i < sc->num_slots; i++) {
struct sdhci_slot *slot = &sc->slots[i];
uint32_t intmask;
SDHCI_LOCK(slot);
/* Read slot interrupt status. */
intmask = RD4(slot, SDHCI_INT_STATUS);
if (intmask == 0 || intmask == 0xffffffff) {
SDHCI_UNLOCK(slot);
continue;
}
/*
slot_printf(slot, "got interrupt %x\n", intmask);
*/
/* Handle card presence interrupts. */
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
WR4(slot, SDHCI_INT_STATUS, intmask &
(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE));
if (intmask & SDHCI_INT_CARD_REMOVE) {
if (bootverbose)
slot_printf(slot, "Card removed\n");
callout_stop(&slot->card_callout);
taskqueue_enqueue(taskqueue_swi_giant,
&slot->card_task);
}
if (intmask & SDHCI_INT_CARD_INSERT) {
if (bootverbose)
slot_printf(slot, "Card inserted\n");
callout_reset(&slot->card_callout, hz / 2,
sdhci_card_delay, slot);
}
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
}
/* Handle command interrupts. */
if (intmask & SDHCI_INT_CMD_MASK) {
WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK);
sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK);
}
/* Handle data interrupts. */
if (intmask & SDHCI_INT_DATA_MASK) {
WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK);
sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK);
}
/* Handle AutoCMD12 error interrupt. */
if (intmask & SDHCI_INT_ACMD12ERR) {
WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR);
sdhci_acmd_irq(slot);
}
intmask &= ~(SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK);
intmask &= ~SDHCI_INT_ACMD12ERR;
intmask &= ~SDHCI_INT_ERROR;
/* Handle bus power interrupt. */
if (intmask & SDHCI_INT_BUS_POWER) {
WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER);
slot_printf(slot,
"Card is consuming too much power!\n");
intmask &= ~SDHCI_INT_BUS_POWER;
}
/* The rest is unknown. */
if (intmask) {
WR4(slot, SDHCI_INT_STATUS, intmask);
slot_printf(slot, "Unexpected interrupt 0x%08x.\n",
intmask);
sdhci_dumpregs(slot);
}
SDHCI_UNLOCK(slot);
}
}
static int
sdhci_read_ivar(device_t bus, device_t child, int which, u_char *result)
{
struct sdhci_slot *slot = device_get_ivars(child);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
*(int *)result = slot->host.ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH:
*(int *)result = slot->host.ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT:
*(int *)result = slot->host.ios.chip_select;
break;
case MMCBR_IVAR_CLOCK:
*(int *)result = slot->host.ios.clock;
break;
case MMCBR_IVAR_F_MIN:
*(int *)result = slot->host.f_min;
break;
case MMCBR_IVAR_F_MAX:
*(int *)result = slot->host.f_max;
break;
case MMCBR_IVAR_HOST_OCR:
*(int *)result = slot->host.host_ocr;
break;
case MMCBR_IVAR_MODE:
*(int *)result = slot->host.mode;
break;
case MMCBR_IVAR_OCR:
*(int *)result = slot->host.ocr;
break;
case MMCBR_IVAR_POWER_MODE:
*(int *)result = slot->host.ios.power_mode;
break;
case MMCBR_IVAR_VDD:
*(int *)result = slot->host.ios.vdd;
break;
case MMCBR_IVAR_CAPS:
*(int *)result = slot->host.caps;
break;
case MMCBR_IVAR_TIMING:
*(int *)result = slot->host.ios.timing;
break;
case MMCBR_IVAR_MAX_DATA:
*(int *)result = 65535;
break;
}
return (0);
}
static int
sdhci_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
{
struct sdhci_slot *slot = device_get_ivars(child);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
slot->host.ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH:
slot->host.ios.bus_width = value;
break;
case MMCBR_IVAR_CHIP_SELECT:
slot->host.ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK:
if (value > 0) {
uint32_t clock = slot->max_clk;
int i;
for (i = 0; i < 8; i++) {
if (clock <= value)
break;
clock >>= 1;
}
slot->host.ios.clock = clock;
} else
slot->host.ios.clock = 0;
break;
case MMCBR_IVAR_MODE:
slot->host.mode = value;
break;
case MMCBR_IVAR_OCR:
slot->host.ocr = value;
break;
case MMCBR_IVAR_POWER_MODE:
slot->host.ios.power_mode = value;
break;
case MMCBR_IVAR_VDD:
slot->host.ios.vdd = value;
break;
case MMCBR_IVAR_TIMING:
slot->host.ios.timing = value;
break;
case MMCBR_IVAR_CAPS:
case MMCBR_IVAR_HOST_OCR:
case MMCBR_IVAR_F_MIN:
case MMCBR_IVAR_F_MAX:
case MMCBR_IVAR_MAX_DATA:
return (EINVAL);
}
return (0);
}
static device_method_t sdhci_methods[] = {
/* device_if */
DEVMETHOD(device_probe, sdhci_probe),
DEVMETHOD(device_attach, sdhci_attach),
DEVMETHOD(device_detach, sdhci_detach),
DEVMETHOD(device_suspend, sdhci_suspend),
DEVMETHOD(device_resume, sdhci_resume),
/* Bus interface */
DEVMETHOD(bus_read_ivar, sdhci_read_ivar),
DEVMETHOD(bus_write_ivar, sdhci_write_ivar),
/* mmcbr_if */
DEVMETHOD(mmcbr_update_ios, sdhci_update_ios),
DEVMETHOD(mmcbr_request, sdhci_request),
DEVMETHOD(mmcbr_get_ro, sdhci_get_ro),
DEVMETHOD(mmcbr_acquire_host, sdhci_acquire_host),
DEVMETHOD(mmcbr_release_host, sdhci_release_host),
{0, 0},
};
static driver_t sdhci_driver = {
"sdhci",
sdhci_methods,
sizeof(struct sdhci_softc),
};
static devclass_t sdhci_devclass;
DRIVER_MODULE(sdhci, pci, sdhci_driver, sdhci_devclass, 0, 0);