2326 lines
78 KiB
C
2326 lines
78 KiB
C
/*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
#include "ah_devid.h"
|
|
|
|
#include "ah_eeprom_v14.h"
|
|
|
|
#include "ar5416/ar5416.h"
|
|
#include "ar5416/ar5416reg.h"
|
|
#include "ar5416/ar5416phy.h"
|
|
|
|
/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
|
|
#define EEP_MINOR(_ah) \
|
|
(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
|
|
#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
|
|
#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
|
|
|
|
/* Additional Time delay to wait after activiting the Base band */
|
|
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
|
|
#define PLL_SETTLE_DELAY 300 /* 300 usec */
|
|
#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
|
|
|
|
static void ar5416InitDMA(struct ath_hal *ah);
|
|
static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
|
|
static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
|
|
static void ar5416InitQoS(struct ath_hal *ah);
|
|
static void ar5416InitUserSettings(struct ath_hal *ah);
|
|
static void ar5416UpdateChainMasks(struct ath_hal *ah, HAL_BOOL is_ht);
|
|
|
|
#if 0
|
|
static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
|
|
#endif
|
|
static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
|
|
|
|
static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
|
|
static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
|
|
static void ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan);
|
|
static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
|
|
struct ar5416eeprom *pEepData,
|
|
const struct ieee80211_channel *chan, int16_t *ratesArray,
|
|
uint16_t cfgCtl, uint16_t AntennaReduction,
|
|
uint16_t twiceMaxRegulatoryPower,
|
|
uint16_t powerLimit);
|
|
static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
|
|
struct ar5416eeprom *pEepData,
|
|
const struct ieee80211_channel *chan,
|
|
int16_t *pTxPowerIndexOffset);
|
|
static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
|
|
CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
|
|
|
|
static int16_t interpolate(uint16_t target, uint16_t srcLeft,
|
|
uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
|
|
static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
|
|
static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ *pRawDataSet,
|
|
uint8_t * bChans, uint16_t availPiers,
|
|
uint16_t tPdGainOverlap, int16_t *pMinCalPower,
|
|
uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
|
|
uint16_t numXpdGains);
|
|
static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
|
|
uint16_t listSize, uint16_t *indexL, uint16_t *indexR);
|
|
static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
|
|
uint8_t *pPwrList, uint8_t *pVpdList,
|
|
uint16_t numIntercepts, uint8_t *pRetVpdList);
|
|
|
|
/*
|
|
* Places the device in and out of reset and then places sane
|
|
* values in the registers based on EEPROM config, initialization
|
|
* vectors (as determined by the mode), and station configuration
|
|
*
|
|
* bChannelChange is used to preserve DMA/PCU registers across
|
|
* a HW Reset during channel change.
|
|
*/
|
|
HAL_BOOL
|
|
ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
|
|
struct ieee80211_channel *chan,
|
|
HAL_BOOL bChannelChange, HAL_STATUS *status)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof (a[0]))
|
|
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
HAL_CHANNEL_INTERNAL *ichan;
|
|
uint32_t saveDefAntenna, saveLedState;
|
|
uint32_t macStaId1;
|
|
uint16_t rfXpdGain[2];
|
|
HAL_STATUS ecode;
|
|
uint32_t powerVal, rssiThrReg;
|
|
uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
|
|
int i;
|
|
|
|
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
|
|
|
|
/* Bring out of sleep mode */
|
|
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
|
|
__func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/*
|
|
* Map public channel to private.
|
|
*/
|
|
ichan = ath_hal_checkchannel(ah, chan);
|
|
if (ichan == AH_NULL)
|
|
FAIL(HAL_EINVAL);
|
|
switch (opmode) {
|
|
case HAL_M_STA:
|
|
case HAL_M_IBSS:
|
|
case HAL_M_HOSTAP:
|
|
case HAL_M_MONITOR:
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
|
|
__func__, opmode);
|
|
FAIL(HAL_EINVAL);
|
|
break;
|
|
}
|
|
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
|
|
|
|
/* XXX Turn on fast channel change for 5416 */
|
|
/*
|
|
* Preserve the bmiss rssi threshold and count threshold
|
|
* across resets
|
|
*/
|
|
rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
|
|
/* If reg is zero, first time thru set to default val */
|
|
if (rssiThrReg == 0)
|
|
rssiThrReg = INIT_RSSI_THR;
|
|
|
|
/*
|
|
* Preserve the antenna on a channel change
|
|
*/
|
|
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
|
|
if (saveDefAntenna == 0) /* XXX magic constants */
|
|
saveDefAntenna = 1;
|
|
|
|
/* Save hardware flag before chip reset clears the register */
|
|
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
|
|
(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
|
|
|
|
/* Save led state from pci config register */
|
|
saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
|
|
(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
|
|
AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
|
|
|
|
if (!ar5416ChipReset(ah, chan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Restore bmiss rssi & count thresholds */
|
|
OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
|
|
if (AR_SREV_MERLIN_10_OR_LATER(ah))
|
|
OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
|
|
|
|
if (AR_SREV_KITE(ah)) {
|
|
uint32_t val;
|
|
val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
|
|
val &= ~AR_PHY_RIFS_INIT_DELAY;
|
|
OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
|
|
}
|
|
|
|
AH5416(ah)->ah_writeIni(ah, chan);
|
|
|
|
/* Setup 11n MAC/Phy mode registers */
|
|
ar5416Set11nRegs(ah, chan);
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
|
|
__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
|
|
__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
|
|
|
|
/* Set the mute mask to the correct default */
|
|
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
|
|
OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
|
|
|
|
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
|
|
/* Clear reg to alllow RX_CLEAR line debug */
|
|
OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
|
|
}
|
|
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
|
|
#ifdef notyet
|
|
/* Enable burst prefetch for the data queues */
|
|
OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
|
|
/* Enable double-buffering */
|
|
OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Setup ah_tx_chainmask / ah_rx_chainmask before we fiddle
|
|
* with enabling the TX/RX radio chains.
|
|
*/
|
|
ar5416UpdateChainMasks(ah, IEEE80211_IS_CHAN_HT(chan));
|
|
/*
|
|
* This routine swaps the analog chains - it should be done
|
|
* before any radio register twiddling is done.
|
|
*/
|
|
ar5416InitChainMasks(ah);
|
|
|
|
/* Setup the transmit power values. */
|
|
if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: error init'ing transmit power\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Write the analog registers */
|
|
if (!ahp->ah_rfHal->setRfRegs(ah, chan,
|
|
IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: ar5212SetRfRegs failed\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
|
|
if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
|
|
ar5416SetDeltaSlope(ah, chan);
|
|
|
|
AH5416(ah)->ah_spurMitigate(ah, chan);
|
|
|
|
/* Setup board specific options for EEPROM version 3 */
|
|
if (!ah->ah_setBoardValues(ah, chan)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: error setting board options\n", __func__);
|
|
FAIL(HAL_EIO);
|
|
}
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
|
|
|
|
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
|
|
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
|
|
| macStaId1
|
|
| AR_STA_ID1_RTS_USE_DEF
|
|
| ahp->ah_staId1Defaults
|
|
);
|
|
ar5212SetOperatingMode(ah, opmode);
|
|
|
|
/* Set Venice BSSID mask according to current state */
|
|
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
|
|
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
|
|
|
|
/* Restore previous led state */
|
|
OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
|
|
|
|
/* Restore previous antenna */
|
|
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
|
|
|
|
/* then our BSSID */
|
|
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
|
|
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
|
|
|
|
/* Restore bmiss rssi & count thresholds */
|
|
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
|
|
|
|
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
|
|
|
|
if (!ar5212SetChannel(ah, chan))
|
|
FAIL(HAL_EIO);
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
|
|
|
|
/* Set 1:1 QCU to DCU mapping for all queues */
|
|
for (i = 0; i < AR_NUM_DCU; i++)
|
|
OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
|
|
|
|
ahp->ah_intrTxqs = 0;
|
|
for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
|
|
ar5212ResetTxQueue(ah, i);
|
|
|
|
ar5416InitIMR(ah, opmode);
|
|
ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
|
|
ar5416InitQoS(ah);
|
|
ar5416InitUserSettings(ah);
|
|
|
|
/*
|
|
* disable seq number generation in hw
|
|
*/
|
|
OS_REG_WRITE(ah, AR_STA_ID1,
|
|
OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
|
|
|
|
ar5416InitDMA(ah);
|
|
|
|
/*
|
|
* program OBS bus to see MAC interrupts
|
|
*/
|
|
OS_REG_WRITE(ah, AR_OBS, 8);
|
|
|
|
#ifdef AR5416_INT_MITIGATION
|
|
OS_REG_WRITE(ah, AR_MIRT, 0);
|
|
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
|
|
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
|
|
#endif
|
|
|
|
ar5416InitBB(ah, chan);
|
|
|
|
/* Setup compression registers */
|
|
ar5212SetCompRegs(ah); /* XXX not needed? */
|
|
|
|
/*
|
|
* 5416 baseband will check the per rate power table
|
|
* and select the lower of the two
|
|
*/
|
|
ackTpcPow = 63;
|
|
ctsTpcPow = 63;
|
|
chirpTpcPow = 63;
|
|
powerVal = SM(ackTpcPow, AR_TPC_ACK) |
|
|
SM(ctsTpcPow, AR_TPC_CTS) |
|
|
SM(chirpTpcPow, AR_TPC_CHIRP);
|
|
OS_REG_WRITE(ah, AR_TPC, powerVal);
|
|
|
|
if (!ar5416InitCal(ah, chan))
|
|
FAIL(HAL_ESELFTEST);
|
|
|
|
ar5416RestoreChainMask(ah);
|
|
|
|
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
|
|
|
|
if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
|
|
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
|
|
|
|
OS_MARK(ah, AH_MARK_RESET_DONE, 0);
|
|
|
|
return AH_TRUE;
|
|
bad:
|
|
OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
|
|
if (status != AH_NULL)
|
|
*status = ecode;
|
|
return AH_FALSE;
|
|
#undef FAIL
|
|
#undef N
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* This channel change evaluates whether the selected hardware can
|
|
* perform a synthesizer-only channel change (no reset). If the
|
|
* TX is not stopped, or the RFBus cannot be granted in the given
|
|
* time, the function returns false as a reset is necessary
|
|
*/
|
|
HAL_BOOL
|
|
ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
|
|
{
|
|
uint32_t ulCount;
|
|
uint32_t data, synthDelay, qnum;
|
|
uint16_t rfXpdGain[4];
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
HAL_CHANNEL_INTERNAL *ichan;
|
|
|
|
/*
|
|
* Map public channel to private.
|
|
*/
|
|
ichan = ath_hal_checkchannel(ah, chan);
|
|
|
|
/* TX must be stopped or RF Bus grant will not work */
|
|
for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
|
|
if (ar5212NumTxPending(ah, qnum)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: frames pending on queue %d\n", __func__, qnum);
|
|
return AH_FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Kill last Baseband Rx Frame - Request analog bus grant
|
|
*/
|
|
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
|
|
if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
|
|
__func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
|
|
|
|
/* Change the synth */
|
|
if (!ar5212SetChannel(ah, chan))
|
|
return AH_FALSE;
|
|
|
|
/* Setup the transmit power values. */
|
|
if (!ar5416SetTransmitPower(ah, chan, rfXpdGain)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: error init'ing transmit power\n", __func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Wait for the frequency synth to settle (synth goes on
|
|
* via PHY_ACTIVE_EN). Read the phy active delay register.
|
|
* Value is in 100ns increments.
|
|
*/
|
|
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
|
|
if (IS_CHAN_CCK(ichan)) {
|
|
synthDelay = (4 * data) / 22;
|
|
} else {
|
|
synthDelay = data / 10;
|
|
}
|
|
|
|
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
|
|
|
|
/* Release the RFBus Grant */
|
|
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
|
|
|
|
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
|
|
if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
|
|
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
|
|
ar5212SetSpurMitigation(ah, chan);
|
|
ar5416SetDeltaSlope(ah, chan);
|
|
}
|
|
|
|
/* XXX spur mitigation for Melin */
|
|
|
|
if (!IEEE80211_IS_CHAN_DFS(chan))
|
|
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
|
|
|
|
ichan->channel_time = 0;
|
|
ichan->tsf_last = ar5212GetTsf64(ah);
|
|
ar5212TxEnable(ah, AH_TRUE);
|
|
return AH_TRUE;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ar5416InitDMA(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
/*
|
|
* set AHB_MODE not to do cacheline prefetches
|
|
*/
|
|
OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
|
|
|
|
/*
|
|
* let mac dma reads be in 128 byte chunks
|
|
*/
|
|
OS_REG_WRITE(ah, AR_TXCFG,
|
|
(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
|
|
|
|
/*
|
|
* let mac dma writes be in 128 byte chunks
|
|
*/
|
|
OS_REG_WRITE(ah, AR_RXCFG,
|
|
(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
|
|
|
|
/* restore TX trigger level */
|
|
OS_REG_WRITE(ah, AR_TXCFG,
|
|
(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
|
|
SM(ahp->ah_txTrigLev, AR_FTRIG));
|
|
|
|
/*
|
|
* Setup receive FIFO threshold to hold off TX activities
|
|
*/
|
|
OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
|
|
|
|
/*
|
|
* reduce the number of usable entries in PCU TXBUF to avoid
|
|
* wrap around.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
|
|
}
|
|
|
|
static void
|
|
ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
uint32_t synthDelay;
|
|
|
|
/*
|
|
* Wait for the frequency synth to settle (synth goes on
|
|
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
|
|
* Value is in 100ns increments.
|
|
*/
|
|
synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
|
|
if (IEEE80211_IS_CHAN_CCK(chan)) {
|
|
synthDelay = (4 * synthDelay) / 22;
|
|
} else {
|
|
synthDelay /= 10;
|
|
}
|
|
|
|
/* Turn on PLL on 5416 */
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
|
|
__func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
|
|
ar5416InitPLL(ah, chan);
|
|
|
|
/* Activate the PHY (includes baseband activate and synthesizer on) */
|
|
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
|
|
|
|
/*
|
|
* If the AP starts the calibration before the base band timeout
|
|
* completes we could get rx_clear false triggering. Add an
|
|
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
|
|
* does not happen.
|
|
*/
|
|
if (IEEE80211_IS_CHAN_HALF(chan)) {
|
|
OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
|
|
} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
|
|
OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
|
|
} else {
|
|
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
/*
|
|
* Setup interrupt handling. Note that ar5212ResetTxQueue
|
|
* manipulates the secondary IMR's as queues are enabled
|
|
* and disabled. This is done with RMW ops to insure the
|
|
* settings we make here are preserved.
|
|
*/
|
|
ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
|
|
| AR_IMR_RXERR | AR_IMR_RXORN
|
|
| AR_IMR_BCNMISC;
|
|
|
|
#ifdef AR5416_INT_MITIGATION
|
|
ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
|
|
| AR_IMR_TXMINTR | AR_IMR_RXMINTR;
|
|
#else
|
|
ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
|
|
#endif
|
|
if (opmode == HAL_M_HOSTAP)
|
|
ahp->ah_maskReg |= AR_IMR_MIB;
|
|
OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
|
|
/* Enable bus errors that are OR'd to set the HIUERR bit */
|
|
#if 0
|
|
OS_REG_WRITE(ah, AR_IMR_S2,
|
|
OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
ar5416InitQoS(struct ath_hal *ah)
|
|
{
|
|
/* QoS support */
|
|
OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
|
|
OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
|
|
|
|
/* Turn on NOACK Support for QoS packets */
|
|
OS_REG_WRITE(ah, AR_NOACK,
|
|
SM(2, AR_NOACK_2BIT_VALUE) |
|
|
SM(5, AR_NOACK_BIT_OFFSET) |
|
|
SM(0, AR_NOACK_BYTE_OFFSET));
|
|
|
|
/*
|
|
* initialize TXOP for all TIDs
|
|
*/
|
|
OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
|
|
OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
|
|
OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
|
|
OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
|
|
OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
|
|
}
|
|
|
|
static void
|
|
ar5416InitUserSettings(struct ath_hal *ah)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
/* Restore user-specified settings */
|
|
if (ahp->ah_miscMode != 0)
|
|
OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
|
|
if (ahp->ah_sifstime != (u_int) -1)
|
|
ar5212SetSifsTime(ah, ahp->ah_sifstime);
|
|
if (ahp->ah_slottime != (u_int) -1)
|
|
ar5212SetSlotTime(ah, ahp->ah_slottime);
|
|
if (ahp->ah_acktimeout != (u_int) -1)
|
|
ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
|
|
if (ahp->ah_ctstimeout != (u_int) -1)
|
|
ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
|
|
if (AH_PRIVATE(ah)->ah_diagreg != 0)
|
|
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
|
|
#if 0 /* XXX Todo */
|
|
if (ahp->ah_globaltxtimeout != (u_int) -1)
|
|
ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Places the hardware into reset and then pulls it out of reset
|
|
*/
|
|
HAL_BOOL
|
|
ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
|
|
/*
|
|
* Warm reset is optimistic.
|
|
*/
|
|
if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
|
|
ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
|
|
if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
|
|
return AH_FALSE;
|
|
} else {
|
|
if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/* Bring out of sleep mode (AGAIN) */
|
|
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
|
|
ar5416InitPLL(ah, chan);
|
|
|
|
/*
|
|
* Perform warm reset before the mode/PLL/turbo registers
|
|
* are changed in order to deactivate the radio. Mode changes
|
|
* with an active radio can result in corrupted shifts to the
|
|
* radio device.
|
|
*/
|
|
if (chan != AH_NULL) {
|
|
uint32_t rfMode;
|
|
|
|
/* treat channel B as channel G , no B mode suport in owl */
|
|
rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
|
|
AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
|
|
if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
|
|
/* phy mode bits for 5GHz channels require Fast Clock */
|
|
rfMode |= AR_PHY_MODE_DYNAMIC
|
|
| AR_PHY_MODE_DYN_CCK_DISABLE;
|
|
} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
|
|
rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
|
|
AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
|
|
}
|
|
OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Delta slope coefficient computation.
|
|
* Required for OFDM operation.
|
|
*/
|
|
static void
|
|
ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
|
|
uint32_t *coef_mantissa, uint32_t *coef_exponent)
|
|
{
|
|
#define COEF_SCALE_S 24
|
|
uint32_t coef_exp, coef_man;
|
|
/*
|
|
* ALGO -> coef_exp = 14-floor(log2(coef));
|
|
* floor(log2(x)) is the highest set bit position
|
|
*/
|
|
for (coef_exp = 31; coef_exp > 0; coef_exp--)
|
|
if ((coef_scaled >> coef_exp) & 0x1)
|
|
break;
|
|
/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
|
|
HALASSERT(coef_exp);
|
|
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
|
|
|
|
/*
|
|
* ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
|
|
* The coefficient is already shifted up for scaling
|
|
*/
|
|
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
|
|
|
|
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
|
|
*coef_exponent = coef_exp - 16;
|
|
|
|
#undef COEF_SCALE_S
|
|
}
|
|
|
|
void
|
|
ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
#define INIT_CLOCKMHZSCALED 0x64000000
|
|
uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
|
|
uint32_t clockMhzScaled;
|
|
|
|
CHAN_CENTERS centers;
|
|
|
|
/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
|
|
/* scale for selected channel bandwidth */
|
|
clockMhzScaled = INIT_CLOCKMHZSCALED;
|
|
if (IEEE80211_IS_CHAN_TURBO(chan))
|
|
clockMhzScaled <<= 1;
|
|
else if (IEEE80211_IS_CHAN_HALF(chan))
|
|
clockMhzScaled >>= 1;
|
|
else if (IEEE80211_IS_CHAN_QUARTER(chan))
|
|
clockMhzScaled >>= 2;
|
|
|
|
/*
|
|
* ALGO -> coef = 1e8/fcarrier*fclock/40;
|
|
* scaled coef to provide precision for this floating calculation
|
|
*/
|
|
ar5416GetChannelCenters(ah, chan, ¢ers);
|
|
coef_scaled = clockMhzScaled / centers.synth_center;
|
|
|
|
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
|
|
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
|
|
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
|
|
|
|
/*
|
|
* For Short GI,
|
|
* scaled coeff is 9/10 that of normal coeff
|
|
*/
|
|
coef_scaled = (9 * coef_scaled)/10;
|
|
|
|
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
|
|
|
|
/* for short gi */
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
|
|
AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
|
|
AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
|
|
#undef INIT_CLOCKMHZSCALED
|
|
}
|
|
|
|
/*
|
|
* Set a limit on the overall output power. Used for dynamic
|
|
* transmit power control and the like.
|
|
*
|
|
* NB: limit is in units of 0.5 dbM.
|
|
*/
|
|
HAL_BOOL
|
|
ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
|
|
{
|
|
uint16_t dummyXpdGains[2];
|
|
|
|
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
|
|
return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
|
|
dummyXpdGains);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5416GetChipPowerLimits(struct ath_hal *ah,
|
|
struct ieee80211_channel *chan)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
int16_t minPower, maxPower;
|
|
|
|
/*
|
|
* Get Pier table max and min powers.
|
|
*/
|
|
if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
|
|
/* NB: rf code returns 1/4 dBm units, convert */
|
|
chan->ic_maxpower = maxPower / 2;
|
|
chan->ic_minpower = minPower / 2;
|
|
} else {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: no min/max power for %u/0x%x\n",
|
|
__func__, chan->ic_freq, chan->ic_flags);
|
|
chan->ic_maxpower = AR5416_MAX_RATE_POWER;
|
|
chan->ic_minpower = 0;
|
|
}
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
"Chan %d: MaxPow = %d MinPow = %d\n",
|
|
chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/* XXX gag, this is sick */
|
|
typedef enum Ar5416_Rates {
|
|
rate6mb, rate9mb, rate12mb, rate18mb,
|
|
rate24mb, rate36mb, rate48mb, rate54mb,
|
|
rate1l, rate2l, rate2s, rate5_5l,
|
|
rate5_5s, rate11l, rate11s, rateXr,
|
|
rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
|
|
rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
|
|
rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
|
|
rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
|
|
rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
|
|
Ar5416RateSize
|
|
} AR5416_RATES;
|
|
|
|
/**************************************************************
|
|
* ar5416SetTransmitPower
|
|
*
|
|
* Set the transmit power in the baseband for the given
|
|
* operating channel and mode.
|
|
*/
|
|
HAL_BOOL
|
|
ar5416SetTransmitPower(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
|
|
{
|
|
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
|
|
#define N(a) (sizeof (a) / sizeof (a[0]))
|
|
|
|
MODAL_EEP_HEADER *pModal;
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
int16_t ratesArray[Ar5416RateSize];
|
|
int16_t txPowerIndexOffset = 0;
|
|
uint8_t ht40PowerIncForPdadc = 2;
|
|
int i;
|
|
|
|
uint16_t cfgCtl;
|
|
uint16_t powerLimit;
|
|
uint16_t twiceAntennaReduction;
|
|
uint16_t twiceMaxRegulatoryPower;
|
|
int16_t maxPower;
|
|
HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ar5416eeprom *pEepData = &ee->ee_base;
|
|
|
|
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
|
|
|
|
/* Setup info for the actual eeprom */
|
|
OS_MEMZERO(ratesArray, sizeof(ratesArray));
|
|
cfgCtl = ath_hal_getctl(ah, chan);
|
|
powerLimit = chan->ic_maxregpower * 2;
|
|
twiceAntennaReduction = chan->ic_maxantgain;
|
|
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
|
|
pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
|
|
__func__,chan->ic_freq, cfgCtl );
|
|
|
|
if (IS_EEP_MINOR_V2(ah)) {
|
|
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
|
|
}
|
|
|
|
if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
|
|
&ratesArray[0],cfgCtl,
|
|
twiceAntennaReduction,
|
|
twiceMaxRegulatoryPower, powerLimit)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: unable to set tx power per rate table\n", __func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
if (!ar5416SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
|
|
__func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
|
|
}
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
|
|
}
|
|
|
|
ahp->ah_tx6PowerInHalfDbm = maxPower;
|
|
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
|
|
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
|
|
|
|
/*
|
|
* txPowerIndexOffset is set by the SetPowerTable() call -
|
|
* adjust the rate table (0 offset if rates EEPROM not loaded)
|
|
*/
|
|
for (i = 0; i < N(ratesArray); i++) {
|
|
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
|
|
if (ratesArray[i] > AR5416_MAX_RATE_POWER)
|
|
ratesArray[i] = AR5416_MAX_RATE_POWER;
|
|
}
|
|
|
|
#ifdef AH_EEPROM_DUMP
|
|
ar5416PrintPowerPerRate(ah, ratesArray);
|
|
#endif
|
|
|
|
/* Write the OFDM power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
|
|
POW_SM(ratesArray[rate18mb], 24)
|
|
| POW_SM(ratesArray[rate12mb], 16)
|
|
| POW_SM(ratesArray[rate9mb], 8)
|
|
| POW_SM(ratesArray[rate6mb], 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
|
|
POW_SM(ratesArray[rate54mb], 24)
|
|
| POW_SM(ratesArray[rate48mb], 16)
|
|
| POW_SM(ratesArray[rate36mb], 8)
|
|
| POW_SM(ratesArray[rate24mb], 0)
|
|
);
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
/* Write the CCK power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
|
|
POW_SM(ratesArray[rate2s], 24)
|
|
| POW_SM(ratesArray[rate2l], 16)
|
|
| POW_SM(ratesArray[rateXr], 8) /* XR target power */
|
|
| POW_SM(ratesArray[rate1l], 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
|
|
POW_SM(ratesArray[rate11s], 24)
|
|
| POW_SM(ratesArray[rate11l], 16)
|
|
| POW_SM(ratesArray[rate5_5s], 8)
|
|
| POW_SM(ratesArray[rate5_5l], 0)
|
|
);
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
|
|
__func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
|
|
OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
|
|
}
|
|
|
|
/* Write the HT20 power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
|
|
POW_SM(ratesArray[rateHt20_3], 24)
|
|
| POW_SM(ratesArray[rateHt20_2], 16)
|
|
| POW_SM(ratesArray[rateHt20_1], 8)
|
|
| POW_SM(ratesArray[rateHt20_0], 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
|
|
POW_SM(ratesArray[rateHt20_7], 24)
|
|
| POW_SM(ratesArray[rateHt20_6], 16)
|
|
| POW_SM(ratesArray[rateHt20_5], 8)
|
|
| POW_SM(ratesArray[rateHt20_4], 0)
|
|
);
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
/* Write the HT40 power per rate set */
|
|
/* Correct PAR difference between HT40 and HT20/LEGACY */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
|
|
POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
|
|
| POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
|
|
| POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
|
|
| POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
|
|
);
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
|
|
POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
|
|
| POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
|
|
| POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
|
|
| POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
|
|
);
|
|
/* Write the Dup/Ext 40 power per rate set */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
|
|
POW_SM(ratesArray[rateExtOfdm], 24)
|
|
| POW_SM(ratesArray[rateExtCck], 16)
|
|
| POW_SM(ratesArray[rateDupOfdm], 8)
|
|
| POW_SM(ratesArray[rateDupCck], 0)
|
|
);
|
|
}
|
|
|
|
/* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
|
|
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
|
|
POW_SM(pModal->pwrDecreaseFor3Chain, 6)
|
|
| POW_SM(pModal->pwrDecreaseFor2Chain, 0)
|
|
);
|
|
return AH_TRUE;
|
|
#undef POW_SM
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Exported call to check for a recent gain reading and return
|
|
* the current state of the thermal calibration gain engine.
|
|
*/
|
|
HAL_RFGAIN
|
|
ar5416GetRfgain(struct ath_hal *ah)
|
|
{
|
|
return HAL_RFGAIN_INACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Places all of hardware into reset
|
|
*/
|
|
HAL_BOOL
|
|
ar5416Disable(struct ath_hal *ah)
|
|
{
|
|
if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
|
|
return AH_FALSE;
|
|
return ar5416SetResetReg(ah, HAL_RESET_COLD);
|
|
}
|
|
|
|
/*
|
|
* Places the PHY and Radio chips into reset. A full reset
|
|
* must be called to leave this state. The PCI/MAC/PCU are
|
|
* not placed into reset as we must receive interrupt to
|
|
* re-enable the hardware.
|
|
*/
|
|
HAL_BOOL
|
|
ar5416PhyDisable(struct ath_hal *ah)
|
|
{
|
|
return ar5416SetResetReg(ah, HAL_RESET_WARM);
|
|
}
|
|
|
|
/*
|
|
* Write the given reset bit mask into the reset register
|
|
*/
|
|
HAL_BOOL
|
|
ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
|
|
{
|
|
switch (type) {
|
|
case HAL_RESET_POWER_ON:
|
|
return ar5416SetResetPowerOn(ah);
|
|
case HAL_RESET_WARM:
|
|
case HAL_RESET_COLD:
|
|
return ar5416SetReset(ah, type);
|
|
default:
|
|
HALASSERT(AH_FALSE);
|
|
return AH_FALSE;
|
|
}
|
|
}
|
|
|
|
static HAL_BOOL
|
|
ar5416SetResetPowerOn(struct ath_hal *ah)
|
|
{
|
|
/* Power On Reset (Hard Reset) */
|
|
|
|
/*
|
|
* Set force wake
|
|
*
|
|
* If the MAC was running, previously calling
|
|
* reset will wake up the MAC but it may go back to sleep
|
|
* before we can start polling.
|
|
* Set force wake stops that
|
|
* This must be called before initiating a hard reset.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
|
|
|
|
/*
|
|
* RTC reset and clear
|
|
*/
|
|
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
|
|
OS_REG_WRITE(ah, AR_RTC_RESET, 0);
|
|
OS_DELAY(20);
|
|
OS_REG_WRITE(ah, AR_RC, 0);
|
|
|
|
OS_REG_WRITE(ah, AR_RTC_RESET, 1);
|
|
|
|
/*
|
|
* Poll till RTC is ON
|
|
*/
|
|
if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
return ar5416SetReset(ah, HAL_RESET_COLD);
|
|
}
|
|
|
|
static HAL_BOOL
|
|
ar5416SetReset(struct ath_hal *ah, int type)
|
|
{
|
|
uint32_t tmpReg, mask;
|
|
|
|
/*
|
|
* Force wake
|
|
*/
|
|
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
|
|
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
|
|
|
|
/*
|
|
* Reset AHB
|
|
*/
|
|
tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
|
|
if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
|
|
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
|
|
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
|
|
}
|
|
|
|
/*
|
|
* Set Mac(BB,Phy) Warm Reset
|
|
*/
|
|
switch (type) {
|
|
case HAL_RESET_WARM:
|
|
OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
|
|
break;
|
|
case HAL_RESET_COLD:
|
|
OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
|
|
break;
|
|
default:
|
|
HALASSERT(AH_FALSE);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Clear resets and force wakeup
|
|
*/
|
|
OS_REG_WRITE(ah, AR_RTC_RC, 0);
|
|
if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/* Clear AHB reset */
|
|
OS_REG_WRITE(ah, AR_RC, 0);
|
|
|
|
if (type == HAL_RESET_COLD) {
|
|
if (isBigEndian()) {
|
|
/*
|
|
* Set CFG, little-endian for register
|
|
* and descriptor accesses.
|
|
*/
|
|
mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
|
|
#ifndef AH_NEED_DESC_SWAP
|
|
mask |= AR_CFG_SWTD;
|
|
#endif
|
|
HALDEBUG(ah, HAL_DEBUG_RESET,
|
|
"%s Applying descriptor swap\n", __func__);
|
|
OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
|
|
} else
|
|
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
|
|
}
|
|
|
|
ar5416InitPLL(ah, AH_NULL);
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
void
|
|
ar5416InitChainMasks(struct ath_hal *ah)
|
|
{
|
|
if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
|
|
AH5416(ah)->ah_tx_chainmask == 0x5)
|
|
OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
|
|
/* Setup Chain Masks */
|
|
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
|
|
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
|
|
OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
|
|
}
|
|
|
|
void
|
|
ar5416RestoreChainMask(struct ath_hal *ah)
|
|
{
|
|
int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
|
|
|
|
if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
|
|
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
|
|
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the chainmask based on the current channel configuration.
|
|
*
|
|
* XXX ath9k checks bluetooth co-existence here
|
|
* XXX ath9k checks whether the current state is "off-channel".
|
|
* XXX ath9k sticks the hardware into 1x1 mode for legacy;
|
|
* we're going to leave multi-RX on for multi-path cancellation.
|
|
*/
|
|
static void
|
|
ar5416UpdateChainMasks(struct ath_hal *ah, HAL_BOOL is_ht)
|
|
{
|
|
struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
|
|
HAL_CAPABILITIES *pCap = &ahpriv->ah_caps;
|
|
|
|
if (is_ht) {
|
|
AH5416(ah)->ah_tx_chainmask = pCap->halTxChainMask;
|
|
} else {
|
|
AH5416(ah)->ah_tx_chainmask = 1;
|
|
}
|
|
AH5416(ah)->ah_rx_chainmask = pCap->halRxChainMask;
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "TX chainmask: 0x%x; RX chainmask: 0x%x\n",
|
|
AH5416(ah)->ah_tx_chainmask,
|
|
AH5416(ah)->ah_rx_chainmask);
|
|
}
|
|
|
|
#ifndef IS_5GHZ_FAST_CLOCK_EN
|
|
#define IS_5GHZ_FAST_CLOCK_EN(ah, chan) AH_FALSE
|
|
#endif
|
|
|
|
static void
|
|
ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
uint32_t pll;
|
|
|
|
if (AR_SREV_MERLIN_20(ah) &&
|
|
chan != AH_NULL && IEEE80211_IS_CHAN_5GHZ(chan)) {
|
|
/*
|
|
* PLL WAR for Merlin 2.0/2.1
|
|
* When doing fast clock, set PLL to 0x142c
|
|
* Else, set PLL to 0x2850 to prevent reset-to-reset variation
|
|
*/
|
|
pll = IS_5GHZ_FAST_CLOCK_EN(ah, chan) ? 0x142c : 0x2850;
|
|
} else if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
|
|
pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
|
|
if (chan != AH_NULL) {
|
|
if (IEEE80211_IS_CHAN_HALF(chan))
|
|
pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
|
|
else if (IEEE80211_IS_CHAN_QUARTER(chan))
|
|
pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
|
|
else if (IEEE80211_IS_CHAN_5GHZ(chan))
|
|
pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
|
|
else
|
|
pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
|
|
} else
|
|
pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
|
|
} else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
|
|
pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
|
|
if (chan != AH_NULL) {
|
|
if (IEEE80211_IS_CHAN_HALF(chan))
|
|
pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
|
|
else if (IEEE80211_IS_CHAN_QUARTER(chan))
|
|
pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
|
|
else if (IEEE80211_IS_CHAN_5GHZ(chan))
|
|
pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
|
|
else
|
|
pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
|
|
} else
|
|
pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
|
|
} else {
|
|
pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
|
|
if (chan != AH_NULL) {
|
|
if (IEEE80211_IS_CHAN_HALF(chan))
|
|
pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
|
|
else if (IEEE80211_IS_CHAN_QUARTER(chan))
|
|
pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
|
|
else if (IEEE80211_IS_CHAN_5GHZ(chan))
|
|
pll |= SM(0xa, AR_RTC_PLL_DIV);
|
|
else
|
|
pll |= SM(0xb, AR_RTC_PLL_DIV);
|
|
} else
|
|
pll |= SM(0xb, AR_RTC_PLL_DIV);
|
|
}
|
|
OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
|
|
|
|
/* TODO:
|
|
* For multi-band owl, switch between bands by reiniting the PLL.
|
|
*/
|
|
|
|
OS_DELAY(RTC_PLL_SETTLE_DELAY);
|
|
|
|
OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
|
|
}
|
|
|
|
static void
|
|
ar5416SetDefGainValues(struct ath_hal *ah,
|
|
const MODAL_EEP_HEADER *pModal,
|
|
const struct ar5416eeprom *eep,
|
|
uint8_t txRxAttenLocal, int regChainOffset, int i)
|
|
{
|
|
if (IS_EEP_MINOR_V3(ah)) {
|
|
txRxAttenLocal = pModal->txRxAttenCh[i];
|
|
|
|
if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
|
|
pModal->bswMargin[i]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
|
|
pModal->bswAtten[i]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
|
|
pModal->xatten2Margin[i]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_DB,
|
|
pModal->xatten2Db[i]);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
|
|
~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
|
|
| SM(pModal-> bswMargin[i],
|
|
AR_PHY_GAIN_2GHZ_BSW_MARGIN));
|
|
OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
|
|
~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
|
|
| SM(pModal->bswAtten[i],
|
|
AR_PHY_GAIN_2GHZ_BSW_ATTEN));
|
|
}
|
|
}
|
|
|
|
if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
|
|
OS_REG_RMW_FIELD(ah,
|
|
AR_PHY_RXGAIN + regChainOffset,
|
|
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
|
|
OS_REG_RMW_FIELD(ah,
|
|
AR_PHY_RXGAIN + regChainOffset,
|
|
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
|
|
} else {
|
|
OS_REG_WRITE(ah,
|
|
AR_PHY_RXGAIN + regChainOffset,
|
|
(OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
|
|
~AR_PHY_RXGAIN_TXRX_ATTEN)
|
|
| SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
|
|
OS_REG_WRITE(ah,
|
|
AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
|
|
~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
|
|
SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Read EEPROM header info and program the device for correct operation
|
|
* given the channel value.
|
|
*/
|
|
HAL_BOOL
|
|
ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
const struct ar5416eeprom *eep = &ee->ee_base;
|
|
const MODAL_EEP_HEADER *pModal;
|
|
int i, regChainOffset;
|
|
uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
|
|
|
|
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
|
|
pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
|
|
|
|
/* NB: workaround for eeprom versions <= 14.2 */
|
|
txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
|
|
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
|
|
if (AR_SREV_MERLIN(ah)) {
|
|
if (i >= 2) break;
|
|
}
|
|
if (AR_SREV_OWL_20_OR_LATER(ah) &&
|
|
(AH5416(ah)->ah_rx_chainmask == 0x5 ||
|
|
AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
|
|
/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
|
|
* only chains 0 and 2 populated
|
|
*/
|
|
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
|
|
} else {
|
|
regChainOffset = i * 0x1000;
|
|
}
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
|
|
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
|
|
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
|
|
SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
|
|
SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
|
|
|
|
/*
|
|
* Large signal upgrade.
|
|
* XXX update
|
|
*/
|
|
|
|
if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah))
|
|
ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
|
|
|
|
}
|
|
|
|
if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
|
|
} else {
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
|
|
}
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS);
|
|
OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON);
|
|
}
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
|
|
|
|
if (! AR_SREV_MERLIN_20_OR_LATER(ah))
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
|
|
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
|
|
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
|
|
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
|
|
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
|
|
|
|
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
|
|
pModal->thresh62);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
|
|
pModal->thresh62);
|
|
} else {
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
|
|
pModal->thresh62);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
|
|
pModal->thresh62);
|
|
}
|
|
|
|
/* Minor Version Specific application */
|
|
if (IS_EEP_MINOR_V2(ah)) {
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
|
|
}
|
|
|
|
if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
|
|
/* Overwrite switch settling with HT40 value */
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
|
|
|
|
if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
|
|
|
|
if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan))
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, eep->baseEepHeader.dacLpMode);
|
|
else if (eep->baseEepHeader.dacHiPwrMode_5G)
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
|
|
else
|
|
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, eep->baseEepHeader.dacLpMode);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, pModal->miscBits >> 2);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK, eep->baseEepHeader.desiredScaleCCK);
|
|
}
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Helper functions common for AP/CB/XB
|
|
*/
|
|
|
|
/*
|
|
* ar5416SetPowerPerRateTable
|
|
*
|
|
* Sets the transmit power in the baseband for the given
|
|
* operating channel and mode.
|
|
*/
|
|
static HAL_BOOL
|
|
ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
|
|
const struct ieee80211_channel *chan,
|
|
int16_t *ratesArray, uint16_t cfgCtl,
|
|
uint16_t AntennaReduction,
|
|
uint16_t twiceMaxRegulatoryPower,
|
|
uint16_t powerLimit)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
/* Local defines to distinguish between extension and control CTL's */
|
|
#define EXT_ADDITIVE (0x8000)
|
|
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
|
|
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
|
|
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
|
|
|
|
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
|
|
int i;
|
|
int16_t twiceLargestAntenna;
|
|
CAL_CTL_DATA *rep;
|
|
CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
|
|
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
|
|
CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
|
|
int16_t scaledPower, minCtlPower;
|
|
|
|
#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
|
|
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
|
|
static const uint16_t ctlModesFor11a[] = {
|
|
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
|
|
};
|
|
static const uint16_t ctlModesFor11g[] = {
|
|
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
|
|
};
|
|
const uint16_t *pCtlMode;
|
|
uint16_t numCtlModes, ctlMode, freq;
|
|
CHAN_CENTERS centers;
|
|
|
|
ar5416GetChannelCenters(ah, chan, ¢ers);
|
|
|
|
/* Compute TxPower reduction due to Antenna Gain */
|
|
|
|
twiceLargestAntenna = AH_MAX(AH_MAX(
|
|
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
|
|
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
|
|
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
|
|
#if 0
|
|
/* Turn it back on if we need to calculate per chain antenna gain reduction */
|
|
/* Use only if the expected gain > 6dbi */
|
|
/* Chain 0 is always used */
|
|
twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
|
|
|
|
/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
|
|
if (ahp->ah_tx_chainmask & 0x2)
|
|
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
|
|
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
|
|
|
|
if (ahp->ah_tx_chainmask & 0x4)
|
|
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
|
|
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
|
|
#endif
|
|
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
|
|
|
|
/* XXX setup for 5212 use (really used?) */
|
|
ath_hal_eepromSet(ah,
|
|
IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
|
|
twiceLargestAntenna);
|
|
|
|
/*
|
|
* scaledPower is the minimum of the user input power level and
|
|
* the regulatory allowed power level
|
|
*/
|
|
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
|
|
|
|
/* Reduce scaled Power by number of chains active to get to per chain tx power level */
|
|
/* TODO: better value than these? */
|
|
switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
|
|
break;
|
|
case 3:
|
|
scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
|
|
break;
|
|
default:
|
|
return AH_FALSE; /* Unsupported number of chains */
|
|
}
|
|
|
|
scaledPower = AH_MAX(0, scaledPower);
|
|
|
|
/* Get target powers from EEPROM - our baseline for TX Power */
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
/* Setup for CTL modes */
|
|
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
|
|
pCtlMode = ctlModesFor11g;
|
|
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
|
|
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
|
|
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
|
|
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
|
|
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
|
|
|
|
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
|
|
AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
|
|
/* Get target powers for extension channels */
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
|
|
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
|
|
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
|
|
}
|
|
} else {
|
|
/* Setup for CTL modes */
|
|
numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
|
|
pCtlMode = ctlModesFor11a;
|
|
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
|
|
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
|
|
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
|
|
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
|
|
|
|
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
|
|
AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
|
|
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For MIMO, need to apply regulatory caps individually across dynamically
|
|
* running modes: CCK, OFDM, HT20, HT40
|
|
*
|
|
* The outer loop walks through each possible applicable runtime mode.
|
|
* The inner loop walks through each ctlIndex entry in EEPROM.
|
|
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
|
|
*
|
|
*/
|
|
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
|
|
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
|
|
(pCtlMode[ctlMode] == CTL_2GHT40);
|
|
if (isHt40CtlMode) {
|
|
freq = centers.ctl_center;
|
|
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
|
|
freq = centers.ext_center;
|
|
} else {
|
|
freq = centers.ctl_center;
|
|
}
|
|
|
|
/* walk through each CTL index stored in EEPROM */
|
|
for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
|
|
uint16_t twiceMinEdgePower;
|
|
|
|
/* compare test group from regulatory channel list with test mode from pCtlMode list */
|
|
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
|
|
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
|
|
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
|
|
rep = &(pEepData->ctlData[i]);
|
|
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
|
|
rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
|
|
IEEE80211_IS_CHAN_2GHZ(chan));
|
|
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
|
|
/* Find the minimum of all CTL edge powers that apply to this channel */
|
|
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
|
|
} else {
|
|
/* specific */
|
|
twiceMaxEdgePower = twiceMinEdgePower;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
|
|
/* Apply ctl mode to correct target power set */
|
|
switch(pCtlMode[ctlMode]) {
|
|
case CTL_11B:
|
|
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
|
|
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11A:
|
|
case CTL_11G:
|
|
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
|
|
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_5GHT20:
|
|
case CTL_2GHT20:
|
|
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
|
|
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11B_EXT:
|
|
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
|
|
break;
|
|
case CTL_11A_EXT:
|
|
case CTL_11G_EXT:
|
|
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
|
|
break;
|
|
case CTL_5GHT40:
|
|
case CTL_2GHT40:
|
|
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
|
|
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
default:
|
|
return AH_FALSE;
|
|
break;
|
|
}
|
|
} /* end ctl mode checking */
|
|
|
|
/* Set rates Array from collected data */
|
|
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
|
|
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
|
|
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
|
|
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
|
|
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
|
|
|
|
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
|
|
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
|
|
}
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
|
|
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
|
|
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
|
|
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
|
|
}
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
|
|
ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
|
|
}
|
|
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
|
|
}
|
|
}
|
|
return AH_TRUE;
|
|
#undef EXT_ADDITIVE
|
|
#undef CTL_11A_EXT
|
|
#undef CTL_11G_EXT
|
|
#undef CTL_11B_EXT
|
|
#undef SUB_NUM_CTL_MODES_AT_5G_40
|
|
#undef SUB_NUM_CTL_MODES_AT_2G_40
|
|
#undef N
|
|
}
|
|
|
|
/**************************************************************************
|
|
* fbin2freq
|
|
*
|
|
* Get channel value from binary representation held in eeprom
|
|
* RETURNS: the frequency in MHz
|
|
*/
|
|
static uint16_t
|
|
fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
|
|
{
|
|
/*
|
|
* Reserved value 0xFF provides an empty definition both as
|
|
* an fbin and as a frequency - do not convert
|
|
*/
|
|
if (fbin == AR5416_BCHAN_UNUSED) {
|
|
return fbin;
|
|
}
|
|
|
|
return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
|
|
}
|
|
|
|
/*
|
|
* ar5416GetMaxEdgePower
|
|
*
|
|
* Find the maximum conformance test limit for the given channel and CTL info
|
|
*/
|
|
static uint16_t
|
|
ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
|
|
{
|
|
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
|
|
int i;
|
|
|
|
/* Get the edge power */
|
|
for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
|
|
/*
|
|
* If there's an exact channel match or an inband flag set
|
|
* on the lower channel use the given rdEdgePower
|
|
*/
|
|
if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
|
|
twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
|
|
break;
|
|
} else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
|
|
if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
|
|
twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
|
|
}
|
|
/* Leave loop - no more affecting edges possible in this monotonic increasing list */
|
|
break;
|
|
}
|
|
}
|
|
HALASSERT(twiceMaxEdgePower > 0);
|
|
return twiceMaxEdgePower;
|
|
}
|
|
|
|
/**************************************************************
|
|
* ar5416GetTargetPowers
|
|
*
|
|
* Return the rates of target power for the given target power table
|
|
* channel, and number of channels
|
|
*/
|
|
void
|
|
ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
|
|
CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
|
|
CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
|
|
HAL_BOOL isHt40Target)
|
|
{
|
|
uint16_t clo, chi;
|
|
int i;
|
|
int matchIndex = -1, lowIndex = -1;
|
|
uint16_t freq;
|
|
CHAN_CENTERS centers;
|
|
|
|
ar5416GetChannelCenters(ah, chan, ¢ers);
|
|
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
|
|
|
|
/* Copy the target powers into the temp channel list */
|
|
if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
|
|
matchIndex = 0;
|
|
} else {
|
|
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
|
|
if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
|
|
matchIndex = i;
|
|
break;
|
|
} else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
|
|
(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
|
|
{
|
|
lowIndex = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
if ((matchIndex == -1) && (lowIndex == -1)) {
|
|
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
|
|
matchIndex = i - 1;
|
|
}
|
|
}
|
|
|
|
if (matchIndex != -1) {
|
|
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
|
|
} else {
|
|
HALASSERT(lowIndex != -1);
|
|
/*
|
|
* Get the lower and upper channels, target powers,
|
|
* and interpolate between them.
|
|
*/
|
|
clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
|
|
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
|
|
|
|
for (i = 0; i < numRates; i++) {
|
|
pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
|
|
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
|
|
}
|
|
}
|
|
}
|
|
/**************************************************************
|
|
* ar5416GetTargetPowersLeg
|
|
*
|
|
* Return the four rates of target power for the given target power table
|
|
* channel, and number of channels
|
|
*/
|
|
void
|
|
ar5416GetTargetPowersLeg(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan,
|
|
CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
|
|
CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
|
|
HAL_BOOL isExtTarget)
|
|
{
|
|
uint16_t clo, chi;
|
|
int i;
|
|
int matchIndex = -1, lowIndex = -1;
|
|
uint16_t freq;
|
|
CHAN_CENTERS centers;
|
|
|
|
ar5416GetChannelCenters(ah, chan, ¢ers);
|
|
freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
|
|
|
|
/* Copy the target powers into the temp channel list */
|
|
if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
|
|
matchIndex = 0;
|
|
} else {
|
|
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
|
|
if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
|
|
matchIndex = i;
|
|
break;
|
|
} else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
|
|
(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
|
|
{
|
|
lowIndex = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
if ((matchIndex == -1) && (lowIndex == -1)) {
|
|
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
|
|
matchIndex = i - 1;
|
|
}
|
|
}
|
|
|
|
if (matchIndex != -1) {
|
|
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
|
|
} else {
|
|
HALASSERT(lowIndex != -1);
|
|
/*
|
|
* Get the lower and upper channels, target powers,
|
|
* and interpolate between them.
|
|
*/
|
|
clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
|
|
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
|
|
|
|
for (i = 0; i < numRates; i++) {
|
|
pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
|
|
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**************************************************************
|
|
* ar5416SetPowerCalTable
|
|
*
|
|
* Pull the PDADC piers from cal data and interpolate them across the given
|
|
* points as well as from the nearest pier(s) to get a power detector
|
|
* linear voltage to power level table.
|
|
*/
|
|
static HAL_BOOL
|
|
ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
|
|
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
|
|
{
|
|
CAL_DATA_PER_FREQ *pRawDataset;
|
|
uint8_t *pCalBChans = AH_NULL;
|
|
uint16_t pdGainOverlap_t2;
|
|
static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
|
|
uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
|
|
uint16_t numPiers, i, j;
|
|
int16_t tMinCalPower;
|
|
uint16_t numXpdGain, xpdMask;
|
|
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
|
|
uint32_t reg32, regOffset, regChainOffset;
|
|
|
|
OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
|
|
|
|
xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
|
|
|
|
if (IS_EEP_MINOR_V2(ah)) {
|
|
pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
|
|
} else {
|
|
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
|
|
}
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
pCalBChans = pEepData->calFreqPier2G;
|
|
numPiers = AR5416_NUM_2G_CAL_PIERS;
|
|
} else {
|
|
pCalBChans = pEepData->calFreqPier5G;
|
|
numPiers = AR5416_NUM_5G_CAL_PIERS;
|
|
}
|
|
|
|
numXpdGain = 0;
|
|
/* Calculate the value of xpdgains from the xpdGain Mask */
|
|
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
|
|
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
|
|
if (numXpdGain >= AR5416_NUM_PD_GAINS) {
|
|
HALASSERT(0);
|
|
break;
|
|
}
|
|
xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
|
|
numXpdGain++;
|
|
}
|
|
}
|
|
|
|
/* Write the detector gain biases and their number */
|
|
OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
|
|
~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
|
|
SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
|
|
SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
|
|
|
|
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
|
|
|
|
if (AR_SREV_OWL_20_OR_LATER(ah) &&
|
|
( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
|
|
/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
|
|
* only chains 0 and 2 populated
|
|
*/
|
|
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
|
|
} else {
|
|
regChainOffset = i * 0x1000;
|
|
}
|
|
|
|
if (pEepData->baseEepHeader.txMask & (1 << i)) {
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
pRawDataset = pEepData->calPierData2G[i];
|
|
} else {
|
|
pRawDataset = pEepData->calPierData5G[i];
|
|
}
|
|
|
|
ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
|
|
pCalBChans, numPiers,
|
|
pdGainOverlap_t2,
|
|
&tMinCalPower, gainBoundaries,
|
|
pdadcValues, numXpdGain);
|
|
|
|
if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
|
|
/*
|
|
* Note the pdadc table may not start at 0 dBm power, could be
|
|
* negative or greater than 0. Need to offset the power
|
|
* values by the amount of minPower for griffin
|
|
*/
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
|
|
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
|
|
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
|
|
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
|
|
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
|
|
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
|
|
}
|
|
|
|
/* Write the power values into the baseband power table */
|
|
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
|
|
((pdadcValues[4*j + 1] & 0xFF) << 8) |
|
|
((pdadcValues[4*j + 2] & 0xFF) << 16) |
|
|
((pdadcValues[4*j + 3] & 0xFF) << 24) ;
|
|
OS_REG_WRITE(ah, regOffset, reg32);
|
|
|
|
#ifdef PDADC_DUMP
|
|
ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
|
|
i,
|
|
4*j, pdadcValues[4*j],
|
|
4*j+1, pdadcValues[4*j + 1],
|
|
4*j+2, pdadcValues[4*j + 2],
|
|
4*j+3, pdadcValues[4*j + 3]);
|
|
#endif
|
|
regOffset += 4;
|
|
}
|
|
}
|
|
}
|
|
*pTxPowerIndexOffset = 0;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/**************************************************************
|
|
* ar5416GetGainBoundariesAndPdadcs
|
|
*
|
|
* Uses the data points read from EEPROM to reconstruct the pdadc power table
|
|
* Called by ar5416SetPowerCalTable only.
|
|
*/
|
|
static void
|
|
ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan,
|
|
CAL_DATA_PER_FREQ *pRawDataSet,
|
|
uint8_t * bChans, uint16_t availPiers,
|
|
uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
|
|
uint8_t * pPDADCValues, uint16_t numXpdGains)
|
|
{
|
|
|
|
int i, j, k;
|
|
int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
|
|
uint16_t idxL, idxR, numPiers; /* Pier indexes */
|
|
|
|
/* filled out Vpd table for all pdGains (chanL) */
|
|
static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
|
|
/* filled out Vpd table for all pdGains (chanR) */
|
|
static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
|
|
/* filled out Vpd table for all pdGains (interpolated) */
|
|
static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
|
|
uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
|
|
uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
|
|
uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
|
|
int16_t vpdStep;
|
|
int16_t tmpVal;
|
|
uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
|
|
HAL_BOOL match;
|
|
int16_t minDelta = 0;
|
|
CHAN_CENTERS centers;
|
|
|
|
ar5416GetChannelCenters(ah, chan, ¢ers);
|
|
|
|
/* Trim numPiers for the number of populated channel Piers */
|
|
for (numPiers = 0; numPiers < availPiers; numPiers++) {
|
|
if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Find pier indexes around the current channel */
|
|
match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
|
|
bChans, numPiers, &idxL, &idxR);
|
|
|
|
if (match) {
|
|
/* Directly fill both vpd tables from the matching index */
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
|
|
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
|
|
ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
|
|
pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
|
|
}
|
|
} else {
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
pVpdL = pRawDataSet[idxL].vpdPdg[i];
|
|
pPwrL = pRawDataSet[idxL].pwrPdg[i];
|
|
pVpdR = pRawDataSet[idxR].vpdPdg[i];
|
|
pPwrR = pRawDataSet[idxR].pwrPdg[i];
|
|
|
|
/* Start Vpd interpolation from the max of the minimum powers */
|
|
minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
|
|
|
|
/* End Vpd interpolation from the min of the max powers */
|
|
maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
|
|
HALASSERT(maxPwrT4[i] > minPwrT4[i]);
|
|
|
|
/* Fill pier Vpds */
|
|
ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
|
|
ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
|
|
|
|
/* Interpolate the final vpd */
|
|
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
|
|
vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)),
|
|
bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
|
|
}
|
|
}
|
|
}
|
|
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
|
|
|
|
k = 0; /* index for the final table */
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
if (i == (numXpdGains - 1)) {
|
|
pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
|
|
} else {
|
|
pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
|
|
}
|
|
|
|
pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
|
|
|
|
/* NB: only applies to owl 1.0 */
|
|
if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
|
|
/*
|
|
* fix the gain delta, but get a delta that can be applied to min to
|
|
* keep the upper power values accurate, don't think max needs to
|
|
* be adjusted because should not be at that area of the table?
|
|
*/
|
|
minDelta = pPdGainBoundaries[0] - 23;
|
|
pPdGainBoundaries[0] = 23;
|
|
}
|
|
else {
|
|
minDelta = 0;
|
|
}
|
|
|
|
/* Find starting index for this pdGain */
|
|
if (i == 0) {
|
|
ss = 0; /* for the first pdGain, start from index 0 */
|
|
} else {
|
|
/* need overlap entries extrapolated below. */
|
|
ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
|
|
}
|
|
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
|
|
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
|
|
/*
|
|
*-ve ss indicates need to extrapolate data below for this pdGain
|
|
*/
|
|
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
|
|
pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
|
|
ss++;
|
|
}
|
|
|
|
sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
|
|
tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
|
|
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
|
|
|
|
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
pPDADCValues[k++] = vpdTableI[i][ss++];
|
|
}
|
|
|
|
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
|
|
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
|
|
/*
|
|
* for last gain, pdGainBoundary == Pmax_t2, so will
|
|
* have to extrapolate
|
|
*/
|
|
if (tgtIndex >= maxIndex) { /* need to extrapolate above */
|
|
while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
|
|
(ss - maxIndex +1) * vpdStep));
|
|
pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
|
|
ss++;
|
|
}
|
|
} /* extrapolated above */
|
|
} /* for all pdGainUsed */
|
|
|
|
/* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
|
|
while (i < AR5416_PD_GAINS_IN_MASK) {
|
|
pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
|
|
i++;
|
|
}
|
|
|
|
while (k < AR5416_NUM_PDADC_VALUES) {
|
|
pPDADCValues[k] = pPDADCValues[k-1];
|
|
k++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**************************************************************
|
|
* getLowerUppderIndex
|
|
*
|
|
* Return indices surrounding the value in sorted integer lists.
|
|
* Requirement: the input list must be monotonically increasing
|
|
* and populated up to the list size
|
|
* Returns: match is set if an index in the array matches exactly
|
|
* or a the target is before or after the range of the array.
|
|
*/
|
|
HAL_BOOL
|
|
getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
|
|
uint16_t *indexL, uint16_t *indexR)
|
|
{
|
|
uint16_t i;
|
|
|
|
/*
|
|
* Check first and last elements for beyond ordered array cases.
|
|
*/
|
|
if (target <= pList[0]) {
|
|
*indexL = *indexR = 0;
|
|
return AH_TRUE;
|
|
}
|
|
if (target >= pList[listSize-1]) {
|
|
*indexL = *indexR = (uint16_t)(listSize - 1);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/* look for value being near or between 2 values in list */
|
|
for (i = 0; i < listSize - 1; i++) {
|
|
/*
|
|
* If value is close to the current value of the list
|
|
* then target is not between values, it is one of the values
|
|
*/
|
|
if (pList[i] == target) {
|
|
*indexL = *indexR = i;
|
|
return AH_TRUE;
|
|
}
|
|
/*
|
|
* Look for value being between current value and next value
|
|
* if so return these 2 values
|
|
*/
|
|
if (target < pList[i + 1]) {
|
|
*indexL = i;
|
|
*indexR = (uint16_t)(i + 1);
|
|
return AH_FALSE;
|
|
}
|
|
}
|
|
HALASSERT(0);
|
|
*indexL = *indexR = 0;
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/**************************************************************
|
|
* ar5416FillVpdTable
|
|
*
|
|
* Fill the Vpdlist for indices Pmax-Pmin
|
|
* Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
|
|
*/
|
|
static HAL_BOOL
|
|
ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
|
|
uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
|
|
{
|
|
uint16_t i, k;
|
|
uint8_t currPwr = pwrMin;
|
|
uint16_t idxL, idxR;
|
|
|
|
HALASSERT(pwrMax > pwrMin);
|
|
for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
|
|
getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
|
|
&(idxL), &(idxR));
|
|
if (idxR < 1)
|
|
idxR = 1; /* extrapolate below */
|
|
if (idxL == numIntercepts - 1)
|
|
idxL = (uint16_t)(numIntercepts - 2); /* extrapolate above */
|
|
if (pPwrList[idxL] == pPwrList[idxR])
|
|
k = pVpdList[idxL];
|
|
else
|
|
k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
|
|
(pPwrList[idxR] - pPwrList[idxL]) );
|
|
HALASSERT(k < 256);
|
|
pRetVpdList[i] = (uint8_t)k;
|
|
currPwr += 2; /* half dB steps */
|
|
}
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/**************************************************************************
|
|
* interpolate
|
|
*
|
|
* Returns signed interpolated or the scaled up interpolated value
|
|
*/
|
|
static int16_t
|
|
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
|
|
int16_t targetLeft, int16_t targetRight)
|
|
{
|
|
int16_t rv;
|
|
|
|
if (srcRight == srcLeft) {
|
|
rv = targetLeft;
|
|
} else {
|
|
rv = (int16_t)( ((target - srcLeft) * targetRight +
|
|
(srcRight - target) * targetLeft) / (srcRight - srcLeft) );
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* The linux ath9k driver and (from what I've been told) the reference
|
|
* Atheros driver enables the 11n PHY by default whether or not it's
|
|
* configured.
|
|
*/
|
|
static void
|
|
ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
uint32_t phymode;
|
|
uint32_t enableDacFifo = 0;
|
|
HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
|
|
|
|
if (AR_SREV_KITE_10_OR_LATER(ah))
|
|
enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
|
|
|
|
/* Enable 11n HT, 20 MHz */
|
|
phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
|
|
| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
|
|
|
|
/* Configure baseband for dynamic 20/40 operation */
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
phymode |= AR_PHY_FC_DYN2040_EN;
|
|
|
|
/* Configure control (primary) channel at +-10MHz */
|
|
if (IEEE80211_IS_CHAN_HT40U(chan))
|
|
phymode |= AR_PHY_FC_DYN2040_PRI_CH;
|
|
#if 0
|
|
/* Configure 20/25 spacing */
|
|
if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
|
|
phymode |= AR_PHY_FC_DYN2040_EXT_CH;
|
|
#endif
|
|
macmode = HAL_HT_MACMODE_2040;
|
|
} else
|
|
macmode = HAL_HT_MACMODE_20;
|
|
OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
|
|
|
|
/* Configure MAC for 20/40 operation */
|
|
ar5416Set11nMac2040(ah, macmode);
|
|
|
|
/* global transmit timeout (25 TUs default)*/
|
|
/* XXX - put this elsewhere??? */
|
|
OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
|
|
|
|
/* carrier sense timeout */
|
|
OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
|
|
OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
|
|
}
|
|
|
|
void
|
|
ar5416GetChannelCenters(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
|
|
{
|
|
uint16_t freq = ath_hal_gethwchannel(ah, chan);
|
|
|
|
centers->ctl_center = freq;
|
|
centers->synth_center = freq;
|
|
/*
|
|
* In 20/40 phy mode, the center frequency is
|
|
* "between" the control and extension channels.
|
|
*/
|
|
if (IEEE80211_IS_CHAN_HT40U(chan)) {
|
|
centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
|
|
centers->ext_center =
|
|
centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
|
|
} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
|
|
centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
|
|
centers->ext_center =
|
|
centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
|
|
} else {
|
|
centers->ext_center = freq;
|
|
}
|
|
}
|