freebsd-skq/sys/dev/qlxgb/qla_os.c
Matt Macy d7c5a620e2 ifnet: Replace if_addr_lock rwlock with epoch + mutex
Run on LLNW canaries and tested by pho@

gallatin:
Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5
based ConnectX 4-LX NIC, I see an almost 12% improvement in received
packet rate, and a larger improvement in bytes delivered all the way
to userspace.

When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1,
I see, using nstat -I mce0 1 before the patch:

InMpps OMpps  InGbs  OGbs err TCP Est %CPU syscalls csw     irq GBfree
4.98   0.00   4.42   0.00 4235592     33   83.80 4720653 2149771   1235 247.32
4.73   0.00   4.20   0.00 4025260     33   82.99 4724900 2139833   1204 247.32
4.72   0.00   4.20   0.00 4035252     33   82.14 4719162 2132023   1264 247.32
4.71   0.00   4.21   0.00 4073206     33   83.68 4744973 2123317   1347 247.32
4.72   0.00   4.21   0.00 4061118     33   80.82 4713615 2188091   1490 247.32
4.72   0.00   4.21   0.00 4051675     33   85.29 4727399 2109011   1205 247.32
4.73   0.00   4.21   0.00 4039056     33   84.65 4724735 2102603   1053 247.32

After the patch

InMpps OMpps  InGbs  OGbs err TCP Est %CPU syscalls csw     irq GBfree
5.43   0.00   4.20   0.00 3313143     33   84.96 5434214 1900162   2656 245.51
5.43   0.00   4.20   0.00 3308527     33   85.24 5439695 1809382   2521 245.51
5.42   0.00   4.19   0.00 3316778     33   87.54 5416028 1805835   2256 245.51
5.42   0.00   4.19   0.00 3317673     33   90.44 5426044 1763056   2332 245.51
5.42   0.00   4.19   0.00 3314839     33   88.11 5435732 1792218   2499 245.52
5.44   0.00   4.19   0.00 3293228     33   91.84 5426301 1668597   2121 245.52

Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch

Reviewed by:	gallatin
Sponsored by:	Limelight Networks
Differential Revision:	https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00

1490 lines
37 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011-2013 Qlogic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File: qla_os.c
* Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "qla_os.h"
#include "qla_reg.h"
#include "qla_hw.h"
#include "qla_def.h"
#include "qla_inline.h"
#include "qla_ver.h"
#include "qla_glbl.h"
#include "qla_dbg.h"
/*
* Some PCI Configuration Space Related Defines
*/
#ifndef PCI_VENDOR_QLOGIC
#define PCI_VENDOR_QLOGIC 0x1077
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP8020
#define PCI_PRODUCT_QLOGIC_ISP8020 0x8020
#endif
#define PCI_QLOGIC_ISP8020 \
((PCI_PRODUCT_QLOGIC_ISP8020 << 16) | PCI_VENDOR_QLOGIC)
/*
* static functions
*/
static int qla_alloc_parent_dma_tag(qla_host_t *ha);
static void qla_free_parent_dma_tag(qla_host_t *ha);
static int qla_alloc_xmt_bufs(qla_host_t *ha);
static void qla_free_xmt_bufs(qla_host_t *ha);
static int qla_alloc_rcv_bufs(qla_host_t *ha);
static void qla_free_rcv_bufs(qla_host_t *ha);
static void qla_init_ifnet(device_t dev, qla_host_t *ha);
static int qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS);
static void qla_release(qla_host_t *ha);
static void qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
int error);
static void qla_stop(qla_host_t *ha);
static int qla_send(qla_host_t *ha, struct mbuf **m_headp);
static void qla_tx_done(void *context, int pending);
/*
* Hooks to the Operating Systems
*/
static int qla_pci_probe (device_t);
static int qla_pci_attach (device_t);
static int qla_pci_detach (device_t);
static void qla_init(void *arg);
static int qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static int qla_media_change(struct ifnet *ifp);
static void qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
static device_method_t qla_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, qla_pci_probe),
DEVMETHOD(device_attach, qla_pci_attach),
DEVMETHOD(device_detach, qla_pci_detach),
{ 0, 0 }
};
static driver_t qla_pci_driver = {
"ql", qla_pci_methods, sizeof (qla_host_t),
};
static devclass_t qla80xx_devclass;
DRIVER_MODULE(qla80xx, pci, qla_pci_driver, qla80xx_devclass, 0, 0);
MODULE_DEPEND(qla80xx, pci, 1, 1, 1);
MODULE_DEPEND(qla80xx, ether, 1, 1, 1);
MALLOC_DEFINE(M_QLA8XXXBUF, "qla80xxbuf", "Buffers for qla80xx driver");
uint32_t std_replenish = 8;
uint32_t jumbo_replenish = 2;
uint32_t rcv_pkt_thres = 128;
uint32_t rcv_pkt_thres_d = 32;
uint32_t snd_pkt_thres = 16;
uint32_t free_pkt_thres = (NUM_TX_DESCRIPTORS / 2);
static char dev_str[64];
/*
* Name: qla_pci_probe
* Function: Validate the PCI device to be a QLA80XX device
*/
static int
qla_pci_probe(device_t dev)
{
switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
case PCI_QLOGIC_ISP8020:
snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
"Qlogic ISP 80xx PCI CNA Adapter-Ethernet Function",
QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
QLA_VERSION_BUILD);
device_set_desc(dev, dev_str);
break;
default:
return (ENXIO);
}
if (bootverbose)
printf("%s: %s\n ", __func__, dev_str);
return (BUS_PROBE_DEFAULT);
}
static void
qla_add_sysctls(qla_host_t *ha)
{
device_t dev = ha->pci_dev;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RD,
(void *)ha, 0,
qla_sysctl_get_stats, "I", "Statistics");
SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "fw_version", CTLFLAG_RD,
ha->fw_ver_str, 0, "firmware version");
dbg_level = 0;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "debug", CTLFLAG_RW,
&dbg_level, dbg_level, "Debug Level");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "std_replenish", CTLFLAG_RW,
&std_replenish, std_replenish,
"Threshold for Replenishing Standard Frames");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "jumbo_replenish", CTLFLAG_RW,
&jumbo_replenish, jumbo_replenish,
"Threshold for Replenishing Jumbo Frames");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "rcv_pkt_thres", CTLFLAG_RW,
&rcv_pkt_thres, rcv_pkt_thres,
"Threshold for # of rcv pkts to trigger indication isr");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "rcv_pkt_thres_d", CTLFLAG_RW,
&rcv_pkt_thres_d, rcv_pkt_thres_d,
"Threshold for # of rcv pkts to trigger indication defered");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "snd_pkt_thres", CTLFLAG_RW,
&snd_pkt_thres, snd_pkt_thres,
"Threshold for # of snd packets");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "free_pkt_thres", CTLFLAG_RW,
&free_pkt_thres, free_pkt_thres,
"Threshold for # of packets to free at a time");
return;
}
static void
qla_watchdog(void *arg)
{
qla_host_t *ha = arg;
qla_hw_t *hw;
struct ifnet *ifp;
hw = &ha->hw;
ifp = ha->ifp;
if (ha->flags.qla_watchdog_exit)
return;
if (!ha->flags.qla_watchdog_pause) {
if (qla_le32_to_host(*(hw->tx_cons)) != hw->txr_comp) {
taskqueue_enqueue(ha->tx_tq, &ha->tx_task);
} else if ((ifp->if_snd.ifq_head != NULL) && QL_RUNNING(ifp)) {
taskqueue_enqueue(ha->tx_tq, &ha->tx_task);
}
}
ha->watchdog_ticks = ha->watchdog_ticks++ % 1000;
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qla_watchdog, ha);
}
/*
* Name: qla_pci_attach
* Function: attaches the device to the operating system
*/
static int
qla_pci_attach(device_t dev)
{
qla_host_t *ha = NULL;
uint32_t rsrc_len, i;
QL_DPRINT2((dev, "%s: enter\n", __func__));
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
memset(ha, 0, sizeof (qla_host_t));
if (pci_get_device(dev) != PCI_PRODUCT_QLOGIC_ISP8020) {
device_printf(dev, "device is not ISP8020\n");
return (ENXIO);
}
ha->pci_func = pci_get_function(dev);
ha->pci_dev = dev;
pci_enable_busmaster(dev);
ha->reg_rid = PCIR_BAR(0);
ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
RF_ACTIVE);
if (ha->pci_reg == NULL) {
device_printf(dev, "unable to map any ports\n");
goto qla_pci_attach_err;
}
rsrc_len = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY,
ha->reg_rid);
mtx_init(&ha->hw_lock, "qla80xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
mtx_init(&ha->tx_lock, "qla80xx_tx_lock", MTX_NETWORK_LOCK, MTX_DEF);
mtx_init(&ha->rx_lock, "qla80xx_rx_lock", MTX_NETWORK_LOCK, MTX_DEF);
mtx_init(&ha->rxj_lock, "qla80xx_rxj_lock", MTX_NETWORK_LOCK, MTX_DEF);
ha->flags.lock_init = 1;
ha->msix_count = pci_msix_count(dev);
if (ha->msix_count < qla_get_msix_count(ha)) {
device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
ha->msix_count);
goto qla_pci_attach_err;
}
QL_DPRINT2((dev, "%s: ha %p irq %p pci_func 0x%x rsrc_count 0x%08x"
" msix_count 0x%x pci_reg %p\n", __func__, ha,
ha->irq, ha->pci_func, rsrc_len, ha->msix_count, ha->pci_reg));
ha->msix_count = qla_get_msix_count(ha);
if (pci_alloc_msix(dev, &ha->msix_count)) {
device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
ha->msix_count);
ha->msix_count = 0;
goto qla_pci_attach_err;
}
TASK_INIT(&ha->tx_task, 0, qla_tx_done, ha);
ha->tx_tq = taskqueue_create_fast("qla_txq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->tx_tq);
taskqueue_start_threads(&ha->tx_tq, 1, PI_NET, "%s txq",
device_get_nameunit(ha->pci_dev));
for (i = 0; i < ha->msix_count; i++) {
ha->irq_vec[i].irq_rid = i+1;
ha->irq_vec[i].ha = ha;
ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ha->irq_vec[i].irq_rid,
(RF_ACTIVE | RF_SHAREABLE));
if (ha->irq_vec[i].irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto qla_pci_attach_err;
}
if (bus_setup_intr(dev, ha->irq_vec[i].irq,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, qla_isr, &ha->irq_vec[i],
&ha->irq_vec[i].handle)) {
device_printf(dev, "could not setup interrupt\n");
goto qla_pci_attach_err;
}
TASK_INIT(&ha->irq_vec[i].rcv_task, 0, qla_rcv,\
&ha->irq_vec[i]);
ha->irq_vec[i].rcv_tq = taskqueue_create_fast("qla_rcvq",
M_NOWAIT, taskqueue_thread_enqueue,
&ha->irq_vec[i].rcv_tq);
taskqueue_start_threads(&ha->irq_vec[i].rcv_tq, 1, PI_NET,
"%s rcvq",
device_get_nameunit(ha->pci_dev));
}
qla_add_sysctls(ha);
/* add hardware specific sysctls */
qla_hw_add_sysctls(ha);
/* initialize hardware */
if (qla_init_hw(ha)) {
device_printf(dev, "%s: qla_init_hw failed\n", __func__);
goto qla_pci_attach_err;
}
device_printf(dev, "%s: firmware[%d.%d.%d.%d]\n", __func__,
ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
ha->fw_ver_build);
snprintf(ha->fw_ver_str, sizeof(ha->fw_ver_str), "%d.%d.%d.%d",
ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
ha->fw_ver_build);
//qla_get_hw_caps(ha);
qla_read_mac_addr(ha);
/* allocate parent dma tag */
if (qla_alloc_parent_dma_tag(ha)) {
device_printf(dev, "%s: qla_alloc_parent_dma_tag failed\n",
__func__);
goto qla_pci_attach_err;
}
/* alloc all dma buffers */
if (qla_alloc_dma(ha)) {
device_printf(dev, "%s: qla_alloc_dma failed\n", __func__);
goto qla_pci_attach_err;
}
/* create the o.s ethernet interface */
qla_init_ifnet(dev, ha);
ha->flags.qla_watchdog_active = 1;
ha->flags.qla_watchdog_pause = 1;
callout_init(&ha->tx_callout, 1);
/* create ioctl device interface */
if (qla_make_cdev(ha)) {
device_printf(dev, "%s: qla_make_cdev failed\n", __func__);
goto qla_pci_attach_err;
}
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qla_watchdog, ha);
QL_DPRINT2((dev, "%s: exit 0\n", __func__));
return (0);
qla_pci_attach_err:
qla_release(ha);
QL_DPRINT2((dev, "%s: exit ENXIO\n", __func__));
return (ENXIO);
}
/*
* Name: qla_pci_detach
* Function: Unhooks the device from the operating system
*/
static int
qla_pci_detach(device_t dev)
{
qla_host_t *ha = NULL;
struct ifnet *ifp;
int i;
QL_DPRINT2((dev, "%s: enter\n", __func__));
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
ifp = ha->ifp;
QLA_LOCK(ha, __func__);
qla_stop(ha);
QLA_UNLOCK(ha, __func__);
if (ha->tx_tq) {
taskqueue_drain(ha->tx_tq, &ha->tx_task);
taskqueue_free(ha->tx_tq);
}
for (i = 0; i < ha->msix_count; i++) {
taskqueue_drain(ha->irq_vec[i].rcv_tq,
&ha->irq_vec[i].rcv_task);
taskqueue_free(ha->irq_vec[i].rcv_tq);
}
qla_release(ha);
QL_DPRINT2((dev, "%s: exit\n", __func__));
return (0);
}
/*
* SYSCTL Related Callbacks
*/
static int
qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err)
return (err);
ha = (qla_host_t *)arg1;
//qla_get_stats(ha);
QL_DPRINT2((ha->pci_dev, "%s: called ret %d\n", __func__, ret));
return (err);
}
/*
* Name: qla_release
* Function: Releases the resources allocated for the device
*/
static void
qla_release(qla_host_t *ha)
{
device_t dev;
int i;
dev = ha->pci_dev;
qla_del_cdev(ha);
if (ha->flags.qla_watchdog_active)
ha->flags.qla_watchdog_exit = 1;
callout_stop(&ha->tx_callout);
qla_mdelay(__func__, 100);
if (ha->ifp != NULL)
ether_ifdetach(ha->ifp);
qla_free_dma(ha);
qla_free_parent_dma_tag(ha);
for (i = 0; i < ha->msix_count; i++) {
if (ha->irq_vec[i].handle)
(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
ha->irq_vec[i].handle);
if (ha->irq_vec[i].irq)
(void) bus_release_resource(dev, SYS_RES_IRQ,
ha->irq_vec[i].irq_rid,
ha->irq_vec[i].irq);
}
if (ha->msix_count)
pci_release_msi(dev);
if (ha->flags.lock_init) {
mtx_destroy(&ha->tx_lock);
mtx_destroy(&ha->rx_lock);
mtx_destroy(&ha->rxj_lock);
mtx_destroy(&ha->hw_lock);
}
if (ha->pci_reg)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
ha->pci_reg);
}
/*
* DMA Related Functions
*/
static void
qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
*((bus_addr_t *)arg) = 0;
if (error) {
printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
return;
}
QL_ASSERT((nsegs == 1), ("%s: %d segments returned!", __func__, nsegs));
*((bus_addr_t *)arg) = segs[0].ds_addr;
return;
}
int
qla_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
int ret = 0;
device_t dev;
bus_addr_t b_addr;
dev = ha->pci_dev;
QL_DPRINT2((dev, "%s: enter\n", __func__));
ret = bus_dma_tag_create(
ha->parent_tag,/* parent */
dma_buf->alignment,
((bus_size_t)(1ULL << 32)),/* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dma_buf->size, /* maxsize */
1, /* nsegments */
dma_buf->size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&dma_buf->dma_tag);
if (ret) {
device_printf(dev, "%s: could not create dma tag\n", __func__);
goto qla_alloc_dmabuf_exit;
}
ret = bus_dmamem_alloc(dma_buf->dma_tag,
(void **)&dma_buf->dma_b,
(BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
&dma_buf->dma_map);
if (ret) {
bus_dma_tag_destroy(dma_buf->dma_tag);
device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
goto qla_alloc_dmabuf_exit;
}
ret = bus_dmamap_load(dma_buf->dma_tag,
dma_buf->dma_map,
dma_buf->dma_b,
dma_buf->size,
qla_dmamap_callback,
&b_addr, BUS_DMA_NOWAIT);
if (ret || !b_addr) {
bus_dma_tag_destroy(dma_buf->dma_tag);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
dma_buf->dma_map);
ret = -1;
goto qla_alloc_dmabuf_exit;
}
dma_buf->dma_addr = b_addr;
qla_alloc_dmabuf_exit:
QL_DPRINT2((dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
__func__, ret, (void *)dma_buf->dma_tag,
(void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
dma_buf->size));
return ret;
}
void
qla_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
bus_dma_tag_destroy(dma_buf->dma_tag);
}
static int
qla_alloc_parent_dma_tag(qla_host_t *ha)
{
int ret;
device_t dev;
dev = ha->pci_dev;
/*
* Allocate parent DMA Tag
*/
ret = bus_dma_tag_create(
bus_get_dma_tag(dev), /* parent */
1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ha->parent_tag);
if (ret) {
device_printf(dev, "%s: could not create parent dma tag\n",
__func__);
return (-1);
}
ha->flags.parent_tag = 1;
return (0);
}
static void
qla_free_parent_dma_tag(qla_host_t *ha)
{
if (ha->flags.parent_tag) {
bus_dma_tag_destroy(ha->parent_tag);
ha->flags.parent_tag = 0;
}
}
/*
* Name: qla_init_ifnet
* Function: Creates the Network Device Interface and Registers it with the O.S
*/
static void
qla_init_ifnet(device_t dev, qla_host_t *ha)
{
struct ifnet *ifp;
QL_DPRINT2((dev, "%s: enter\n", __func__));
ifp = ha->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_baudrate = IF_Gbps(10);
ifp->if_init = qla_init;
ifp->if_softc = ha;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = qla_ioctl;
ifp->if_start = qla_start;
IFQ_SET_MAXLEN(&ifp->if_snd, qla_get_ifq_snd_maxlen(ha));
ifp->if_snd.ifq_drv_maxlen = qla_get_ifq_snd_maxlen(ha);
IFQ_SET_READY(&ifp->if_snd);
ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
ether_ifattach(ifp, qla_get_mac_addr(ha));
ifp->if_capabilities = IFCAP_HWCSUM |
IFCAP_TSO4 |
IFCAP_JUMBO_MTU;
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
ifp->if_capabilities |= IFCAP_LINKSTATE;
#if defined(__FreeBSD_version) && (__FreeBSD_version < 900002)
ifp->if_timer = 0;
ifp->if_watchdog = NULL;
#endif /* #if defined(__FreeBSD_version) && (__FreeBSD_version < 900002) */
ifp->if_capenable = ifp->if_capabilities;
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifmedia_init(&ha->media, IFM_IMASK, qla_media_change, qla_media_status);
ifmedia_add(&ha->media, (IFM_ETHER | qla_get_optics(ha) | IFM_FDX), 0,
NULL);
ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
QL_DPRINT2((dev, "%s: exit\n", __func__));
return;
}
static void
qla_init_locked(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
qla_stop(ha);
if (qla_alloc_xmt_bufs(ha) != 0)
return;
if (qla_alloc_rcv_bufs(ha) != 0)
return;
if (qla_config_lro(ha))
return;
bcopy(IF_LLADDR(ha->ifp), ha->hw.mac_addr, ETHER_ADDR_LEN);
ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_TSO;
ha->flags.stop_rcv = 0;
if (qla_init_hw_if(ha) == 0) {
ifp = ha->ifp;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ha->flags.qla_watchdog_pause = 0;
}
return;
}
static void
qla_init(void *arg)
{
qla_host_t *ha;
ha = (qla_host_t *)arg;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
QLA_LOCK(ha, __func__);
qla_init_locked(ha);
QLA_UNLOCK(ha, __func__);
QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
}
static void
qla_set_multi(qla_host_t *ha, uint32_t add_multi)
{
uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
struct ifmultiaddr *ifma;
int mcnt = 0;
struct ifnet *ifp = ha->ifp;
if_maddr_rlock(ifp);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
break;
bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
&mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
mcnt++;
}
if_maddr_runlock(ifp);
qla_hw_set_multi(ha, mta, mcnt, add_multi);
return;
}
static int
qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
int ret = 0;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
switch (cmd) {
case SIOCSIFADDR:
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
__func__, cmd));
if (ifa->ifa_addr->sa_family == AF_INET) {
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
QLA_LOCK(ha, __func__);
qla_init_locked(ha);
QLA_UNLOCK(ha, __func__);
}
QL_DPRINT4((ha->pci_dev,
"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
__func__, cmd, ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
arp_ifinit(ifp, ifa);
if (ntohl(IA_SIN(ifa)->sin_addr.s_addr) != INADDR_ANY) {
qla_config_ipv4_addr(ha,
(IA_SIN(ifa)->sin_addr.s_addr));
}
} else {
ether_ioctl(ifp, cmd, data);
}
break;
case SIOCSIFMTU:
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
__func__, cmd));
if (ifr->ifr_mtu > QLA_MAX_FRAME_SIZE - ETHER_HDR_LEN) {
ret = EINVAL;
} else {
QLA_LOCK(ha, __func__);
ifp->if_mtu = ifr->ifr_mtu;
ha->max_frame_size =
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ret = qla_set_max_mtu(ha, ha->max_frame_size,
(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
}
QLA_UNLOCK(ha, __func__);
if (ret)
ret = EINVAL;
}
break;
case SIOCSIFFLAGS:
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
__func__, cmd));
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
if ((ifp->if_flags ^ ha->if_flags) &
IFF_PROMISC) {
qla_set_promisc(ha);
} else if ((ifp->if_flags ^ ha->if_flags) &
IFF_ALLMULTI) {
qla_set_allmulti(ha);
}
} else {
QLA_LOCK(ha, __func__);
qla_init_locked(ha);
ha->max_frame_size = ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN;
ret = qla_set_max_mtu(ha, ha->max_frame_size,
(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
QLA_UNLOCK(ha, __func__);
}
} else {
QLA_LOCK(ha, __func__);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
qla_stop(ha);
ha->if_flags = ifp->if_flags;
QLA_UNLOCK(ha, __func__);
}
break;
case SIOCADDMULTI:
QL_DPRINT4((ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
qla_set_multi(ha, 1);
}
break;
case SIOCDELMULTI:
QL_DPRINT4((ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
qla_set_multi(ha, 0);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
QL_DPRINT4((ha->pci_dev,
"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
__func__, cmd));
ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
break;
case SIOCSIFCAP:
{
int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
__func__, cmd));
if (mask & IFCAP_HWCSUM)
ifp->if_capenable ^= IFCAP_HWCSUM;
if (mask & IFCAP_TSO4)
ifp->if_capenable ^= IFCAP_TSO4;
if (mask & IFCAP_TSO6)
ifp->if_capenable ^= IFCAP_TSO6;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
qla_init(ha);
VLAN_CAPABILITIES(ifp);
break;
}
default:
QL_DPRINT4((ha->pci_dev, "%s: default (0x%lx)\n",
__func__, cmd));
ret = ether_ioctl(ifp, cmd, data);
break;
}
return (ret);
}
static int
qla_media_change(struct ifnet *ifp)
{
qla_host_t *ha;
struct ifmedia *ifm;
int ret = 0;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
ifm = &ha->media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
ret = EINVAL;
QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static void
qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
qla_update_link_state(ha);
if (ha->hw.flags.link_up) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= (IFM_FDX | qla_get_optics(ha));
}
QL_DPRINT2((ha->pci_dev, "%s: exit (%s)\n", __func__,\
(ha->hw.flags.link_up ? "link_up" : "link_down")));
return;
}
void
qla_start(struct ifnet *ifp)
{
struct mbuf *m_head;
qla_host_t *ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
if (!mtx_trylock(&ha->tx_lock)) {
QL_DPRINT8((ha->pci_dev,
"%s: mtx_trylock(&ha->tx_lock) failed\n", __func__));
return;
}
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) {
QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
QLA_TX_UNLOCK(ha);
return;
}
if (!ha->watchdog_ticks)
qla_update_link_state(ha);
if (!ha->hw.flags.link_up) {
QL_DPRINT8((ha->pci_dev, "%s: link down\n", __func__));
QLA_TX_UNLOCK(ha);
return;
}
while (ifp->if_snd.ifq_head != NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL) {
QL_DPRINT8((ha->pci_dev, "%s: m_head == NULL\n",
__func__));
break;
}
if (qla_send(ha, &m_head)) {
if (m_head == NULL)
break;
QL_DPRINT8((ha->pci_dev, "%s: PREPEND\n", __func__));
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_PREPEND(&ifp->if_snd, m_head);
break;
}
/* Send a copy of the frame to the BPF listener */
ETHER_BPF_MTAP(ifp, m_head);
}
QLA_TX_UNLOCK(ha);
QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
return;
}
static int
qla_send(qla_host_t *ha, struct mbuf **m_headp)
{
bus_dma_segment_t segs[QLA_MAX_SEGMENTS];
bus_dmamap_t map;
int nsegs;
int ret = -1;
uint32_t tx_idx;
struct mbuf *m_head = *m_headp;
QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
if ((ret = bus_dmamap_create(ha->tx_tag, BUS_DMA_NOWAIT, &map))) {
ha->err_tx_dmamap_create++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_create failed[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
return (ret);
}
ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
BUS_DMA_NOWAIT);
if (ret == EFBIG) {
struct mbuf *m;
QL_DPRINT8((ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
m_head->m_pkthdr.len));
m = m_defrag(m_head, M_NOWAIT);
if (m == NULL) {
ha->err_tx_defrag++;
m_freem(m_head);
*m_headp = NULL;
device_printf(ha->pci_dev,
"%s: m_defrag() = NULL [%d]\n",
__func__, ret);
return (ENOBUFS);
}
m_head = m;
if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
segs, &nsegs, BUS_DMA_NOWAIT))) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
bus_dmamap_destroy(ha->tx_tag, map);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
} else if (ret) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
bus_dmamap_destroy(ha->tx_tag, map);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
QL_ASSERT((nsegs != 0), ("qla_send: empty packet"));
bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
if (!(ret = qla_hw_send(ha, segs, nsegs, &tx_idx, m_head))) {
ha->tx_buf[tx_idx].m_head = m_head;
ha->tx_buf[tx_idx].map = map;
} else {
if (ret == EINVAL) {
m_freem(m_head);
*m_headp = NULL;
}
}
QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static void
qla_stop(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
device_t dev;
dev = ha->pci_dev;
ha->flags.qla_watchdog_pause = 1;
qla_mdelay(__func__, 100);
ha->flags.stop_rcv = 1;
qla_hw_stop_rcv(ha);
qla_del_hw_if(ha);
qla_free_lro(ha);
qla_free_xmt_bufs(ha);
qla_free_rcv_bufs(ha);
ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
return;
}
/*
* Buffer Management Functions for Transmit and Receive Rings
*/
static int
qla_alloc_xmt_bufs(qla_host_t *ha)
{
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
QLA_MAX_TSO_FRAME_SIZE, /* maxsize */
QLA_MAX_SEGMENTS, /* nsegments */
PAGE_SIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->tx_tag)) {
device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n",
__func__);
return (ENOMEM);
}
bzero((void *)ha->tx_buf, (sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
return 0;
}
/*
* Release mbuf after it sent on the wire
*/
static void
qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
{
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
if (txb->m_head) {
bus_dmamap_unload(ha->tx_tag, txb->map);
bus_dmamap_destroy(ha->tx_tag, txb->map);
m_freem(txb->m_head);
txb->m_head = NULL;
}
QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
}
static void
qla_free_xmt_bufs(qla_host_t *ha)
{
int i;
for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
qla_clear_tx_buf(ha, &ha->tx_buf[i]);
if (ha->tx_tag != NULL) {
bus_dma_tag_destroy(ha->tx_tag);
ha->tx_tag = NULL;
}
bzero((void *)ha->tx_buf, (sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
return;
}
static int
qla_alloc_rcv_bufs(qla_host_t *ha)
{
int i, j, ret = 0;
qla_rx_buf_t *rxb;
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUM9BYTES, /* maxsize */
1, /* nsegments */
MJUM9BYTES, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->rx_tag)) {
device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n",
__func__);
return (ENOMEM);
}
bzero((void *)ha->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
bzero((void *)ha->rx_jbuf,
(sizeof(qla_rx_buf_t) * NUM_RX_JUMBO_DESCRIPTORS));
for (i = 0; i < MAX_SDS_RINGS; i++) {
ha->hw.sds[i].sdsr_next = 0;
ha->hw.sds[i].rxb_free = NULL;
ha->hw.sds[i].rx_free = 0;
ha->hw.sds[i].rxjb_free = NULL;
ha->hw.sds[i].rxj_free = 0;
}
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &ha->rx_buf[i];
ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT, &rxb->map);
if (ret) {
device_printf(ha->pci_dev,
"%s: dmamap[%d] failed\n", __func__, i);
for (j = 0; j < i; j++) {
bus_dmamap_destroy(ha->rx_tag,
ha->rx_buf[j].map);
}
goto qla_alloc_rcv_bufs_failed;
}
}
qla_init_hw_rcv_descriptors(ha, RDS_RING_INDEX_NORMAL);
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &ha->rx_buf[i];
rxb->handle = i;
if (!(ret = qla_get_mbuf(ha, rxb, NULL, 0))) {
/*
* set the physical address in the corresponding
* descriptor entry in the receive ring/queue for the
* hba
*/
qla_set_hw_rcv_desc(ha, RDS_RING_INDEX_NORMAL, i,
rxb->handle, rxb->paddr,
(rxb->m_head)->m_pkthdr.len);
} else {
device_printf(ha->pci_dev,
"%s: qla_get_mbuf [standard(%d)] failed\n",
__func__, i);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
goto qla_alloc_rcv_bufs_failed;
}
}
for (i = 0; i < NUM_RX_JUMBO_DESCRIPTORS; i++) {
rxb = &ha->rx_jbuf[i];
ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT, &rxb->map);
if (ret) {
device_printf(ha->pci_dev,
"%s: dmamap[%d] failed\n", __func__, i);
for (j = 0; j < i; j++) {
bus_dmamap_destroy(ha->rx_tag,
ha->rx_jbuf[j].map);
}
goto qla_alloc_rcv_bufs_failed;
}
}
qla_init_hw_rcv_descriptors(ha, RDS_RING_INDEX_JUMBO);
for (i = 0; i < NUM_RX_JUMBO_DESCRIPTORS; i++) {
rxb = &ha->rx_jbuf[i];
rxb->handle = i;
if (!(ret = qla_get_mbuf(ha, rxb, NULL, 1))) {
/*
* set the physical address in the corresponding
* descriptor entry in the receive ring/queue for the
* hba
*/
qla_set_hw_rcv_desc(ha, RDS_RING_INDEX_JUMBO, i,
rxb->handle, rxb->paddr,
(rxb->m_head)->m_pkthdr.len);
} else {
device_printf(ha->pci_dev,
"%s: qla_get_mbuf [jumbo(%d)] failed\n",
__func__, i);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
goto qla_alloc_rcv_bufs_failed;
}
}
return (0);
qla_alloc_rcv_bufs_failed:
qla_free_rcv_bufs(ha);
return (ret);
}
static void
qla_free_rcv_bufs(qla_host_t *ha)
{
int i;
qla_rx_buf_t *rxb;
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &ha->rx_buf[i];
if (rxb->m_head != NULL) {
bus_dmamap_unload(ha->rx_tag, rxb->map);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
m_freem(rxb->m_head);
rxb->m_head = NULL;
}
}
for (i = 0; i < NUM_RX_JUMBO_DESCRIPTORS; i++) {
rxb = &ha->rx_jbuf[i];
if (rxb->m_head != NULL) {
bus_dmamap_unload(ha->rx_tag, rxb->map);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
m_freem(rxb->m_head);
rxb->m_head = NULL;
}
}
if (ha->rx_tag != NULL) {
bus_dma_tag_destroy(ha->rx_tag);
ha->rx_tag = NULL;
}
bzero((void *)ha->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
bzero((void *)ha->rx_jbuf,
(sizeof(qla_rx_buf_t) * NUM_RX_JUMBO_DESCRIPTORS));
for (i = 0; i < MAX_SDS_RINGS; i++) {
ha->hw.sds[i].sdsr_next = 0;
ha->hw.sds[i].rxb_free = NULL;
ha->hw.sds[i].rx_free = 0;
ha->hw.sds[i].rxjb_free = NULL;
ha->hw.sds[i].rxj_free = 0;
}
return;
}
int
qla_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp,
uint32_t jumbo)
{
struct mbuf *mp = nmp;
struct ifnet *ifp;
int ret = 0;
uint32_t offset;
QL_DPRINT2((ha->pci_dev, "%s: jumbo(0x%x) enter\n", __func__, jumbo));
ifp = ha->ifp;
if (mp == NULL) {
if (!jumbo) {
mp = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (mp == NULL) {
ha->err_m_getcl++;
ret = ENOBUFS;
device_printf(ha->pci_dev,
"%s: m_getcl failed\n", __func__);
goto exit_qla_get_mbuf;
}
mp->m_len = mp->m_pkthdr.len = MCLBYTES;
} else {
mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
MJUM9BYTES);
if (mp == NULL) {
ha->err_m_getjcl++;
ret = ENOBUFS;
device_printf(ha->pci_dev,
"%s: m_getjcl failed\n", __func__);
goto exit_qla_get_mbuf;
}
mp->m_len = mp->m_pkthdr.len = MJUM9BYTES;
}
} else {
if (!jumbo)
mp->m_len = mp->m_pkthdr.len = MCLBYTES;
else
mp->m_len = mp->m_pkthdr.len = MJUM9BYTES;
mp->m_data = mp->m_ext.ext_buf;
mp->m_next = NULL;
}
offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
if (offset) {
offset = 8 - offset;
m_adj(mp, offset);
}
/*
* Using memory from the mbuf cluster pool, invoke the bus_dma
* machinery to arrange the memory mapping.
*/
ret = bus_dmamap_load(ha->rx_tag, rxb->map,
mtod(mp, void *), mp->m_len,
qla_dmamap_callback, &rxb->paddr,
BUS_DMA_NOWAIT);
if (ret || !rxb->paddr) {
m_free(mp);
rxb->m_head = NULL;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load failed\n", __func__);
ret = -1;
goto exit_qla_get_mbuf;
}
rxb->m_head = mp;
bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
exit_qla_get_mbuf:
QL_DPRINT2((ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
return (ret);
}
static void
qla_tx_done(void *context, int pending)
{
qla_host_t *ha = context;
qla_hw_tx_done(ha);
qla_start(ha->ifp);
}