1d5f38ac22
FreeBSD/alpha. The most significant item is to change the command argument to ioctl functions from int to u_long. This change brings us inline with various other BSD versions. Driver writers may like to use (__FreeBSD_version == 300003) to detect this change. The prototype FreeBSD/alpha machdep will follow in a couple of days time.
2639 lines
69 KiB
C
2639 lines
69 KiB
C
/*
|
|
* Copyright (c) 1997, 1998
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $Id: if_tl.c,v 1.8 1998/05/31 16:59:39 wpaul Exp $
|
|
*/
|
|
|
|
/*
|
|
* Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
|
|
* Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
|
|
* the National Semiconductor DP83840A physical interface and the
|
|
* Microchip Technology 24Cxx series serial EEPROM.
|
|
*
|
|
* Written using the following three documents:
|
|
*
|
|
* Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
|
|
* National Semiconductor DP83840A data sheet (www.national.com)
|
|
* Microchip Technology 24C02C data sheet (www.microchip.com)
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* Some notes about the ThunderLAN:
|
|
*
|
|
* The ThunderLAN controller is a single chip containing PCI controller
|
|
* logic, approximately 3K of on-board SRAM, a LAN controller, and media
|
|
* independent interface (MII). The MII allows the ThunderLAN chip to
|
|
* control up to 32 different physical interfaces (PHYs). The ThunderLAN
|
|
* also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
|
|
* to act as a complete ethernet interface.
|
|
*
|
|
* Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
|
|
* use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
|
|
* in full or half duplex. Some of the Compaq Deskpro machines use a
|
|
* Level 1 LXT970 PHY with the same capabilities. A serial EEPROM is also
|
|
* attached to the ThunderLAN chip to provide power-up default register
|
|
* settings and for storing the adapter's stattion address. Although not
|
|
* supported by this driver, the ThunderLAN chip can also be connected
|
|
* to token ring PHYs.
|
|
*
|
|
* It is important to note that while it is possible to have multiple
|
|
* PHYs attached to the ThunderLAN's MII, only one PHY may be active at
|
|
* any time. (This makes me wonder exactly how the dual port Compaq
|
|
* adapter is supposed to work.) This driver attempts to compensate for
|
|
* this in the following way:
|
|
*
|
|
* When the ThunderLAN chip is probed, the probe routine attempts to
|
|
* locate all attached PHYs by checking all 32 possible PHY addresses
|
|
* (0x00 to 0x1F). Each PHY is attached as a separate logical interface.
|
|
* The driver allows any one interface to be brought up at any given
|
|
* time: if an attempt is made to bring up a second PHY while another
|
|
* PHY is already enabled, the driver will return an error.
|
|
*
|
|
* The ThunderLAN has a set of registers which can be used to issue
|
|
* command, acknowledge interrupts, and to manipulate other internal
|
|
* registers on its DIO bus. The primary registers can be accessed
|
|
* using either programmed I/O (inb/outb) or via PCI memory mapping,
|
|
* depending on how the card is configured during the PCI probing
|
|
* phase. It is even possible to have both PIO and memory mapped
|
|
* access turned on at the same time.
|
|
*
|
|
* Frame reception and transmission with the ThunderLAN chip is done
|
|
* using frame 'lists.' A list structure looks more or less like this:
|
|
*
|
|
* struct tl_frag {
|
|
* u_int32_t fragment_address;
|
|
* u_int32_t fragment_size;
|
|
* };
|
|
* struct tl_list {
|
|
* u_int32_t forward_pointer;
|
|
* u_int16_t cstat;
|
|
* u_int16_t frame_size;
|
|
* struct tl_frag fragments[10];
|
|
* };
|
|
*
|
|
* The forward pointer in the list header can be either a 0 or the address
|
|
* of another list, which allows several lists to be linked together. Each
|
|
* list contains up to 10 fragment descriptors. This means the chip allows
|
|
* ethernet frames to be broken up into up to 10 chunks for transfer to
|
|
* and from the SRAM. Note that the forward pointer and fragment buffer
|
|
* addresses are physical memory addresses, not virtual. Note also that
|
|
* a single ethernet frame can not span lists: if the host wants to
|
|
* transmit a frame and the frame data is split up over more than 10
|
|
* buffers, the frame has to collapsed before it can be transmitted.
|
|
*
|
|
* To receive frames, the driver sets up a number of lists and populates
|
|
* the fragment descriptors, then it sends an RX GO command to the chip.
|
|
* When a frame is received, the chip will DMA it into the memory regions
|
|
* specified by the fragment descriptors and then trigger an RX 'end of
|
|
* frame interrupt' when done. The driver may choose to use only one
|
|
* fragment per list; this may result is slighltly less efficient use
|
|
* of memory in exchange for improving performance.
|
|
*
|
|
* To transmit frames, the driver again sets up lists and fragment
|
|
* descriptors, only this time the buffers contain frame data that
|
|
* is to be DMA'ed into the chip instead of out of it. Once the chip
|
|
* has transfered the data into its on-board SRAM, it will trigger a
|
|
* TX 'end of frame' interrupt. It will also generate an 'end of channel'
|
|
* interrupt when it reaches the end of the list.
|
|
*/
|
|
|
|
/*
|
|
* Some notes about this driver:
|
|
*
|
|
* The ThunderLAN chip provides a couple of different ways to organize
|
|
* reception, transmission and interrupt handling. The simplest approach
|
|
* is to use one list each for transmission and reception. In this mode,
|
|
* the ThunderLAN will generate two interrupts for every received frame
|
|
* (one RX EOF and one RX EOC) and two for each transmitted frame (one
|
|
* TX EOF and one TX EOC). This may make the driver simpler but it hurts
|
|
* performance to have to handle so many interrupts.
|
|
*
|
|
* Initially I wanted to create a circular list of receive buffers so
|
|
* that the ThunderLAN chip would think there was an infinitely long
|
|
* receive channel and never deliver an RXEOC interrupt. However this
|
|
* doesn't work correctly under heavy load: while the manual says the
|
|
* chip will trigger an RXEOF interrupt each time a frame is copied into
|
|
* memory, you can't count on the chip waiting around for you to acknowledge
|
|
* the interrupt before it starts trying to DMA the next frame. The result
|
|
* is that the chip might traverse the entire circular list and then wrap
|
|
* around before you have a chance to do anything about it. Consequently,
|
|
* the receive list is terminated (with a 0 in the forward pointer in the
|
|
* last element). Each time an RXEOF interrupt arrives, the used list
|
|
* is shifted to the end of the list. This gives the appearance of an
|
|
* infinitely large RX chain so long as the driver doesn't fall behind
|
|
* the chip and allow all of the lists to be filled up.
|
|
*
|
|
* If all the lists are filled, the adapter will deliver an RX 'end of
|
|
* channel' interrupt when it hits the 0 forward pointer at the end of
|
|
* the chain. The RXEOC handler then cleans out the RX chain and resets
|
|
* the list head pointer in the ch_parm register and restarts the receiver.
|
|
*
|
|
* For frame transmission, it is possible to program the ThunderLAN's
|
|
* transmit interrupt threshold so that the chip can acknowledge multiple
|
|
* lists with only a single TX EOF interrupt. This allows the driver to
|
|
* queue several frames in one shot, and only have to handle a total
|
|
* two interrupts (one TX EOF and one TX EOC) no matter how many frames
|
|
* are transmitted. Frame transmission is done directly out of the
|
|
* mbufs passed to the tl_start() routine via the interface send queue.
|
|
* The driver simply sets up the fragment descriptors in the transmit
|
|
* lists to point to the mbuf data regions and sends a TX GO command.
|
|
*
|
|
* Note that since the RX and TX lists themselves are always used
|
|
* only by the driver, the are malloc()ed once at driver initialization
|
|
* time and never free()ed.
|
|
*
|
|
* Also, in order to remain as platform independent as possible, this
|
|
* driver uses memory mapped register access to manipulate the card
|
|
* as opposed to programmed I/O. This avoids the use of the inb/outb
|
|
* (and related) instructions which are specific to the i386 platform.
|
|
*
|
|
* Using these techniques, this driver achieves very high performance
|
|
* by minimizing the amount of interrupts generated during large
|
|
* transfers and by completely avoiding buffer copies. Frame transfer
|
|
* to and from the ThunderLAN chip is performed entirely by the chip
|
|
* itself thereby reducing the load on the host CPU.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_mib.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#ifdef IPX
|
|
#include <netipx/ipx.h>
|
|
#include <netipx/ipx_if.h>
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
#endif
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h> /* for vtophys */
|
|
#include <vm/vm_param.h> /* for vtophys */
|
|
#include <vm/pmap.h> /* for vtophys */
|
|
#include <machine/clock.h> /* for DELAY */
|
|
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
|
|
#include <pci/if_tlreg.h>
|
|
|
|
#ifndef lint
|
|
static char rcsid[] =
|
|
"$Id: if_tl.c,v 1.8 1998/05/31 16:59:39 wpaul Exp $";
|
|
#endif
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
|
|
static struct tl_type tl_devs[] = {
|
|
{ TI_VENDORID, TI_DEVICEID_THUNDERLAN,
|
|
"Texas Instruments ThunderLAN" },
|
|
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
|
|
"Compaq Netelligent 10" },
|
|
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
|
|
"Compaq Netelligent 10/100" },
|
|
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
|
|
"Compaq Netelligent 10/100 Proliant" },
|
|
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
|
|
"Compaq Netelligent 10/100 Dual Port" },
|
|
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
|
|
"Compaq NetFlex-3/P Integrated" },
|
|
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
|
|
"Compaq NetFlex-3/P" },
|
|
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
|
|
"Compaq NetFlex 3/P w/ BNC" },
|
|
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_DESKPRO_4000_5233MMX,
|
|
"Compaq Deskpro 4000 5233MMX" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
/*
|
|
* Various supported PHY vendors/types and their names. Note that
|
|
* this driver will work with pretty much any MII-compliant PHY,
|
|
* so failure to positively identify the chip is not a fatal error.
|
|
*/
|
|
|
|
static struct tl_type tl_phys[] = {
|
|
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
|
|
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
|
|
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
|
|
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
|
|
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
|
|
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
|
|
{ 0, 0, "<MII-compliant physical interface>" }
|
|
};
|
|
|
|
static struct tl_iflist *tl_iflist = NULL;
|
|
static unsigned long tl_count;
|
|
|
|
static char *tl_probe __P((pcici_t, pcidi_t));
|
|
static void tl_attach_ctlr __P((pcici_t, int));
|
|
static int tl_attach_phy __P((struct tl_csr *, int, char *,
|
|
int, struct tl_iflist *));
|
|
static int tl_intvec_invalid __P((void *, u_int32_t));
|
|
static int tl_intvec_dummy __P((void *, u_int32_t));
|
|
static int tl_intvec_rxeoc __P((void *, u_int32_t));
|
|
static int tl_intvec_txeoc __P((void *, u_int32_t));
|
|
static int tl_intvec_txeof __P((void *, u_int32_t));
|
|
static int tl_intvec_rxeof __P((void *, u_int32_t));
|
|
static int tl_intvec_adchk __P((void *, u_int32_t));
|
|
static int tl_intvec_netsts __P((void *, u_int32_t));
|
|
static int tl_intvec_statoflow __P((void *, u_int32_t));
|
|
|
|
static int tl_newbuf __P((struct tl_softc *, struct tl_chain *));
|
|
static void tl_stats_update __P((void *));
|
|
static int tl_encap __P((struct tl_softc *, struct tl_chain *,
|
|
struct mbuf *));
|
|
|
|
static void tl_intr __P((void *));
|
|
static void tl_start __P((struct ifnet *));
|
|
static int tl_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static void tl_init __P((void *));
|
|
static void tl_stop __P((struct tl_softc *));
|
|
static void tl_watchdog __P((struct ifnet *));
|
|
static void tl_shutdown __P((int, void *));
|
|
static int tl_ifmedia_upd __P((struct ifnet *));
|
|
static void tl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
static u_int8_t tl_eeprom_putbyte __P((struct tl_csr *, u_int8_t));
|
|
static u_int8_t tl_eeprom_getbyte __P((struct tl_csr *, u_int8_t ,
|
|
u_int8_t * ));
|
|
static int tl_read_eeprom __P((struct tl_csr *, caddr_t, int, int));
|
|
|
|
static void tl_mii_sync __P((struct tl_csr *));
|
|
static void tl_mii_send __P((struct tl_csr *, u_int32_t, int));
|
|
static int tl_mii_readreg __P((struct tl_csr *, struct tl_mii_frame *));
|
|
static int tl_mii_writereg __P((struct tl_csr *, struct tl_mii_frame *));
|
|
static u_int16_t tl_phy_readreg __P((struct tl_softc *, int));
|
|
static void tl_phy_writereg __P((struct tl_softc *, u_int16_t, u_int16_t));
|
|
|
|
static void tl_autoneg __P((struct tl_softc *, int, int));
|
|
static void tl_setmode __P((struct tl_softc *, int));
|
|
static int tl_calchash __P((unsigned char *));
|
|
static void tl_setmulti __P((struct tl_softc *));
|
|
static void tl_softreset __P((struct tl_csr *, int));
|
|
static int tl_list_rx_init __P((struct tl_softc *));
|
|
static int tl_list_tx_init __P((struct tl_softc *));
|
|
|
|
/*
|
|
* ThunderLAN adapters typically have a serial EEPROM containing
|
|
* configuration information. The main reason we're interested in
|
|
* it is because it also contains the adapters's station address.
|
|
*
|
|
* Access to the EEPROM is a bit goofy since it is a serial device:
|
|
* you have to do reads and writes one bit at a time. The state of
|
|
* the DATA bit can only change while the CLOCK line is held low.
|
|
* Transactions work basically like this:
|
|
*
|
|
* 1) Send the EEPROM_START sequence to prepare the EEPROM for
|
|
* accepting commands. This pulls the clock high, sets
|
|
* the data bit to 0, enables transmission to the EEPROM,
|
|
* pulls the data bit up to 1, then pulls the clock low.
|
|
* The idea is to do a 0 to 1 transition of the data bit
|
|
* while the clock pin is held high.
|
|
*
|
|
* 2) To write a bit to the EEPROM, set the TXENABLE bit, then
|
|
* set the EDATA bit to send a 1 or clear it to send a 0.
|
|
* Finally, set and then clear ECLOK. Strobing the clock
|
|
* transmits the bit. After 8 bits have been written, the
|
|
* EEPROM should respond with an ACK, which should be read.
|
|
*
|
|
* 3) To read a bit from the EEPROM, clear the TXENABLE bit,
|
|
* then set ECLOK. The bit can then be read by reading EDATA.
|
|
* ECLOCK should then be cleared again. This can be repeated
|
|
* 8 times to read a whole byte, after which the
|
|
*
|
|
* 4) We need to send the address byte to the EEPROM. For this
|
|
* we have to send the write control byte to the EEPROM to
|
|
* tell it to accept data. The byte is 0xA0. The EEPROM should
|
|
* ack this. The address byte can be send after that.
|
|
*
|
|
* 5) Now we have to tell the EEPROM to send us data. For that we
|
|
* have to transmit the read control byte, which is 0xA1. This
|
|
* byte should also be acked. We can then read the data bits
|
|
* from the EEPROM.
|
|
*
|
|
* 6) When we're all finished, send the EEPROM_STOP sequence.
|
|
*
|
|
* Note that we use the ThunderLAN's NetSio register to access the
|
|
* EEPROM, however there is an alternate method. There is a PCI NVRAM
|
|
* register at PCI offset 0xB4 which can also be used with minor changes.
|
|
* The difference is that access to PCI registers via pci_conf_read()
|
|
* and pci_conf_write() is done using programmed I/O, which we want to
|
|
* avoid.
|
|
*/
|
|
|
|
/*
|
|
* Note that EEPROM_START leaves transmission enabled.
|
|
*/
|
|
#define EEPROM_START \
|
|
DIO_SEL(TL_NETSIO); \
|
|
DIO_BYTE1_SET(TL_SIO_ECLOK); /* Pull clock pin high */ \
|
|
DIO_BYTE1_SET(TL_SIO_EDATA); /* Set DATA bit to 1 */ \
|
|
DIO_BYTE1_SET(TL_SIO_ETXEN); /* Enable xmit to write bit */ \
|
|
DIO_BYTE1_CLR(TL_SIO_EDATA); /* Pull DATA bit to 0 again */ \
|
|
DIO_BYTE1_CLR(TL_SIO_ECLOK); /* Pull clock low again */
|
|
|
|
/*
|
|
* EEPROM_STOP ends access to the EEPROM and clears the ETXEN bit so
|
|
* that no further data can be written to the EEPROM I/O pin.
|
|
*/
|
|
#define EEPROM_STOP \
|
|
DIO_SEL(TL_NETSIO); \
|
|
DIO_BYTE1_CLR(TL_SIO_ETXEN); /* Disable xmit */ \
|
|
DIO_BYTE1_CLR(TL_SIO_EDATA); /* Pull DATA to 0 */ \
|
|
DIO_BYTE1_SET(TL_SIO_ECLOK); /* Pull clock high */ \
|
|
DIO_BYTE1_SET(TL_SIO_ETXEN); /* Enable xmit */ \
|
|
DIO_BYTE1_SET(TL_SIO_EDATA); /* Toggle DATA to 1 */ \
|
|
DIO_BYTE1_CLR(TL_SIO_ETXEN); /* Disable xmit. */ \
|
|
DIO_BYTE1_CLR(TL_SIO_ECLOK); /* Pull clock low again */
|
|
|
|
/*
|
|
* Send an instruction or address to the EEPROM, check for ACK.
|
|
*/
|
|
static u_int8_t tl_eeprom_putbyte(csr, byte)
|
|
struct tl_csr *csr;
|
|
u_int8_t byte;
|
|
{
|
|
register int i, ack = 0;
|
|
|
|
/*
|
|
* Make sure we're in TX mode.
|
|
*/
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_SET(TL_SIO_ETXEN);
|
|
|
|
/*
|
|
* Feed in each bit and stobe the clock.
|
|
*/
|
|
for (i = 0x80; i; i >>= 1) {
|
|
DIO_SEL(TL_NETSIO);
|
|
if (byte & i) {
|
|
DIO_BYTE1_SET(TL_SIO_EDATA);
|
|
} else {
|
|
DIO_BYTE1_CLR(TL_SIO_EDATA);
|
|
}
|
|
DIO_BYTE1_SET(TL_SIO_ECLOK);
|
|
DIO_BYTE1_CLR(TL_SIO_ECLOK);
|
|
}
|
|
|
|
/*
|
|
* Turn off TX mode.
|
|
*/
|
|
DIO_BYTE1_CLR(TL_SIO_ETXEN);
|
|
|
|
/*
|
|
* Check for ack.
|
|
*/
|
|
DIO_BYTE1_SET(TL_SIO_ECLOK);
|
|
ack = DIO_BYTE1_GET(TL_SIO_EDATA);
|
|
DIO_BYTE1_CLR(TL_SIO_ECLOK);
|
|
|
|
return(ack);
|
|
}
|
|
|
|
/*
|
|
* Read a byte of data stored in the EEPROM at address 'addr.'
|
|
*/
|
|
static u_int8_t tl_eeprom_getbyte(csr, addr, dest)
|
|
struct tl_csr *csr;
|
|
u_int8_t addr;
|
|
u_int8_t *dest;
|
|
{
|
|
register int i;
|
|
u_int8_t byte = 0;
|
|
|
|
EEPROM_START;
|
|
/*
|
|
* Send write control code to EEPROM.
|
|
*/
|
|
if (tl_eeprom_putbyte(csr, EEPROM_CTL_WRITE))
|
|
return(1);
|
|
|
|
/*
|
|
* Send address of byte we want to read.
|
|
*/
|
|
if (tl_eeprom_putbyte(csr, addr))
|
|
return(1);
|
|
|
|
EEPROM_STOP;
|
|
EEPROM_START;
|
|
/*
|
|
* Send read control code to EEPROM.
|
|
*/
|
|
if (tl_eeprom_putbyte(csr, EEPROM_CTL_READ))
|
|
return(1);
|
|
|
|
/*
|
|
* Start reading bits from EEPROM.
|
|
*/
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_CLR(TL_SIO_ETXEN);
|
|
for (i = 0x80; i; i >>= 1) {
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_SET(TL_SIO_ECLOK);
|
|
if (DIO_BYTE1_GET(TL_SIO_EDATA))
|
|
byte |= i;
|
|
DIO_BYTE1_CLR(TL_SIO_ECLOK);
|
|
DELAY(1);
|
|
}
|
|
|
|
EEPROM_STOP;
|
|
|
|
/*
|
|
* No ACK generated for read, so just return byte.
|
|
*/
|
|
|
|
*dest = byte;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void tl_mii_sync(csr)
|
|
struct tl_csr *csr;
|
|
{
|
|
register int i;
|
|
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_CLR(TL_SIO_MTXEN);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
DIO_BYTE1_SET(TL_SIO_MCLK);
|
|
DIO_BYTE1_CLR(TL_SIO_MCLK);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void tl_mii_send(csr, bits, cnt)
|
|
struct tl_csr *csr;
|
|
u_int32_t bits;
|
|
int cnt;
|
|
{
|
|
int i;
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
|
|
DIO_BYTE1_CLR(TL_SIO_MCLK);
|
|
if (bits & i) {
|
|
DIO_BYTE1_SET(TL_SIO_MDATA);
|
|
} else {
|
|
DIO_BYTE1_CLR(TL_SIO_MDATA);
|
|
}
|
|
DIO_BYTE1_SET(TL_SIO_MCLK);
|
|
}
|
|
}
|
|
|
|
static int tl_mii_readreg(csr, frame)
|
|
struct tl_csr *csr;
|
|
struct tl_mii_frame *frame;
|
|
|
|
{
|
|
int i, ack, s;
|
|
int minten = 0;
|
|
|
|
s = splimp();
|
|
|
|
tl_mii_sync(csr);
|
|
|
|
/*
|
|
* Set up frame for RX.
|
|
*/
|
|
frame->mii_stdelim = TL_MII_STARTDELIM;
|
|
frame->mii_opcode = TL_MII_READOP;
|
|
frame->mii_turnaround = 0;
|
|
frame->mii_data = 0;
|
|
|
|
/*
|
|
* Select the NETSIO register. We will be using it
|
|
* to communicate indirectly with the MII.
|
|
*/
|
|
|
|
DIO_SEL(TL_NETSIO);
|
|
|
|
/*
|
|
* Turn off MII interrupt by forcing MINTEN low.
|
|
*/
|
|
minten = DIO_BYTE1_GET(TL_SIO_MINTEN);
|
|
if (minten) {
|
|
DIO_BYTE1_CLR(TL_SIO_MINTEN);
|
|
}
|
|
|
|
/*
|
|
* Turn on data xmit.
|
|
*/
|
|
DIO_BYTE1_SET(TL_SIO_MTXEN);
|
|
|
|
/*
|
|
* Send command/address info.
|
|
*/
|
|
tl_mii_send(csr, frame->mii_stdelim, 2);
|
|
tl_mii_send(csr, frame->mii_opcode, 2);
|
|
tl_mii_send(csr, frame->mii_phyaddr, 5);
|
|
tl_mii_send(csr, frame->mii_regaddr, 5);
|
|
|
|
/*
|
|
* Turn off xmit.
|
|
*/
|
|
DIO_BYTE1_CLR(TL_SIO_MTXEN);
|
|
|
|
/* Idle bit */
|
|
DIO_BYTE1_CLR(TL_SIO_MCLK);
|
|
DIO_BYTE1_SET(TL_SIO_MCLK);
|
|
|
|
/* Check for ack */
|
|
DIO_BYTE1_CLR(TL_SIO_MCLK);
|
|
ack = DIO_BYTE1_GET(TL_SIO_MDATA);
|
|
|
|
/* Complete the cycle */
|
|
DIO_BYTE1_SET(TL_SIO_MCLK);
|
|
|
|
/*
|
|
* Now try reading data bits. If the ack failed, we still
|
|
* need to clock through 16 cycles to keep the PHYs in sync.
|
|
*/
|
|
if (ack) {
|
|
for(i = 0; i < 16; i++) {
|
|
DIO_BYTE1_CLR(TL_SIO_MCLK);
|
|
DIO_BYTE1_SET(TL_SIO_MCLK);
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
DIO_BYTE1_CLR(TL_SIO_MCLK);
|
|
if (!ack) {
|
|
if (DIO_BYTE1_GET(TL_SIO_MDATA))
|
|
frame->mii_data |= i;
|
|
}
|
|
DIO_BYTE1_SET(TL_SIO_MCLK);
|
|
}
|
|
|
|
fail:
|
|
|
|
DIO_BYTE1_CLR(TL_SIO_MCLK);
|
|
DIO_BYTE1_SET(TL_SIO_MCLK);
|
|
|
|
/* Reenable interrupts */
|
|
if (minten) {
|
|
DIO_BYTE1_SET(TL_SIO_MINTEN);
|
|
}
|
|
|
|
splx(s);
|
|
|
|
if (ack)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
static int tl_mii_writereg(csr, frame)
|
|
struct tl_csr *csr;
|
|
struct tl_mii_frame *frame;
|
|
|
|
{
|
|
int s;
|
|
int minten;
|
|
|
|
tl_mii_sync(csr);
|
|
|
|
s = splimp();
|
|
/*
|
|
* Set up frame for TX.
|
|
*/
|
|
|
|
frame->mii_stdelim = TL_MII_STARTDELIM;
|
|
frame->mii_opcode = TL_MII_WRITEOP;
|
|
frame->mii_turnaround = TL_MII_TURNAROUND;
|
|
|
|
/*
|
|
* Select the NETSIO register. We will be using it
|
|
* to communicate indirectly with the MII.
|
|
*/
|
|
|
|
DIO_SEL(TL_NETSIO);
|
|
|
|
/*
|
|
* Turn off MII interrupt by forcing MINTEN low.
|
|
*/
|
|
minten = DIO_BYTE1_GET(TL_SIO_MINTEN);
|
|
if (minten) {
|
|
DIO_BYTE1_CLR(TL_SIO_MINTEN);
|
|
}
|
|
|
|
/*
|
|
* Turn on data output.
|
|
*/
|
|
DIO_BYTE1_SET(TL_SIO_MTXEN);
|
|
|
|
tl_mii_send(csr, frame->mii_stdelim, 2);
|
|
tl_mii_send(csr, frame->mii_opcode, 2);
|
|
tl_mii_send(csr, frame->mii_phyaddr, 5);
|
|
tl_mii_send(csr, frame->mii_regaddr, 5);
|
|
tl_mii_send(csr, frame->mii_turnaround, 2);
|
|
tl_mii_send(csr, frame->mii_data, 16);
|
|
|
|
DIO_BYTE1_SET(TL_SIO_MCLK);
|
|
DIO_BYTE1_CLR(TL_SIO_MCLK);
|
|
|
|
/*
|
|
* Turn off xmit.
|
|
*/
|
|
DIO_BYTE1_CLR(TL_SIO_MTXEN);
|
|
|
|
/* Reenable interrupts */
|
|
if (minten)
|
|
DIO_BYTE1_SET(TL_SIO_MINTEN);
|
|
|
|
splx(s);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static u_int16_t tl_phy_readreg(sc, reg)
|
|
struct tl_softc *sc;
|
|
int reg;
|
|
{
|
|
struct tl_mii_frame frame;
|
|
struct tl_csr *csr;
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
csr = sc->csr;
|
|
|
|
frame.mii_phyaddr = sc->tl_phy_addr;
|
|
frame.mii_regaddr = reg;
|
|
tl_mii_readreg(sc->csr, &frame);
|
|
|
|
/* Reenable MII interrupts, just in case. */
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_SET(TL_SIO_MINTEN);
|
|
|
|
return(frame.mii_data);
|
|
}
|
|
|
|
static void tl_phy_writereg(sc, reg, data)
|
|
struct tl_softc *sc;
|
|
u_int16_t reg;
|
|
u_int16_t data;
|
|
{
|
|
struct tl_mii_frame frame;
|
|
struct tl_csr *csr;
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
csr = sc->csr;
|
|
frame.mii_phyaddr = sc->tl_phy_addr;
|
|
frame.mii_regaddr = reg;
|
|
frame.mii_data = data;
|
|
|
|
tl_mii_writereg(sc->csr, &frame);
|
|
|
|
/* Reenable MII interrupts, just in case. */
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_SET(TL_SIO_MINTEN);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of bytes from the EEPROM.
|
|
*/
|
|
static int tl_read_eeprom(csr, dest, off, cnt)
|
|
struct tl_csr *csr;
|
|
caddr_t dest;
|
|
int off;
|
|
int cnt;
|
|
{
|
|
int err = 0, i;
|
|
u_int8_t byte = 0;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
err = tl_eeprom_getbyte(csr, off + i, &byte);
|
|
if (err)
|
|
break;
|
|
*(dest + i) = byte;
|
|
}
|
|
|
|
return(err ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* Initiate autonegotiation with a link partner.
|
|
*
|
|
* Note that the Texas Instruments ThunderLAN programmer's guide
|
|
* fails to mention one very important point about autonegotiation.
|
|
* Autonegotiation is done largely by the PHY, independent of the
|
|
* ThunderLAN chip itself: the PHY sets the flags in the BMCR
|
|
* register to indicate what modes were selected and if link status
|
|
* is good. In fact, the PHY does pretty much all of the work itself,
|
|
* except for one small detail.
|
|
*
|
|
* The PHY may negotiate a full-duplex of half-duplex link, and set
|
|
* the PHY_BMCR_DUPLEX bit accordingly, but the ThunderLAN's 'NetCommand'
|
|
* register _also_ has a half-duplex/full-duplex bit, and you MUST ALSO
|
|
* SET THIS BIT MANUALLY TO CORRESPOND TO THE MODE SELECTED FOR THE PHY!
|
|
* In other words, both the ThunderLAN chip and the PHY have to be
|
|
* programmed for full-duplex mode in order for full-duplex to actually
|
|
* work. So in order for autonegotiation to really work right, we have
|
|
* to wait for the link to come up, check the BMCR register, then set
|
|
* the ThunderLAN for full or half-duplex as needed.
|
|
*
|
|
* I struggled for two days to figure this out, so I'm making a point
|
|
* of drawing attention to this fact. I think it's very strange that
|
|
* the ThunderLAN doesn't automagically track the duplex state of the
|
|
* PHY, but there you have it.
|
|
*
|
|
* Also when, using a National Semiconductor DP83840A PHY, we have to
|
|
* allow a full three seconds for autonegotiation to complete. So what
|
|
* we do is flip the autonegotiation restart bit, then set a timeout
|
|
* to wake us up in three seconds to check the link state.
|
|
*/
|
|
static void tl_autoneg(sc, flag, verbose)
|
|
struct tl_softc *sc;
|
|
int flag;
|
|
int verbose;
|
|
{
|
|
u_int16_t phy_sts = 0, media = 0;
|
|
struct ifnet *ifp;
|
|
struct ifmedia *ifm;
|
|
struct tl_csr *csr;
|
|
|
|
ifm = &sc->ifmedia;
|
|
ifp = &sc->arpcom.ac_if;
|
|
csr = sc->csr;
|
|
|
|
/*
|
|
* First, see if autoneg is supported. If not, there's
|
|
* no point in continuing.
|
|
*/
|
|
phy_sts = tl_phy_readreg(sc, PHY_BMSR);
|
|
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
|
|
if (verbose)
|
|
printf("tl%d: autonegotiation not supported\n",
|
|
sc->tl_unit);
|
|
return;
|
|
}
|
|
|
|
switch (flag) {
|
|
case TL_FLAG_FORCEDELAY:
|
|
/*
|
|
* XXX Never use this option anywhere but in the probe
|
|
* routine: making the kernel stop dead in its tracks
|
|
* for three whole seconds after we've gone multi-user
|
|
* is really bad manners.
|
|
*/
|
|
phy_sts = tl_phy_readreg(sc, PHY_BMCR);
|
|
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
|
|
tl_phy_writereg(sc, PHY_BMCR, phy_sts);
|
|
DELAY(3000000);
|
|
break;
|
|
case TL_FLAG_SCHEDDELAY:
|
|
phy_sts = tl_phy_readreg(sc, PHY_BMCR);
|
|
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
|
|
tl_phy_writereg(sc, PHY_BMCR, phy_sts);
|
|
ifp->if_timer = 3;
|
|
sc->tl_autoneg = 1;
|
|
return;
|
|
case TL_FLAG_DELAYTIMEO:
|
|
ifp->if_timer = 0;
|
|
sc->tl_autoneg = 0;
|
|
break;
|
|
default:
|
|
printf("tl%d: invalid autoneg flag: %d\n", flag, sc->tl_unit);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read the BMSR register twice: the LINKSTAT bit is a
|
|
* latching bit.
|
|
*/
|
|
tl_phy_readreg(sc, PHY_BMSR);
|
|
phy_sts = tl_phy_readreg(sc, PHY_BMSR);
|
|
if (phy_sts & PHY_BMSR_AUTONEGCOMP) {
|
|
if (verbose)
|
|
printf("tl%d: autoneg complete, ", sc->tl_unit);
|
|
phy_sts = tl_phy_readreg(sc, PHY_BMSR);
|
|
} else {
|
|
if (verbose)
|
|
printf("tl%d: autoneg not complete, ", sc->tl_unit);
|
|
}
|
|
|
|
/* Link is good. Report modes and set duplex mode. */
|
|
if (phy_sts & PHY_BMSR_LINKSTAT) {
|
|
if (verbose)
|
|
printf("link status good ");
|
|
media = tl_phy_readreg(sc, PHY_BMCR);
|
|
|
|
/* Set the DUPLEX bit in the NetCmd register accordingly. */
|
|
if (media & PHY_BMCR_DUPLEX) {
|
|
if (verbose)
|
|
printf("(full-duplex, ");
|
|
ifm->ifm_media |= IFM_FDX;
|
|
ifm->ifm_media &= ~IFM_HDX;
|
|
DIO_SEL(TL_NETCMD);
|
|
DIO_BYTE0_SET(TL_CMD_DUPLEX);
|
|
} else {
|
|
if (verbose)
|
|
printf("(half-duplex, ");
|
|
ifm->ifm_media &= ~IFM_FDX;
|
|
ifm->ifm_media |= IFM_HDX;
|
|
DIO_SEL(TL_NETCMD);
|
|
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
|
|
}
|
|
|
|
if (media & PHY_BMCR_SPEEDSEL) {
|
|
if (verbose)
|
|
printf("100Mb/s)\n");
|
|
ifm->ifm_media |= IFM_100_TX;
|
|
ifm->ifm_media &= ~IFM_10_T;
|
|
} else {
|
|
if (verbose)
|
|
printf("10Mb/s)\n");
|
|
ifm->ifm_media &= ~IFM_100_TX;
|
|
ifm->ifm_media |= IFM_10_T;
|
|
}
|
|
|
|
/* Turn off autoneg */
|
|
media &= ~PHY_BMCR_AUTONEGENBL;
|
|
tl_phy_writereg(sc, PHY_BMCR, media);
|
|
} else {
|
|
if (verbose)
|
|
printf("no carrier\n");
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set speed and duplex mode. Also program autoneg advertisements
|
|
* accordingly.
|
|
*/
|
|
static void tl_setmode(sc, media)
|
|
struct tl_softc *sc;
|
|
int media;
|
|
{
|
|
u_int16_t bmcr, anar, ctl;
|
|
struct tl_csr *csr;
|
|
|
|
csr = sc->csr;
|
|
bmcr = tl_phy_readreg(sc, PHY_BMCR);
|
|
anar = tl_phy_readreg(sc, PHY_ANAR);
|
|
ctl = tl_phy_readreg(sc, TL_PHY_CTL);
|
|
DIO_SEL(TL_NETCMD);
|
|
|
|
bmcr &= ~(PHY_BMCR_SPEEDSEL|PHY_BMCR_DUPLEX|PHY_BMCR_AUTONEGENBL|
|
|
PHY_BMCR_LOOPBK);
|
|
anar &= ~(PHY_ANAR_100BT4|PHY_ANAR_100BTXFULL|PHY_ANAR_100BTXHALF|
|
|
PHY_ANAR_10BTFULL|PHY_ANAR_10BTHALF);
|
|
|
|
ctl &= ~PHY_CTL_AUISEL;
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_LOOP)
|
|
bmcr |= PHY_BMCR_LOOPBK;
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_AUTO)
|
|
bmcr |= PHY_BMCR_AUTONEGENBL;
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_5)
|
|
ctl |= PHY_CTL_AUISEL;
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_TX) {
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
bmcr |= PHY_BMCR_DUPLEX;
|
|
anar |= PHY_ANAR_100BTXFULL;
|
|
DIO_BYTE0_SET(TL_CMD_DUPLEX);
|
|
} else if ((media & IFM_GMASK) == IFM_HDX) {
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
anar |= PHY_ANAR_100BTXHALF;
|
|
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
|
|
} else {
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
anar |= PHY_ANAR_100BTXHALF;
|
|
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
|
|
}
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_T) {
|
|
bmcr &= ~PHY_BMCR_SPEEDSEL;
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
bmcr |= PHY_BMCR_DUPLEX;
|
|
anar |= PHY_ANAR_10BTFULL;
|
|
DIO_BYTE0_SET(TL_CMD_DUPLEX);
|
|
} else if ((media & IFM_GMASK) == IFM_HDX) {
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
anar |= PHY_ANAR_10BTHALF;
|
|
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
|
|
} else {
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
anar |= PHY_ANAR_10BTHALF;
|
|
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
|
|
}
|
|
}
|
|
|
|
tl_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
#ifdef notyet
|
|
tl_phy_writereg(sc, PHY_ANAR, anar);
|
|
#endif
|
|
tl_phy_writereg(sc, TL_PHY_CTL, ctl);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Calculate the hash of a MAC address for programming the multicast hash
|
|
* table. This hash is simply the address split into 6-bit chunks
|
|
* XOR'd, e.g.
|
|
* byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
|
|
* bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
|
|
* Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then
|
|
* the folded 24-bit value is split into 6-bit portions and XOR'd.
|
|
*/
|
|
static int tl_calchash(addr)
|
|
unsigned char *addr;
|
|
{
|
|
int t;
|
|
|
|
t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
|
|
(addr[2] ^ addr[5]);
|
|
return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
|
|
}
|
|
|
|
static void tl_setmulti(sc)
|
|
struct tl_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct tl_csr *csr;
|
|
u_int32_t hashes[2] = { 0, 0 };
|
|
int h;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
csr = sc->csr;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
if (sc->arpcom.ac_multicnt > 64 || ifp->if_flags & IFF_ALLMULTI) {
|
|
hashes[0] = 0xFFFFFFFF;
|
|
hashes[1] = 0xFFFFFFFF;
|
|
} else {
|
|
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
|
|
ifma = ifma->ifma_link.le_next) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = tl_calchash(
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
}
|
|
}
|
|
|
|
DIO_SEL(TL_HASH1);
|
|
DIO_LONG_PUT(hashes[0]);
|
|
DIO_SEL(TL_HASH2);
|
|
DIO_LONG_PUT(hashes[1]);
|
|
|
|
return;
|
|
}
|
|
|
|
static void tl_softreset(csr, internal)
|
|
struct tl_csr *csr;
|
|
int internal;
|
|
{
|
|
u_int32_t cmd, dummy;
|
|
|
|
/* Assert the adapter reset bit. */
|
|
csr->tl_host_cmd |= TL_CMD_ADRST;
|
|
/* Turn off interrupts */
|
|
csr->tl_host_cmd |= TL_CMD_INTSOFF;
|
|
|
|
/* First, clear the stats registers. */
|
|
DIO_SEL(TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
|
|
DIO_LONG_GET(dummy);
|
|
DIO_LONG_GET(dummy);
|
|
DIO_LONG_GET(dummy);
|
|
DIO_LONG_GET(dummy);
|
|
DIO_LONG_GET(dummy);
|
|
|
|
/* Clear Areg and Hash registers */
|
|
DIO_SEL(TL_AREG0_B5|TL_DIO_ADDR_INC);
|
|
DIO_LONG_PUT(0x00000000);
|
|
DIO_LONG_PUT(0x00000000);
|
|
DIO_LONG_PUT(0x00000000);
|
|
DIO_LONG_PUT(0x00000000);
|
|
DIO_LONG_PUT(0x00000000);
|
|
DIO_LONG_PUT(0x00000000);
|
|
DIO_LONG_PUT(0x00000000);
|
|
DIO_LONG_PUT(0x00000000);
|
|
|
|
/*
|
|
* Set up Netconfig register. Enable one channel and
|
|
* one fragment mode.
|
|
*/
|
|
DIO_SEL(TL_NETCONFIG);
|
|
DIO_WORD0_SET(TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
|
|
if (internal) {
|
|
DIO_SEL(TL_NETCONFIG);
|
|
DIO_WORD0_SET(TL_CFG_PHYEN);
|
|
} else {
|
|
DIO_SEL(TL_NETCONFIG);
|
|
DIO_WORD0_CLR(TL_CFG_PHYEN);
|
|
}
|
|
|
|
/* Set PCI burst size */
|
|
DIO_SEL(TL_BSIZEREG);
|
|
DIO_BYTE1_SET(0x33);
|
|
|
|
/*
|
|
* Load adapter irq pacing timer and tx threshold.
|
|
* We make the transmit threshold 1 initially but we may
|
|
* change that later.
|
|
*/
|
|
cmd = csr->tl_host_cmd;
|
|
cmd |= TL_CMD_NES;
|
|
cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
|
|
csr->tl_host_cmd = cmd | (TL_CMD_LDTHR | TX_THR);
|
|
csr->tl_host_cmd = cmd | (TL_CMD_LDTMR | 0x00000003);
|
|
|
|
/* Unreset the MII */
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_SET(TL_SIO_NMRST);
|
|
|
|
/* Clear status register */
|
|
DIO_SEL(TL_NETSTS);
|
|
DIO_BYTE2_SET(TL_STS_MIRQ);
|
|
DIO_BYTE2_SET(TL_STS_HBEAT);
|
|
DIO_BYTE2_SET(TL_STS_TXSTOP);
|
|
DIO_BYTE2_SET(TL_STS_RXSTOP);
|
|
|
|
/* Enable network status interrupts for everything. */
|
|
DIO_SEL(TL_NETMASK);
|
|
DIO_BYTE3_SET(TL_MASK_MASK7|TL_MASK_MASK6|
|
|
TL_MASK_MASK5|TL_MASK_MASK4);
|
|
|
|
/* Take the adapter out of reset */
|
|
DIO_SEL(TL_NETCMD);
|
|
DIO_BYTE0_SET(TL_CMD_NRESET|TL_CMD_NWRAP);
|
|
|
|
/* Wait for things to settle down a little. */
|
|
DELAY(500);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
|
|
* against our list and return its name if we find a match. Note that
|
|
* we also save a pointer to the tl_type struct for this card since we
|
|
* will need it for the softc struct and attach routine later.
|
|
*/
|
|
static char *
|
|
tl_probe(config_id, device_id)
|
|
pcici_t config_id;
|
|
pcidi_t device_id;
|
|
{
|
|
struct tl_type *t;
|
|
struct tl_iflist *new;
|
|
|
|
t = tl_devs;
|
|
|
|
while(t->tl_name != NULL) {
|
|
if ((device_id & 0xFFFF) == t->tl_vid &&
|
|
((device_id >> 16) & 0xFFFF) == t->tl_did) {
|
|
new = malloc(sizeof(struct tl_iflist),
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (new == NULL) {
|
|
printf("no memory for controller struct!\n");
|
|
break;
|
|
}
|
|
bzero(new, sizeof(struct tl_iflist));
|
|
new->tl_config_id = config_id;
|
|
new->tl_dinfo = t;
|
|
new->tl_next = tl_iflist;
|
|
tl_iflist = new;
|
|
return(t->tl_name);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* The ThunderLAN controller can support multiple PHYs. Logically,
|
|
* this means we have to be able to deal with each PHY as a separate
|
|
* interface. We therefore consider ThunderLAN devices as follows:
|
|
*
|
|
* o Each ThunderLAN controller device is assigned the name tlcX where
|
|
* X is the controller's unit number. Each ThunderLAN device found
|
|
* is assigned a different number.
|
|
*
|
|
* o Each PHY on each controller is assigned the name tlX. X starts at
|
|
* 0 and is incremented each time an additional PHY is found.
|
|
*
|
|
* So, if you had two dual-channel ThunderLAN cards, you'd have
|
|
* tlc0 and tlc1 (the controllers) and tl0, tl1, tl2, tl3 (the logical
|
|
* interfaces). I think. I'm still not sure how dual chanel controllers
|
|
* work as I've yet to see one.
|
|
*/
|
|
|
|
/*
|
|
* Do the interface setup and attach for a PHY on a particular
|
|
* ThunderLAN chip. Also also set up interrupt vectors.
|
|
*/
|
|
static int tl_attach_phy(csr, tl_unit, eaddr, tl_phy, ilist)
|
|
struct tl_csr *csr;
|
|
int tl_unit;
|
|
char *eaddr;
|
|
int tl_phy;
|
|
struct tl_iflist *ilist;
|
|
{
|
|
struct tl_softc *sc;
|
|
struct ifnet *ifp;
|
|
int phy_ctl;
|
|
struct tl_type *p = tl_phys;
|
|
struct tl_mii_frame frame;
|
|
int i, media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
unsigned int round;
|
|
caddr_t roundptr;
|
|
|
|
if (tl_phy != TL_PHYADDR_MAX)
|
|
tl_softreset(csr, 0);
|
|
|
|
/* Reset the PHY again, just in case. */
|
|
bzero((char *)&frame, sizeof(frame));
|
|
frame.mii_phyaddr = tl_phy;
|
|
frame.mii_regaddr = TL_PHY_GENCTL;
|
|
frame.mii_data = PHY_BMCR_RESET;
|
|
tl_mii_writereg(csr, &frame);
|
|
DELAY(500);
|
|
frame.mii_data = 0;
|
|
|
|
/* First, allocate memory for the softc struct. */
|
|
sc = malloc(sizeof(struct tl_softc), M_DEVBUF, M_NOWAIT);
|
|
if (sc == NULL) {
|
|
printf("tlc%d: no memory for softc struct!\n", ilist->tlc_unit);
|
|
return(1);
|
|
}
|
|
|
|
bzero(sc, sizeof(struct tl_softc));
|
|
|
|
/*
|
|
* Now allocate memory for the TX and RX lists. Note that
|
|
* we actually allocate 8 bytes more than we really need:
|
|
* this is because we need to adjust the final address to
|
|
* be aligned on a quadword (64-bit) boundary in order to
|
|
* make the chip happy. If the list structures aren't properly
|
|
* aligned, DMA fails and the chip generates an adapter check
|
|
* interrupt and has to be reset. If you set up the softc struct
|
|
* just right you can sort of obtain proper alignment 'by chance.'
|
|
* But I don't want to depend on this, so instead the alignment
|
|
* is forced here.
|
|
*/
|
|
sc->tl_ldata_ptr = malloc(sizeof(struct tl_list_data) + 8,
|
|
M_DEVBUF, M_NOWAIT);
|
|
|
|
if (sc->tl_ldata_ptr == NULL) {
|
|
free(sc, M_DEVBUF);
|
|
printf("tlc%d: no memory for list buffers!\n", ilist->tlc_unit);
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* Convoluted but satisfies my ANSI sensibilities. GCC lets
|
|
* you do casts on the LHS of an assignment, but ANSI doesn't
|
|
* allow that.
|
|
*/
|
|
sc->tl_ldata = (struct tl_list_data *)sc->tl_ldata_ptr;
|
|
round = (unsigned int)sc->tl_ldata_ptr & 0xF;
|
|
roundptr = sc->tl_ldata_ptr;
|
|
for (i = 0; i < 8; i++) {
|
|
if (round % 8) {
|
|
round++;
|
|
roundptr++;
|
|
} else
|
|
break;
|
|
}
|
|
sc->tl_ldata = (struct tl_list_data *)roundptr;
|
|
|
|
bzero(sc->tl_ldata, sizeof(struct tl_list_data));
|
|
|
|
sc->csr = csr;
|
|
sc->tl_dinfo = ilist->tl_dinfo;
|
|
sc->tl_ctlr = ilist->tlc_unit;
|
|
sc->tl_unit = tl_unit;
|
|
sc->tl_phy_addr = tl_phy;
|
|
sc->tl_iflist = ilist;
|
|
callout_handle_init(&sc->tl_stat_ch);
|
|
|
|
frame.mii_regaddr = TL_PHY_VENID;
|
|
tl_mii_readreg(csr, &frame);
|
|
sc->tl_phy_vid = frame.mii_data;
|
|
|
|
frame.mii_regaddr = TL_PHY_DEVID;
|
|
tl_mii_readreg(csr, &frame);
|
|
sc->tl_phy_did = frame.mii_data;
|
|
|
|
frame.mii_regaddr = TL_PHY_GENSTS;
|
|
tl_mii_readreg(csr, &frame);
|
|
sc->tl_phy_sts = frame.mii_data;
|
|
|
|
frame.mii_regaddr = TL_PHY_GENCTL;
|
|
tl_mii_readreg(csr, &frame);
|
|
phy_ctl = frame.mii_data;
|
|
|
|
/*
|
|
* PHY revision numbers tend to vary a bit. Our algorithm here
|
|
* is to check everything but the 8 least significant bits.
|
|
*/
|
|
while(p->tl_vid) {
|
|
if (sc->tl_phy_vid == p->tl_vid &&
|
|
(sc->tl_phy_did | 0x000F) == p->tl_did) {
|
|
sc->tl_pinfo = p;
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
if (sc->tl_pinfo == NULL) {
|
|
sc->tl_pinfo = &tl_phys[PHY_UNKNOWN];
|
|
}
|
|
|
|
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_unit = tl_unit;
|
|
ifp->if_name = "tl";
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = tl_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = tl_start;
|
|
ifp->if_watchdog = tl_watchdog;
|
|
ifp->if_init = tl_init;
|
|
|
|
if (sc->tl_phy_sts & PHY_BMSR_100BT4 ||
|
|
sc->tl_phy_sts & PHY_BMSR_100BTXFULL ||
|
|
sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
|
|
ifp->if_baudrate = 100000000;
|
|
else
|
|
ifp->if_baudrate = 10000000;
|
|
|
|
ilist->tl_sc[tl_phy] = sc;
|
|
|
|
printf("tl%d at tlc%d physical interface %d\n", ifp->if_unit,
|
|
sc->tl_ctlr,
|
|
sc->tl_phy_addr);
|
|
|
|
printf("tl%d: %s ", ifp->if_unit, sc->tl_pinfo->tl_name);
|
|
|
|
if (sc->tl_phy_sts & PHY_BMSR_100BT4 ||
|
|
sc->tl_phy_sts & PHY_BMSR_100BTXHALF ||
|
|
sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
|
|
printf("10/100Mbps ");
|
|
else {
|
|
media &= ~IFM_100_TX;
|
|
media |= IFM_10_T;
|
|
printf("10Mbps ");
|
|
}
|
|
|
|
if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL ||
|
|
sc->tl_phy_sts & PHY_BMSR_10BTFULL)
|
|
printf("full duplex ");
|
|
else {
|
|
printf("half duplex ");
|
|
media &= ~IFM_FDX;
|
|
}
|
|
|
|
if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG) {
|
|
media = IFM_ETHER|IFM_AUTO;
|
|
printf("autonegotiating\n");
|
|
} else
|
|
printf("\n");
|
|
|
|
/* If this isn't a known PHY, print the PHY indentifier info. */
|
|
if (sc->tl_pinfo->tl_vid == 0)
|
|
printf("tl%d: vendor id: %04x product id: %04x\n",
|
|
sc->tl_unit, sc->tl_phy_vid, sc->tl_phy_did);
|
|
|
|
/* Set up ifmedia data and callbacks. */
|
|
ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
|
|
|
|
/*
|
|
* All ThunderLANs support at least 10baseT half duplex.
|
|
* They also support AUI selection if used in 10Mb/s modes.
|
|
* They all also support a loopback mode.
|
|
*/
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_LOOP, 0, NULL);
|
|
|
|
/* Some ThunderLAN PHYs support autonegotiation. */
|
|
if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG)
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
|
|
/* Some support 10baseT full duplex. */
|
|
if (sc->tl_phy_sts & PHY_BMSR_10BTFULL)
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
|
|
|
|
/* Some support 100BaseTX half duplex. */
|
|
if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
|
|
if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
|
|
|
|
/* Some support 100BaseTX full duplex. */
|
|
if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL)
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
|
|
|
|
/* Some also support 100BaseT4. */
|
|
if (sc->tl_phy_sts & PHY_BMSR_100BT4)
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
|
|
|
|
/* Set default media. */
|
|
ifmedia_set(&sc->ifmedia, media);
|
|
|
|
/*
|
|
* Kick off an autonegotiation session if this PHY supports it.
|
|
* This is necessary to make sure the chip's duplex mode matches
|
|
* the PHY's duplex mode. It may not: once enabled, the PHY may
|
|
* autonegotiate full-duplex mode with its link partner, but the
|
|
* ThunderLAN chip defaults to half-duplex and stays there unless
|
|
* told otherwise.
|
|
*/
|
|
if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG)
|
|
tl_autoneg(sc, TL_FLAG_FORCEDELAY, 0);
|
|
|
|
/*
|
|
* Call MI attach routines.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
tl_attach_ctlr(config_id, unit)
|
|
pcici_t config_id;
|
|
int unit;
|
|
{
|
|
int s, i, phys = 0;
|
|
vm_offset_t pbase, vbase;
|
|
struct tl_csr *csr;
|
|
char eaddr[ETHER_ADDR_LEN];
|
|
struct tl_mii_frame frame;
|
|
u_int32_t command;
|
|
struct tl_iflist *ilist;
|
|
|
|
s = splimp();
|
|
|
|
for (ilist = tl_iflist; ilist != NULL; ilist = ilist->tl_next)
|
|
if (ilist->tl_config_id == config_id)
|
|
break;
|
|
|
|
if (ilist == NULL) {
|
|
printf("couldn't match config id with controller struct\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG,
|
|
PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
|
|
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
|
|
|
if (!(command & PCIM_CMD_MEMEN)) {
|
|
printf("tlc%d: failed to enable memory mapping!\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
if (!pci_map_mem(config_id, TL_PCI_LOMEM, &vbase, &pbase)) {
|
|
printf ("tlc%d: couldn't map memory\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
csr = (struct tl_csr *)vbase;
|
|
|
|
ilist->csr = csr;
|
|
ilist->tl_active_phy = TL_PHYS_IDLE;
|
|
ilist->tlc_unit = unit;
|
|
|
|
/* Allocate interrupt */
|
|
if (!pci_map_int(config_id, tl_intr, ilist, &net_imask)) {
|
|
printf("tlc%d: couldn't map interrupt\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
tl_softreset(csr, 1);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
if (tl_read_eeprom(csr, (caddr_t)&eaddr,
|
|
TL_EEPROM_EADDR, ETHER_ADDR_LEN)) {
|
|
printf("tlc%d: failed to read station address\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* A ThunderLAN chip was detected. Inform the world.
|
|
*/
|
|
printf("tlc%d: Ethernet address: %6D\n", unit, eaddr, ":");
|
|
|
|
/*
|
|
* Now attach the ThunderLAN's PHYs. There will always
|
|
* be at least one PHY; if the PHY address is 0x1F, then
|
|
* it's the internal one. If we encounter a lower numbered
|
|
* PHY, we ignore the internal once since enabling the
|
|
* internal PHY disables the external one.
|
|
*/
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
for (i = TL_PHYADDR_MIN; i < TL_PHYADDR_MAX + 1; i++) {
|
|
frame.mii_phyaddr = i;
|
|
frame.mii_regaddr = TL_PHY_GENCTL;
|
|
frame.mii_data = PHY_BMCR_RESET;
|
|
tl_mii_writereg(csr, &frame);
|
|
DELAY(500);
|
|
while(frame.mii_data & PHY_BMCR_RESET)
|
|
tl_mii_readreg(csr, &frame);
|
|
frame.mii_regaddr = TL_PHY_VENID;
|
|
frame.mii_data = 0;
|
|
tl_mii_readreg(csr, &frame);
|
|
if (!frame.mii_data)
|
|
continue;
|
|
if (tl_attach_phy(csr, phys, eaddr, i, ilist)) {
|
|
printf("tlc%d: failed to attach interface %d\n",
|
|
unit, i);
|
|
goto fail;
|
|
}
|
|
phys++;
|
|
if (phys && i != TL_PHYADDR_MAX)
|
|
break;
|
|
}
|
|
|
|
if (!phys) {
|
|
printf("tlc%d: no physical interfaces attached!\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
at_shutdown(tl_shutdown, ilist, SHUTDOWN_POST_SYNC);
|
|
|
|
fail:
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit lists.
|
|
*/
|
|
static int tl_list_tx_init(sc)
|
|
struct tl_softc *sc;
|
|
{
|
|
struct tl_chain_data *cd;
|
|
struct tl_list_data *ld;
|
|
int i;
|
|
|
|
cd = &sc->tl_cdata;
|
|
ld = sc->tl_ldata;
|
|
for (i = 0; i < TL_TX_LIST_CNT; i++) {
|
|
cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
|
|
if (i == (TL_TX_LIST_CNT - 1))
|
|
cd->tl_tx_chain[i].tl_next = NULL;
|
|
else
|
|
cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
|
|
}
|
|
|
|
cd->tl_tx_free = &cd->tl_tx_chain[0];
|
|
cd->tl_tx_tail = cd->tl_tx_head = NULL;
|
|
sc->tl_txeoc = 1;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Initialize the RX lists and allocate mbufs for them.
|
|
*/
|
|
static int tl_list_rx_init(sc)
|
|
struct tl_softc *sc;
|
|
{
|
|
struct tl_chain_data *cd;
|
|
struct tl_list_data *ld;
|
|
int i;
|
|
|
|
cd = &sc->tl_cdata;
|
|
ld = sc->tl_ldata;
|
|
|
|
for (i = 0; i < TL_TX_LIST_CNT; i++) {
|
|
cd->tl_rx_chain[i].tl_ptr =
|
|
(struct tl_list *)&ld->tl_rx_list[i];
|
|
tl_newbuf(sc, &cd->tl_rx_chain[i]);
|
|
if (i == (TL_TX_LIST_CNT - 1)) {
|
|
cd->tl_rx_chain[i].tl_next = NULL;
|
|
ld->tl_rx_list[i].tlist_fptr = 0;
|
|
} else {
|
|
cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
|
|
ld->tl_rx_list[i].tlist_fptr =
|
|
vtophys(&ld->tl_rx_list[i + 1]);
|
|
}
|
|
}
|
|
|
|
cd->tl_rx_head = &cd->tl_rx_chain[0];
|
|
cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int tl_newbuf(sc, c)
|
|
struct tl_softc *sc;
|
|
struct tl_chain *c;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("tl%d: no memory for rx list",
|
|
sc->tl_unit);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
printf("tl%d: no memory for rx list", sc->tl_unit);
|
|
m_freem(m_new);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
c->tl_mbuf = m_new;
|
|
c->tl_next = NULL;
|
|
c->tl_ptr->tlist_frsize = MCLBYTES;
|
|
c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
|
|
c->tl_ptr->tlist_fptr = 0;
|
|
c->tl_ptr->tl_frag[0].tlist_dadr = vtophys(mtod(m_new, caddr_t));
|
|
c->tl_ptr->tl_frag[0].tlist_dcnt = MCLBYTES;
|
|
|
|
return(0);
|
|
}
|
|
/*
|
|
* Interrupt handler for RX 'end of frame' condition (EOF). This
|
|
* tells us that a full ethernet frame has been captured and we need
|
|
* to handle it.
|
|
*
|
|
* Reception is done using 'lists' which consist of a header and a
|
|
* series of 10 data count/data address pairs that point to buffers.
|
|
* Initially you're supposed to create a list, populate it with pointers
|
|
* to buffers, then load the physical address of the list into the
|
|
* ch_parm register. The adapter is then supposed to DMA the received
|
|
* frame into the buffers for you.
|
|
*
|
|
* To make things as fast as possible, we have the chip DMA directly
|
|
* into mbufs. This saves us from having to do a buffer copy: we can
|
|
* just hand the mbufs directly to ether_input(). Once the frame has
|
|
* been sent on its way, the 'list' structure is assigned a new buffer
|
|
* and moved to the end of the RX chain. As long we we stay ahead of
|
|
* the chip, it will always think it has an endless receive channel.
|
|
*
|
|
* If we happen to fall behind and the chip manages to fill up all of
|
|
* the buffers, it will generate an end of channel interrupt and wait
|
|
* for us to empty the chain and restart the receiver.
|
|
*/
|
|
static int tl_intvec_rxeof(xsc, type)
|
|
void *xsc;
|
|
u_int32_t type;
|
|
{
|
|
struct tl_softc *sc;
|
|
int r = 0, total_len = 0;
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct tl_chain *cur_rx;
|
|
|
|
sc = xsc;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
while(sc->tl_cdata.tl_rx_head->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP){
|
|
r++;
|
|
cur_rx = sc->tl_cdata.tl_rx_head;
|
|
sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
|
|
m = cur_rx->tl_mbuf;
|
|
total_len = cur_rx->tl_ptr->tlist_frsize;
|
|
|
|
tl_newbuf(sc, cur_rx);
|
|
|
|
sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
|
|
vtophys(cur_rx->tl_ptr);
|
|
sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
|
|
sc->tl_cdata.tl_rx_tail = cur_rx;
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Handle BPF listeners. Let the BPF user see the packet, but
|
|
* don't pass it up to the ether_input() layer unless it's
|
|
* a broadcast packet, multicast packet, matches our ethernet
|
|
* address or the interface is in promiscuous mode. If we don't
|
|
* want the packet, just forget it. We leave the mbuf in place
|
|
* since it can be used again later.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
bpf_mtap(ifp, m);
|
|
if (ifp->if_flags & IFF_PROMISC &&
|
|
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
|
|
ETHER_ADDR_LEN) &&
|
|
(eh->ether_dhost[0] & 1) == 0)) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
/* Remove header from mbuf and pass it on. */
|
|
m->m_pkthdr.len = m->m_len =
|
|
total_len - sizeof(struct ether_header);
|
|
m->m_data += sizeof(struct ether_header);
|
|
ether_input(ifp, eh, m);
|
|
}
|
|
|
|
return(r);
|
|
}
|
|
|
|
/*
|
|
* The RX-EOC condition hits when the ch_parm address hasn't been
|
|
* initialized or the adapter reached a list with a forward pointer
|
|
* of 0 (which indicates the end of the chain). In our case, this means
|
|
* the card has hit the end of the receive buffer chain and we need to
|
|
* empty out the buffers and shift the pointer back to the beginning again.
|
|
*/
|
|
static int tl_intvec_rxeoc(xsc, type)
|
|
void *xsc;
|
|
u_int32_t type;
|
|
{
|
|
struct tl_softc *sc;
|
|
int r;
|
|
|
|
sc = xsc;
|
|
|
|
/* Flush out the receive queue and ack RXEOF interrupts. */
|
|
r = tl_intvec_rxeof(xsc, type);
|
|
sc->csr->tl_host_cmd = TL_CMD_ACK | r | (type & ~(0x00100000));
|
|
r = 1;
|
|
sc->csr->tl_ch_parm = vtophys(sc->tl_cdata.tl_rx_head->tl_ptr);
|
|
r |= (TL_CMD_GO|TL_CMD_RT);
|
|
return(r);
|
|
}
|
|
|
|
/*
|
|
* Invalid interrupt handler. The manual says invalid interrupts
|
|
* are caused by a hardware error in other hardware and that they
|
|
* should just be ignored.
|
|
*/
|
|
static int tl_intvec_invalid(xsc, type)
|
|
void *xsc;
|
|
u_int32_t type;
|
|
{
|
|
struct tl_softc *sc;
|
|
|
|
sc = xsc;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
printf("tl%d: got an invalid interrupt!\n", sc->tl_unit);
|
|
#endif
|
|
/* Re-enable interrupts but don't ack this one. */
|
|
sc->csr->tl_host_cmd |= type;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Dummy interrupt handler. Dummy interrupts are generated by setting
|
|
* the ReqInt bit in the host command register. They should only occur
|
|
* if we ask for them, and we never do, so if one magically appears,
|
|
* we should make some noise about it.
|
|
*/
|
|
static int tl_intvec_dummy(xsc, type)
|
|
void *xsc;
|
|
u_int32_t type;
|
|
{
|
|
struct tl_softc *sc;
|
|
|
|
sc = xsc;
|
|
printf("tl%d: got a dummy interrupt\n", sc->tl_unit);
|
|
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* Stats counter overflow interrupt. The chip delivers one of these
|
|
* if we don't poll the stats counters often enough.
|
|
*/
|
|
static int tl_intvec_statoflow(xsc, type)
|
|
void *xsc;
|
|
u_int32_t type;
|
|
{
|
|
struct tl_softc *sc;
|
|
|
|
sc = xsc;
|
|
|
|
tl_stats_update(sc);
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int tl_intvec_txeof(xsc, type)
|
|
void *xsc;
|
|
u_int32_t type;
|
|
{
|
|
struct tl_softc *sc;
|
|
int r = 0;
|
|
struct tl_chain *cur_tx;
|
|
|
|
sc = xsc;
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been sent.
|
|
*/
|
|
while (sc->tl_cdata.tl_tx_head != NULL) {
|
|
cur_tx = sc->tl_cdata.tl_tx_head;
|
|
if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
|
|
break;
|
|
sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
|
|
|
|
r++;
|
|
m_freem(cur_tx->tl_mbuf);
|
|
cur_tx->tl_mbuf = NULL;
|
|
|
|
cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
|
|
sc->tl_cdata.tl_tx_free = cur_tx;
|
|
}
|
|
|
|
return(r);
|
|
}
|
|
|
|
/*
|
|
* The transmit end of channel interrupt. The adapter triggers this
|
|
* interrupt to tell us it hit the end of the current transmit list.
|
|
*
|
|
* A note about this: it's possible for a condition to arise where
|
|
* tl_start() may try to send frames between TXEOF and TXEOC interrupts.
|
|
* You have to avoid this since the chip expects things to go in a
|
|
* particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
|
|
* When the TXEOF handler is called, it will free all of the transmitted
|
|
* frames and reset the tx_head pointer to NULL. However, a TXEOC
|
|
* interrupt should be received and acknowledged before any more frames
|
|
* are queued for transmission. If tl_statrt() is called after TXEOF
|
|
* resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
|
|
* it could attempt to issue a transmit command prematurely.
|
|
*
|
|
* To guard against this, tl_start() will only issue transmit commands
|
|
* if the tl_txeoc flag is set, and only the TXEOC interrupt handler
|
|
* can set this flag once tl_start() has cleared it.
|
|
*/
|
|
static int tl_intvec_txeoc(xsc, type)
|
|
void *xsc;
|
|
u_int32_t type;
|
|
{
|
|
struct tl_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int32_t cmd;
|
|
|
|
sc = xsc;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Clear the timeout timer. */
|
|
ifp->if_timer = 0;
|
|
|
|
if (sc->tl_cdata.tl_tx_head == NULL) {
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
sc->tl_cdata.tl_tx_tail = NULL;
|
|
sc->tl_txeoc = 1;
|
|
} else {
|
|
sc->tl_txeoc = 0;
|
|
/* First we have to ack the EOC interrupt. */
|
|
sc->csr->tl_host_cmd = TL_CMD_ACK | 0x00000001 | type;
|
|
/* Then load the address of the next TX list. */
|
|
sc->csr->tl_ch_parm = vtophys(sc->tl_cdata.tl_tx_head->tl_ptr);
|
|
/* Restart TX channel. */
|
|
cmd = sc->csr->tl_host_cmd;
|
|
cmd &= ~TL_CMD_RT;
|
|
cmd |= TL_CMD_GO|TL_CMD_INTSON;
|
|
sc->csr->tl_host_cmd = cmd;
|
|
return(0);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
static int tl_intvec_adchk(xsc, type)
|
|
void *xsc;
|
|
u_int32_t type;
|
|
{
|
|
struct tl_softc *sc;
|
|
|
|
sc = xsc;
|
|
|
|
printf("tl%d: adapter check: %x\n", sc->tl_unit, sc->csr->tl_ch_parm);
|
|
|
|
tl_softreset(sc->csr, sc->tl_phy_addr == TL_PHYADDR_MAX ? 1 : 0);
|
|
tl_init(sc);
|
|
sc->csr->tl_host_cmd |= TL_CMD_INTSON;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int tl_intvec_netsts(xsc, type)
|
|
void *xsc;
|
|
u_int32_t type;
|
|
{
|
|
struct tl_softc *sc;
|
|
u_int16_t netsts;
|
|
struct tl_csr *csr;
|
|
|
|
sc = xsc;
|
|
csr = sc->csr;
|
|
|
|
DIO_SEL(TL_NETSTS);
|
|
netsts = DIO_BYTE2_GET(0xFF);
|
|
DIO_BYTE2_SET(netsts);
|
|
|
|
printf("tl%d: network status: %x\n", sc->tl_unit, netsts);
|
|
|
|
return(1);
|
|
}
|
|
|
|
static void tl_intr(xilist)
|
|
void *xilist;
|
|
{
|
|
struct tl_iflist *ilist;
|
|
struct tl_softc *sc;
|
|
struct tl_csr *csr;
|
|
struct ifnet *ifp;
|
|
int r = 0;
|
|
u_int32_t type = 0;
|
|
u_int16_t ints = 0;
|
|
u_int8_t ivec = 0;
|
|
|
|
ilist = xilist;
|
|
csr = ilist->csr;
|
|
|
|
/* Disable interrupts */
|
|
ints = csr->tl_host_int;
|
|
csr->tl_host_int = ints;
|
|
type = (ints << 16) & 0xFFFF0000;
|
|
ivec = (ints & TL_VEC_MASK) >> 5;
|
|
ints = (ints & TL_INT_MASK) >> 2;
|
|
/*
|
|
* An interrupt has been posted by the ThunderLAN, but we
|
|
* have to figure out which PHY generated it before we can
|
|
* do anything with it. If we receive an interrupt when we
|
|
* know none of the PHYs are turned on, then either there's
|
|
* a bug in the driver or we we handed an interrupt that
|
|
* doesn't actually belong to us.
|
|
*/
|
|
if (ilist->tl_active_phy == TL_PHYS_IDLE) {
|
|
/*
|
|
* Exception: if this is an invalid interrupt,
|
|
* just re-enable interrupts and ignore it. Probably
|
|
* what's happened is that we got an interrupt meant
|
|
* for another PCI device that's sharing our IRQ.
|
|
*/
|
|
if (ints == TL_INTR_INVALID) {
|
|
csr->tl_host_cmd |= type;
|
|
return;
|
|
}
|
|
printf("tlc%d: interrupt type %x with all phys idle\n",
|
|
ilist->tlc_unit, ints);
|
|
return;
|
|
}
|
|
|
|
sc = ilist->tl_sc[ilist->tl_active_phy];
|
|
csr = sc->csr;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
switch(ints) {
|
|
case (TL_INTR_INVALID):
|
|
r = tl_intvec_invalid((void *)sc, type);
|
|
break;
|
|
case (TL_INTR_TXEOF):
|
|
r = tl_intvec_txeof((void *)sc, type);
|
|
break;
|
|
case (TL_INTR_TXEOC):
|
|
r = tl_intvec_txeoc((void *)sc, type);
|
|
break;
|
|
case (TL_INTR_STATOFLOW):
|
|
r = tl_intvec_statoflow((void *)sc, type);
|
|
break;
|
|
case (TL_INTR_RXEOF):
|
|
r = tl_intvec_rxeof((void *)sc, type);
|
|
break;
|
|
case (TL_INTR_DUMMY):
|
|
r = tl_intvec_dummy((void *)sc, type);
|
|
break;
|
|
case (TL_INTR_ADCHK):
|
|
if (ivec)
|
|
r = tl_intvec_adchk((void *)sc, type);
|
|
else
|
|
r = tl_intvec_netsts((void *)sc, type);
|
|
break;
|
|
case (TL_INTR_RXEOC):
|
|
r = tl_intvec_rxeoc((void *)sc, type);
|
|
break;
|
|
default:
|
|
printf("tl%d: bogus interrupt type\n", ifp->if_unit);
|
|
break;
|
|
}
|
|
|
|
/* Re-enable interrupts */
|
|
if (r)
|
|
csr->tl_host_cmd = TL_CMD_ACK | r | type;
|
|
|
|
return;
|
|
}
|
|
|
|
static void tl_stats_update(xsc)
|
|
void *xsc;
|
|
{
|
|
struct tl_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct tl_csr *csr;
|
|
struct tl_stats tl_stats;
|
|
u_int32_t *p;
|
|
|
|
bzero((char *)&tl_stats, sizeof(struct tl_stats));
|
|
|
|
sc = xsc;
|
|
csr = sc->csr;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
p = (u_int32_t *)&tl_stats;
|
|
|
|
DIO_SEL(TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
|
|
DIO_LONG_GET(*p++);
|
|
DIO_LONG_GET(*p++);
|
|
DIO_LONG_GET(*p++);
|
|
DIO_LONG_GET(*p++);
|
|
DIO_LONG_GET(*p++);
|
|
|
|
ifp->if_opackets += tl_tx_goodframes(tl_stats);
|
|
ifp->if_collisions += tl_stats.tl_tx_single_collision +
|
|
tl_stats.tl_tx_multi_collision;
|
|
ifp->if_ipackets += tl_rx_goodframes(tl_stats);
|
|
ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
|
|
tl_rx_overrun(tl_stats);
|
|
ifp->if_oerrors += tl_tx_underrun(tl_stats);
|
|
|
|
sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a list by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int tl_encap(sc, c, m_head)
|
|
struct tl_softc *sc;
|
|
struct tl_chain *c;
|
|
struct mbuf *m_head;
|
|
{
|
|
int frag = 0;
|
|
struct tl_frag *f = NULL;
|
|
int total_len;
|
|
struct mbuf *m;
|
|
|
|
/*
|
|
* Start packing the mbufs in this chain into
|
|
* the fragment pointers. Stop when we run out
|
|
* of fragments or hit the end of the mbuf chain.
|
|
*/
|
|
m = m_head;
|
|
total_len = 0;
|
|
|
|
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
|
|
if (m->m_len != 0) {
|
|
if (frag == TL_MAXFRAGS)
|
|
break;
|
|
total_len+= m->m_len;
|
|
c->tl_ptr->tl_frag[frag].tlist_dadr =
|
|
vtophys(mtod(m, vm_offset_t));
|
|
c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
|
|
frag++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle special cases.
|
|
* Special case #1: we used up all 10 fragments, but
|
|
* we have more mbufs left in the chain. Copy the
|
|
* data into an mbuf cluster. Note that we don't
|
|
* bother clearing the values in the other fragment
|
|
* pointers/counters; it wouldn't gain us anything,
|
|
* and would waste cycles.
|
|
*/
|
|
if (m != NULL) {
|
|
struct mbuf *m_new = NULL;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("tl%d: no memory for tx list", sc->tl_unit);
|
|
return(1);
|
|
}
|
|
if (m_head->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
printf("tl%d: no memory for tx list",
|
|
sc->tl_unit);
|
|
return(1);
|
|
}
|
|
}
|
|
m_copydata(m_head, 0, m_head->m_pkthdr.len,
|
|
mtod(m_new, caddr_t));
|
|
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
|
|
m_freem(m_head);
|
|
m_head = m_new;
|
|
f = &c->tl_ptr->tl_frag[0];
|
|
f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
|
|
f->tlist_dcnt = total_len = m_new->m_len;
|
|
frag = 1;
|
|
}
|
|
|
|
/*
|
|
* Special case #2: the frame is smaller than the minimum
|
|
* frame size. We have to pad it to make the chip happy.
|
|
*/
|
|
if (total_len < TL_MIN_FRAMELEN) {
|
|
if (frag == TL_MAXFRAGS)
|
|
printf("all frags filled but frame still to small!\n");
|
|
f = &c->tl_ptr->tl_frag[frag];
|
|
f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
|
|
f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
|
|
total_len += f->tlist_dcnt;
|
|
frag++;
|
|
}
|
|
|
|
c->tl_mbuf = m_head;
|
|
c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
|
|
c->tl_ptr->tlist_frsize = total_len;
|
|
c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
|
|
c->tl_ptr->tlist_fptr = 0;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit lists. We also save a
|
|
* copy of the pointers since the transmit list fragment pointers are
|
|
* physical addresses.
|
|
*/
|
|
static void tl_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct tl_softc *sc;
|
|
struct tl_csr *csr;
|
|
struct mbuf *m_head = NULL;
|
|
u_int32_t cmd;
|
|
struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
|
|
|
|
sc = ifp->if_softc;
|
|
csr = sc->csr;
|
|
|
|
/*
|
|
* Check for an available queue slot. If there are none,
|
|
* punt.
|
|
*/
|
|
if (sc->tl_cdata.tl_tx_free == NULL) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
start_tx = sc->tl_cdata.tl_tx_free;
|
|
|
|
while(sc->tl_cdata.tl_tx_free != NULL) {
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/* Pick a chain member off the free list. */
|
|
cur_tx = sc->tl_cdata.tl_tx_free;
|
|
sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
|
|
|
|
cur_tx->tl_next = NULL;
|
|
|
|
/* Pack the data into the list. */
|
|
tl_encap(sc, cur_tx, m_head);
|
|
|
|
/* Chain it together */
|
|
if (prev != NULL) {
|
|
prev->tl_next = cur_tx;
|
|
prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
|
|
}
|
|
prev = cur_tx;
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, cur_tx->tl_mbuf);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* That's all we can stands, we can't stands no more.
|
|
* If there are no other transfers pending, then issue the
|
|
* TX GO command to the adapter to start things moving.
|
|
* Otherwise, just leave the data in the queue and let
|
|
* the EOF/EOC interrupt handler send.
|
|
*/
|
|
if (sc->tl_cdata.tl_tx_head == NULL) {
|
|
sc->tl_cdata.tl_tx_head = start_tx;
|
|
sc->tl_cdata.tl_tx_tail = cur_tx;
|
|
if (sc->tl_txeoc) {
|
|
sc->tl_txeoc = 0;
|
|
sc->csr->tl_ch_parm = vtophys(start_tx->tl_ptr);
|
|
cmd = sc->csr->tl_host_cmd;
|
|
cmd &= ~TL_CMD_RT;
|
|
cmd |= TL_CMD_GO|TL_CMD_INTSON;
|
|
sc->csr->tl_host_cmd = cmd;
|
|
}
|
|
} else {
|
|
sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
|
|
sc->tl_cdata.tl_tx_tail->tl_ptr->tlist_fptr =
|
|
vtophys(start_tx->tl_ptr);
|
|
sc->tl_cdata.tl_tx_tail = start_tx;
|
|
}
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
|
|
return;
|
|
}
|
|
|
|
static void tl_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct tl_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->arpcom.ac_if;
|
|
struct tl_csr *csr = sc->csr;
|
|
int s;
|
|
u_int16_t phy_sts;
|
|
|
|
s = splimp();
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/*
|
|
* Cancel pending I/O.
|
|
*/
|
|
tl_stop(sc);
|
|
|
|
/*
|
|
* Set 'capture all frames' bit for promiscuous mode.
|
|
*/
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
DIO_SEL(TL_NETCMD);
|
|
DIO_BYTE0_SET(TL_CMD_CAF);
|
|
} else {
|
|
DIO_SEL(TL_NETCMD);
|
|
DIO_BYTE0_CLR(TL_CMD_CAF);
|
|
}
|
|
|
|
/*
|
|
* Set capture broadcast bit to capture broadcast frames.
|
|
*/
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
DIO_SEL(TL_NETCMD);
|
|
DIO_BYTE0_CLR(TL_CMD_NOBRX);
|
|
} else {
|
|
DIO_SEL(TL_NETCMD);
|
|
DIO_BYTE0_SET(TL_CMD_NOBRX);
|
|
}
|
|
|
|
/* Init our MAC address */
|
|
DIO_SEL(TL_AREG0_B5);
|
|
csr->u.tl_dio_bytes.byte0 = sc->arpcom.ac_enaddr[0];
|
|
csr->u.tl_dio_bytes.byte1 = sc->arpcom.ac_enaddr[1];
|
|
csr->u.tl_dio_bytes.byte2 = sc->arpcom.ac_enaddr[2];
|
|
csr->u.tl_dio_bytes.byte3 = sc->arpcom.ac_enaddr[3];
|
|
DIO_SEL(TL_AREG0_B1);
|
|
csr->u.tl_dio_bytes.byte0 = sc->arpcom.ac_enaddr[4];
|
|
csr->u.tl_dio_bytes.byte1 = sc->arpcom.ac_enaddr[5];
|
|
|
|
/* Init circular RX list. */
|
|
if (tl_list_rx_init(sc)) {
|
|
printf("tl%d: failed to set up rx lists\n", sc->tl_unit);
|
|
return;
|
|
}
|
|
|
|
/* Init TX pointers. */
|
|
tl_list_tx_init(sc);
|
|
|
|
/*
|
|
* Enable PHY interrupts.
|
|
*/
|
|
phy_sts = tl_phy_readreg(sc, TL_PHY_CTL);
|
|
phy_sts |= PHY_CTL_INTEN;
|
|
tl_phy_writereg(sc, TL_PHY_CTL, phy_sts);
|
|
|
|
/* Enable MII interrupts. */
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_SET(TL_SIO_MINTEN);
|
|
|
|
/* Enable PCI interrupts. */
|
|
csr->tl_host_cmd |= TL_CMD_INTSON;
|
|
|
|
/* Load the address of the rx list */
|
|
sc->csr->tl_host_cmd |= TL_CMD_RT;
|
|
sc->csr->tl_ch_parm = vtophys(&sc->tl_ldata->tl_rx_list[0]);
|
|
|
|
/* Send the RX go command */
|
|
sc->csr->tl_host_cmd |= (TL_CMD_GO|TL_CMD_RT);
|
|
sc->tl_iflist->tl_active_phy = sc->tl_phy_addr;
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
(void)splx(s);
|
|
|
|
/* Start the stats update counter */
|
|
sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int tl_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct tl_softc *sc;
|
|
struct tl_csr *csr;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
csr = sc->csr;
|
|
ifm = &sc->ifmedia;
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return(EINVAL);
|
|
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
|
|
tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1);
|
|
else
|
|
tl_setmode(sc, ifm->ifm_media);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void tl_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
u_int16_t phy_ctl;
|
|
u_int16_t phy_sts;
|
|
struct tl_softc *sc;
|
|
struct tl_csr *csr;
|
|
|
|
sc = ifp->if_softc;
|
|
csr = sc->csr;
|
|
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
phy_ctl = tl_phy_readreg(sc, PHY_BMCR);
|
|
phy_sts = tl_phy_readreg(sc, TL_PHY_CTL);
|
|
|
|
if (phy_sts & PHY_CTL_AUISEL)
|
|
ifmr->ifm_active |= IFM_10_5;
|
|
|
|
if (phy_ctl & PHY_BMCR_LOOPBK)
|
|
ifmr->ifm_active |= IFM_LOOP;
|
|
|
|
if (phy_ctl & PHY_BMCR_SPEEDSEL)
|
|
ifmr->ifm_active |= IFM_100_TX;
|
|
else
|
|
ifmr->ifm_active |= IFM_10_T;
|
|
|
|
if (phy_ctl & PHY_BMCR_DUPLEX) {
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
ifmr->ifm_active &= ~IFM_HDX;
|
|
} else {
|
|
ifmr->ifm_active &= ~IFM_FDX;
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
}
|
|
|
|
if (phy_ctl & PHY_BMCR_AUTONEGENBL)
|
|
ifmr->ifm_active |= IFM_AUTO;
|
|
|
|
return;
|
|
}
|
|
|
|
static int tl_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct tl_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
switch(command) {
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFMTU:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
/*
|
|
* Make sure no more than one PHY is active
|
|
* at any one time.
|
|
*/
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (sc->tl_iflist->tl_active_phy != TL_PHYS_IDLE &&
|
|
sc->tl_iflist->tl_active_phy != sc->tl_phy_addr) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
sc->tl_iflist->tl_active_phy = sc->tl_phy_addr;
|
|
tl_init(sc);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
sc->tl_iflist->tl_active_phy = TL_PHYS_IDLE;
|
|
tl_stop(sc);
|
|
}
|
|
}
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
tl_setmulti(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
(void)splx(s);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static void tl_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct tl_softc *sc;
|
|
u_int16_t bmsr;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (sc->tl_autoneg) {
|
|
tl_autoneg(sc, TL_FLAG_DELAYTIMEO, 1);
|
|
return;
|
|
}
|
|
|
|
/* Check that we're still connected. */
|
|
tl_phy_readreg(sc, PHY_BMSR);
|
|
bmsr = tl_phy_readreg(sc, PHY_BMSR);
|
|
if (!(bmsr & PHY_BMSR_LINKSTAT)) {
|
|
printf("tl%d: no carrier\n", sc->tl_unit);
|
|
tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1);
|
|
} else
|
|
printf("tl%d: device timeout\n", sc->tl_unit);
|
|
|
|
ifp->if_oerrors++;
|
|
|
|
tl_init(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void tl_stop(sc)
|
|
struct tl_softc *sc;
|
|
{
|
|
register int i;
|
|
struct ifnet *ifp;
|
|
struct tl_csr *csr;
|
|
struct tl_mii_frame frame;
|
|
|
|
csr = sc->csr;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Stop the stats updater. */
|
|
untimeout(tl_stats_update, sc, sc->tl_stat_ch);
|
|
|
|
/* Stop the transmitter */
|
|
sc->csr->tl_host_cmd &= TL_CMD_RT;
|
|
sc->csr->tl_host_cmd |= TL_CMD_STOP;
|
|
|
|
/* Stop the receiver */
|
|
sc->csr->tl_host_cmd |= TL_CMD_RT;
|
|
sc->csr->tl_host_cmd |= TL_CMD_STOP;
|
|
|
|
/*
|
|
* Disable host interrupts.
|
|
*/
|
|
sc->csr->tl_host_cmd |= TL_CMD_INTSOFF;
|
|
|
|
/*
|
|
* Disable PHY interrupts.
|
|
*/
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
frame.mii_phyaddr = sc->tl_phy_addr;
|
|
frame.mii_regaddr = TL_PHY_CTL;
|
|
tl_mii_readreg(csr, &frame);
|
|
frame.mii_data |= PHY_CTL_INTEN;
|
|
tl_mii_writereg(csr, &frame);
|
|
|
|
/*
|
|
* Disable MII interrupts.
|
|
*/
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_CLR(TL_SIO_MINTEN);
|
|
|
|
/*
|
|
* Clear list pointer.
|
|
*/
|
|
sc->csr->tl_ch_parm = 0;
|
|
|
|
/*
|
|
* Free the RX lists.
|
|
*/
|
|
for (i = 0; i < TL_RX_LIST_CNT; i++) {
|
|
if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
|
|
m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
|
|
sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
|
|
}
|
|
}
|
|
bzero((char *)&sc->tl_ldata->tl_rx_list,
|
|
sizeof(sc->tl_ldata->tl_rx_list));
|
|
|
|
/*
|
|
* Free the TX list buffers.
|
|
*/
|
|
for (i = 0; i < TL_TX_LIST_CNT; i++) {
|
|
if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
|
|
m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
|
|
sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
|
|
}
|
|
}
|
|
bzero((char *)&sc->tl_ldata->tl_tx_list,
|
|
sizeof(sc->tl_ldata->tl_tx_list));
|
|
|
|
sc->tl_iflist->tl_active_phy = TL_PHYS_IDLE;
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static void tl_shutdown(howto, xilist)
|
|
int howto;
|
|
void *xilist;
|
|
{
|
|
struct tl_iflist *ilist = (struct tl_iflist *)xilist;
|
|
struct tl_csr *csr = ilist->csr;
|
|
struct tl_mii_frame frame;
|
|
int i;
|
|
|
|
/* Stop the transmitter */
|
|
csr->tl_host_cmd &= TL_CMD_RT;
|
|
csr->tl_host_cmd |= TL_CMD_STOP;
|
|
|
|
/* Stop the receiver */
|
|
csr->tl_host_cmd |= TL_CMD_RT;
|
|
csr->tl_host_cmd |= TL_CMD_STOP;
|
|
|
|
/*
|
|
* Disable host interrupts.
|
|
*/
|
|
csr->tl_host_cmd |= TL_CMD_INTSOFF;
|
|
|
|
/*
|
|
* Disable PHY interrupts.
|
|
*/
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
for (i = TL_PHYADDR_MIN; i < TL_PHYADDR_MAX + 1; i++) {
|
|
frame.mii_phyaddr = i;
|
|
frame.mii_regaddr = TL_PHY_CTL;
|
|
tl_mii_readreg(csr, &frame);
|
|
frame.mii_data |= PHY_CTL_INTEN;
|
|
tl_mii_writereg(csr, &frame);
|
|
};
|
|
|
|
/*
|
|
* Disable MII interrupts.
|
|
*/
|
|
DIO_SEL(TL_NETSIO);
|
|
DIO_BYTE1_CLR(TL_SIO_MINTEN);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static struct pci_device tlc_device = {
|
|
"tlc",
|
|
tl_probe,
|
|
tl_attach_ctlr,
|
|
&tl_count,
|
|
NULL
|
|
};
|
|
DATA_SET(pcidevice_set, tlc_device);
|