Konstantin Belousov 584b675ed6 Hide the boottime and bootimebin globals, provide the getboottime(9)
and getboottimebin(9) KPI. Change consumers of boottime to use the
KPI.  The variables were renamed to avoid shadowing issues with local
variables of the same name.

Issue is that boottime* should be adjusted from tc_windup(), which
requires them to be members of the timehands structure.  As a
preparation, this commit only introduces the interface.

Some uses of boottime were found doubtful, e.g. NLM uses boottime to
identify the system boot instance.  Arguably the identity should not
change on the leap second adjustment, but the commit is about the
timekeeping code and the consumers were kept bug-to-bug compatible.

Tested by:	pho (as part of the bigger patch)
Reviewed by:	jhb (same)
Discussed with:	bde
Sponsored by:	The FreeBSD Foundation
MFC after:	1 month
X-Differential revision:	https://reviews.freebsd.org/D7302
2016-07-27 11:08:59 +00:00

3043 lines
68 KiB
C

/*-
* Copyright (c) 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from the Stanford/CMU enet packet filter,
* (net/enet.c) distributed as part of 4.3BSD, and code contributed
* to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
* Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)bpf.c 8.4 (Berkeley) 1/9/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_bpf.h"
#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_netgraph.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/jail.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/time.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/filio.h>
#include <sys/sockio.h>
#include <sys/ttycom.h>
#include <sys/uio.h>
#include <sys/event.h>
#include <sys/file.h>
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/socket.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/bpf.h>
#include <net/bpf_buffer.h>
#ifdef BPF_JITTER
#include <net/bpf_jitter.h>
#endif
#include <net/bpf_zerocopy.h>
#include <net/bpfdesc.h>
#include <net/route.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <net80211/ieee80211_freebsd.h>
#include <security/mac/mac_framework.h>
MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
struct bpf_if {
#define bif_next bif_ext.bif_next
#define bif_dlist bif_ext.bif_dlist
struct bpf_if_ext bif_ext; /* public members */
u_int bif_dlt; /* link layer type */
u_int bif_hdrlen; /* length of link header */
struct ifnet *bif_ifp; /* corresponding interface */
struct rwlock bif_lock; /* interface lock */
LIST_HEAD(, bpf_d) bif_wlist; /* writer-only list */
int bif_flags; /* Interface flags */
};
CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
#if defined(DEV_BPF) || defined(NETGRAPH_BPF)
#define PRINET 26 /* interruptible */
#define SIZEOF_BPF_HDR(type) \
(offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
#ifdef COMPAT_FREEBSD32
#include <sys/mount.h>
#include <compat/freebsd32/freebsd32.h>
#define BPF_ALIGNMENT32 sizeof(int32_t)
#define BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
#ifndef BURN_BRIDGES
/*
* 32-bit version of structure prepended to each packet. We use this header
* instead of the standard one for 32-bit streams. We mark the a stream as
* 32-bit the first time we see a 32-bit compat ioctl request.
*/
struct bpf_hdr32 {
struct timeval32 bh_tstamp; /* time stamp */
uint32_t bh_caplen; /* length of captured portion */
uint32_t bh_datalen; /* original length of packet */
uint16_t bh_hdrlen; /* length of bpf header (this struct
plus alignment padding) */
};
#endif
struct bpf_program32 {
u_int bf_len;
uint32_t bf_insns;
};
struct bpf_dltlist32 {
u_int bfl_len;
u_int bfl_list;
};
#define BIOCSETF32 _IOW('B', 103, struct bpf_program32)
#define BIOCSRTIMEOUT32 _IOW('B', 109, struct timeval32)
#define BIOCGRTIMEOUT32 _IOR('B', 110, struct timeval32)
#define BIOCGDLTLIST32 _IOWR('B', 121, struct bpf_dltlist32)
#define BIOCSETWF32 _IOW('B', 123, struct bpf_program32)
#define BIOCSETFNR32 _IOW('B', 130, struct bpf_program32)
#endif
/*
* bpf_iflist is a list of BPF interface structures, each corresponding to a
* specific DLT. The same network interface might have several BPF interface
* structures registered by different layers in the stack (i.e., 802.11
* frames, ethernet frames, etc).
*/
static LIST_HEAD(, bpf_if) bpf_iflist, bpf_freelist;
static struct mtx bpf_mtx; /* bpf global lock */
static int bpf_bpfd_cnt;
static void bpf_attachd(struct bpf_d *, struct bpf_if *);
static void bpf_detachd(struct bpf_d *);
static void bpf_detachd_locked(struct bpf_d *);
static void bpf_freed(struct bpf_d *);
static int bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
struct sockaddr *, int *, struct bpf_d *);
static int bpf_setif(struct bpf_d *, struct ifreq *);
static void bpf_timed_out(void *);
static __inline void
bpf_wakeup(struct bpf_d *);
static void catchpacket(struct bpf_d *, u_char *, u_int, u_int,
void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
struct bintime *);
static void reset_d(struct bpf_d *);
static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
static int bpf_setdlt(struct bpf_d *, u_int);
static void filt_bpfdetach(struct knote *);
static int filt_bpfread(struct knote *, long);
static void bpf_drvinit(void *);
static int bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW, 0, "bpf sysctl");
int bpf_maxinsns = BPF_MAXINSNS;
SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
&bpf_maxinsns, 0, "Maximum bpf program instructions");
static int bpf_zerocopy_enable = 0;
SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
&bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
bpf_stats_sysctl, "bpf statistics portal");
static VNET_DEFINE(int, bpf_optimize_writers) = 0;
#define V_bpf_optimize_writers VNET(bpf_optimize_writers)
SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(bpf_optimize_writers), 0,
"Do not send packets until BPF program is set");
static d_open_t bpfopen;
static d_read_t bpfread;
static d_write_t bpfwrite;
static d_ioctl_t bpfioctl;
static d_poll_t bpfpoll;
static d_kqfilter_t bpfkqfilter;
static struct cdevsw bpf_cdevsw = {
.d_version = D_VERSION,
.d_open = bpfopen,
.d_read = bpfread,
.d_write = bpfwrite,
.d_ioctl = bpfioctl,
.d_poll = bpfpoll,
.d_name = "bpf",
.d_kqfilter = bpfkqfilter,
};
static struct filterops bpfread_filtops = {
.f_isfd = 1,
.f_detach = filt_bpfdetach,
.f_event = filt_bpfread,
};
eventhandler_tag bpf_ifdetach_cookie = NULL;
/*
* LOCKING MODEL USED BY BPF:
* Locks:
* 1) global lock (BPF_LOCK). Mutex, used to protect interface addition/removal,
* some global counters and every bpf_if reference.
* 2) Interface lock. Rwlock, used to protect list of BPF descriptors and their filters.
* 3) Descriptor lock. Mutex, used to protect BPF buffers and various structure fields
* used by bpf_mtap code.
*
* Lock order:
*
* Global lock, interface lock, descriptor lock
*
* We have to acquire interface lock before descriptor main lock due to BPF_MTAP[2]
* working model. In many places (like bpf_detachd) we start with BPF descriptor
* (and we need to at least rlock it to get reliable interface pointer). This
* gives us potential LOR. As a result, we use global lock to protect from bpf_if
* change in every such place.
*
* Changing d->bd_bif is protected by 1) global lock, 2) interface lock and
* 3) descriptor main wlock.
* Reading bd_bif can be protected by any of these locks, typically global lock.
*
* Changing read/write BPF filter is protected by the same three locks,
* the same applies for reading.
*
* Sleeping in global lock is not allowed due to bpfdetach() using it.
*/
/*
* Wrapper functions for various buffering methods. If the set of buffer
* modes expands, we will probably want to introduce a switch data structure
* similar to protosw, et.
*/
static void
bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
u_int len)
{
BPFD_LOCK_ASSERT(d);
switch (d->bd_bufmode) {
case BPF_BUFMODE_BUFFER:
return (bpf_buffer_append_bytes(d, buf, offset, src, len));
case BPF_BUFMODE_ZBUF:
d->bd_zcopy++;
return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
default:
panic("bpf_buf_append_bytes");
}
}
static void
bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
u_int len)
{
BPFD_LOCK_ASSERT(d);
switch (d->bd_bufmode) {
case BPF_BUFMODE_BUFFER:
return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
case BPF_BUFMODE_ZBUF:
d->bd_zcopy++;
return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
default:
panic("bpf_buf_append_mbuf");
}
}
/*
* This function gets called when the free buffer is re-assigned.
*/
static void
bpf_buf_reclaimed(struct bpf_d *d)
{
BPFD_LOCK_ASSERT(d);
switch (d->bd_bufmode) {
case BPF_BUFMODE_BUFFER:
return;
case BPF_BUFMODE_ZBUF:
bpf_zerocopy_buf_reclaimed(d);
return;
default:
panic("bpf_buf_reclaimed");
}
}
/*
* If the buffer mechanism has a way to decide that a held buffer can be made
* free, then it is exposed via the bpf_canfreebuf() interface. (1) is
* returned if the buffer can be discarded, (0) is returned if it cannot.
*/
static int
bpf_canfreebuf(struct bpf_d *d)
{
BPFD_LOCK_ASSERT(d);
switch (d->bd_bufmode) {
case BPF_BUFMODE_ZBUF:
return (bpf_zerocopy_canfreebuf(d));
}
return (0);
}
/*
* Allow the buffer model to indicate that the current store buffer is
* immutable, regardless of the appearance of space. Return (1) if the
* buffer is writable, and (0) if not.
*/
static int
bpf_canwritebuf(struct bpf_d *d)
{
BPFD_LOCK_ASSERT(d);
switch (d->bd_bufmode) {
case BPF_BUFMODE_ZBUF:
return (bpf_zerocopy_canwritebuf(d));
}
return (1);
}
/*
* Notify buffer model that an attempt to write to the store buffer has
* resulted in a dropped packet, in which case the buffer may be considered
* full.
*/
static void
bpf_buffull(struct bpf_d *d)
{
BPFD_LOCK_ASSERT(d);
switch (d->bd_bufmode) {
case BPF_BUFMODE_ZBUF:
bpf_zerocopy_buffull(d);
break;
}
}
/*
* Notify the buffer model that a buffer has moved into the hold position.
*/
void
bpf_bufheld(struct bpf_d *d)
{
BPFD_LOCK_ASSERT(d);
switch (d->bd_bufmode) {
case BPF_BUFMODE_ZBUF:
bpf_zerocopy_bufheld(d);
break;
}
}
static void
bpf_free(struct bpf_d *d)
{
switch (d->bd_bufmode) {
case BPF_BUFMODE_BUFFER:
return (bpf_buffer_free(d));
case BPF_BUFMODE_ZBUF:
return (bpf_zerocopy_free(d));
default:
panic("bpf_buf_free");
}
}
static int
bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
{
if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
return (EOPNOTSUPP);
return (bpf_buffer_uiomove(d, buf, len, uio));
}
static int
bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
{
if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
return (EOPNOTSUPP);
return (bpf_buffer_ioctl_sblen(d, i));
}
static int
bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
{
if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
return (EOPNOTSUPP);
return (bpf_zerocopy_ioctl_getzmax(td, d, i));
}
static int
bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
{
if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
return (EOPNOTSUPP);
return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
}
static int
bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
{
if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
return (EOPNOTSUPP);
return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
}
/*
* General BPF functions.
*/
static int
bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
{
const struct ieee80211_bpf_params *p;
struct ether_header *eh;
struct mbuf *m;
int error;
int len;
int hlen;
int slen;
/*
* Build a sockaddr based on the data link layer type.
* We do this at this level because the ethernet header
* is copied directly into the data field of the sockaddr.
* In the case of SLIP, there is no header and the packet
* is forwarded as is.
* Also, we are careful to leave room at the front of the mbuf
* for the link level header.
*/
switch (linktype) {
case DLT_SLIP:
sockp->sa_family = AF_INET;
hlen = 0;
break;
case DLT_EN10MB:
sockp->sa_family = AF_UNSPEC;
/* XXX Would MAXLINKHDR be better? */
hlen = ETHER_HDR_LEN;
break;
case DLT_FDDI:
sockp->sa_family = AF_IMPLINK;
hlen = 0;
break;
case DLT_RAW:
sockp->sa_family = AF_UNSPEC;
hlen = 0;
break;
case DLT_NULL:
/*
* null interface types require a 4 byte pseudo header which
* corresponds to the address family of the packet.
*/
sockp->sa_family = AF_UNSPEC;
hlen = 4;
break;
case DLT_ATM_RFC1483:
/*
* en atm driver requires 4-byte atm pseudo header.
* though it isn't standard, vpi:vci needs to be
* specified anyway.
*/
sockp->sa_family = AF_UNSPEC;
hlen = 12; /* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
break;
case DLT_PPP:
sockp->sa_family = AF_UNSPEC;
hlen = 4; /* This should match PPP_HDRLEN */
break;
case DLT_IEEE802_11: /* IEEE 802.11 wireless */
sockp->sa_family = AF_IEEE80211;
hlen = 0;
break;
case DLT_IEEE802_11_RADIO: /* IEEE 802.11 wireless w/ phy params */
sockp->sa_family = AF_IEEE80211;
sockp->sa_len = 12; /* XXX != 0 */
hlen = sizeof(struct ieee80211_bpf_params);
break;
default:
return (EIO);
}
len = uio->uio_resid;
if (len < hlen || len - hlen > ifp->if_mtu)
return (EMSGSIZE);
m = m_get2(len, M_WAITOK, MT_DATA, M_PKTHDR);
if (m == NULL)
return (EIO);
m->m_pkthdr.len = m->m_len = len;
*mp = m;
error = uiomove(mtod(m, u_char *), len, uio);
if (error)
goto bad;
slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
if (slen == 0) {
error = EPERM;
goto bad;
}
/* Check for multicast destination */
switch (linktype) {
case DLT_EN10MB:
eh = mtod(m, struct ether_header *);
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
ETHER_ADDR_LEN) == 0)
m->m_flags |= M_BCAST;
else
m->m_flags |= M_MCAST;
}
if (d->bd_hdrcmplt == 0) {
memcpy(eh->ether_shost, IF_LLADDR(ifp),
sizeof(eh->ether_shost));
}
break;
}
/*
* Make room for link header, and copy it to sockaddr
*/
if (hlen != 0) {
if (sockp->sa_family == AF_IEEE80211) {
/*
* Collect true length from the parameter header
* NB: sockp is known to be zero'd so if we do a
* short copy unspecified parameters will be
* zero.
* NB: packet may not be aligned after stripping
* bpf params
* XXX check ibp_vers
*/
p = mtod(m, const struct ieee80211_bpf_params *);
hlen = p->ibp_len;
if (hlen > sizeof(sockp->sa_data)) {
error = EINVAL;
goto bad;
}
}
bcopy(mtod(m, const void *), sockp->sa_data, hlen);
}
*hdrlen = hlen;
return (0);
bad:
m_freem(m);
return (error);
}
/*
* Attach file to the bpf interface, i.e. make d listen on bp.
*/
static void
bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
{
int op_w;
BPF_LOCK_ASSERT();
/*
* Save sysctl value to protect from sysctl change
* between reads
*/
op_w = V_bpf_optimize_writers || d->bd_writer;
if (d->bd_bif != NULL)
bpf_detachd_locked(d);
/*
* Point d at bp, and add d to the interface's list.
* Since there are many applications using BPF for
* sending raw packets only (dhcpd, cdpd are good examples)
* we can delay adding d to the list of active listeners until
* some filter is configured.
*/
BPFIF_WLOCK(bp);
BPFD_LOCK(d);
d->bd_bif = bp;
if (op_w != 0) {
/* Add to writers-only list */
LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
/*
* We decrement bd_writer on every filter set operation.
* First BIOCSETF is done by pcap_open_live() to set up
* snap length. After that appliation usually sets its own filter
*/
d->bd_writer = 2;
} else
LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
BPFD_UNLOCK(d);
BPFIF_WUNLOCK(bp);
bpf_bpfd_cnt++;
CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
__func__, d->bd_pid, d->bd_writer ? "writer" : "active");
if (op_w == 0)
EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
}
/*
* Check if we need to upgrade our descriptor @d from write-only mode.
*/
static int
bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode, int flen)
{
int is_snap, need_upgrade;
/*
* Check if we've already upgraded or new filter is empty.
*/
if (d->bd_writer == 0 || fcode == NULL)
return (0);
need_upgrade = 0;
/*
* Check if cmd looks like snaplen setting from
* pcap_bpf.c:pcap_open_live().
* Note we're not checking .k value here:
* while pcap_open_live() definitely sets to to non-zero value,
* we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
* do not consider upgrading immediately
*/
if (cmd == BIOCSETF && flen == 1 && fcode[0].code == (BPF_RET | BPF_K))
is_snap = 1;
else
is_snap = 0;
if (is_snap == 0) {
/*
* We're setting first filter and it doesn't look like
* setting snaplen. We're probably using bpf directly.
* Upgrade immediately.
*/
need_upgrade = 1;
} else {
/*
* Do not require upgrade by first BIOCSETF
* (used to set snaplen) by pcap_open_live().
*/
if (--d->bd_writer == 0) {
/*
* First snaplen filter has already
* been set. This is probably catch-all
* filter
*/
need_upgrade = 1;
}
}
CTR5(KTR_NET,
"%s: filter function set by pid %d, "
"bd_writer counter %d, snap %d upgrade %d",
__func__, d->bd_pid, d->bd_writer,
is_snap, need_upgrade);
return (need_upgrade);
}
/*
* Add d to the list of active bp filters.
* Requires bpf_attachd() to be called before.
*/
static void
bpf_upgraded(struct bpf_d *d)
{
struct bpf_if *bp;
BPF_LOCK_ASSERT();
bp = d->bd_bif;
/*
* Filter can be set several times without specifying interface.
* Mark d as reader and exit.
*/
if (bp == NULL) {
BPFD_LOCK(d);
d->bd_writer = 0;
BPFD_UNLOCK(d);
return;
}
BPFIF_WLOCK(bp);
BPFD_LOCK(d);
/* Remove from writers-only list */
LIST_REMOVE(d, bd_next);
LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
/* Mark d as reader */
d->bd_writer = 0;
BPFD_UNLOCK(d);
BPFIF_WUNLOCK(bp);
CTR2(KTR_NET, "%s: upgrade required by pid %d", __func__, d->bd_pid);
EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
}
/*
* Detach a file from its interface.
*/
static void
bpf_detachd(struct bpf_d *d)
{
BPF_LOCK();
bpf_detachd_locked(d);
BPF_UNLOCK();
}
static void
bpf_detachd_locked(struct bpf_d *d)
{
int error;
struct bpf_if *bp;
struct ifnet *ifp;
CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
BPF_LOCK_ASSERT();
/* Check if descriptor is attached */
if ((bp = d->bd_bif) == NULL)
return;
BPFIF_WLOCK(bp);
BPFD_LOCK(d);
/* Save bd_writer value */
error = d->bd_writer;
/*
* Remove d from the interface's descriptor list.
*/
LIST_REMOVE(d, bd_next);
ifp = bp->bif_ifp;
d->bd_bif = NULL;
BPFD_UNLOCK(d);
BPFIF_WUNLOCK(bp);
bpf_bpfd_cnt--;
/* Call event handler iff d is attached */
if (error == 0)
EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
/*
* Check if this descriptor had requested promiscuous mode.
* If so, turn it off.
*/
if (d->bd_promisc) {
d->bd_promisc = 0;
CURVNET_SET(ifp->if_vnet);
error = ifpromisc(ifp, 0);
CURVNET_RESTORE();
if (error != 0 && error != ENXIO) {
/*
* ENXIO can happen if a pccard is unplugged
* Something is really wrong if we were able to put
* the driver into promiscuous mode, but can't
* take it out.
*/
if_printf(bp->bif_ifp,
"bpf_detach: ifpromisc failed (%d)\n", error);
}
}
}
/*
* Close the descriptor by detaching it from its interface,
* deallocating its buffers, and marking it free.
*/
static void
bpf_dtor(void *data)
{
struct bpf_d *d = data;
BPFD_LOCK(d);
if (d->bd_state == BPF_WAITING)
callout_stop(&d->bd_callout);
d->bd_state = BPF_IDLE;
BPFD_UNLOCK(d);
funsetown(&d->bd_sigio);
bpf_detachd(d);
#ifdef MAC
mac_bpfdesc_destroy(d);
#endif /* MAC */
seldrain(&d->bd_sel);
knlist_destroy(&d->bd_sel.si_note);
callout_drain(&d->bd_callout);
bpf_freed(d);
free(d, M_BPF);
}
/*
* Open ethernet device. Returns ENXIO for illegal minor device number,
* EBUSY if file is open by another process.
*/
/* ARGSUSED */
static int
bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct bpf_d *d;
int error;
d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
error = devfs_set_cdevpriv(d, bpf_dtor);
if (error != 0) {
free(d, M_BPF);
return (error);
}
/*
* For historical reasons, perform a one-time initialization call to
* the buffer routines, even though we're not yet committed to a
* particular buffer method.
*/
bpf_buffer_init(d);
if ((flags & FREAD) == 0)
d->bd_writer = 2;
d->bd_hbuf_in_use = 0;
d->bd_bufmode = BPF_BUFMODE_BUFFER;
d->bd_sig = SIGIO;
d->bd_direction = BPF_D_INOUT;
BPF_PID_REFRESH(d, td);
#ifdef MAC
mac_bpfdesc_init(d);
mac_bpfdesc_create(td->td_ucred, d);
#endif
mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
return (0);
}
/*
* bpfread - read next chunk of packets from buffers
*/
static int
bpfread(struct cdev *dev, struct uio *uio, int ioflag)
{
struct bpf_d *d;
int error;
int non_block;
int timed_out;
error = devfs_get_cdevpriv((void **)&d);
if (error != 0)
return (error);
/*
* Restrict application to use a buffer the same size as
* as kernel buffers.
*/
if (uio->uio_resid != d->bd_bufsize)
return (EINVAL);
non_block = ((ioflag & O_NONBLOCK) != 0);
BPFD_LOCK(d);
BPF_PID_REFRESH_CUR(d);
if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
BPFD_UNLOCK(d);
return (EOPNOTSUPP);
}
if (d->bd_state == BPF_WAITING)
callout_stop(&d->bd_callout);
timed_out = (d->bd_state == BPF_TIMED_OUT);
d->bd_state = BPF_IDLE;
while (d->bd_hbuf_in_use) {
error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
PRINET|PCATCH, "bd_hbuf", 0);
if (error != 0) {
BPFD_UNLOCK(d);
return (error);
}
}
/*
* If the hold buffer is empty, then do a timed sleep, which
* ends when the timeout expires or when enough packets
* have arrived to fill the store buffer.
*/
while (d->bd_hbuf == NULL) {
if (d->bd_slen != 0) {
/*
* A packet(s) either arrived since the previous
* read or arrived while we were asleep.
*/
if (d->bd_immediate || non_block || timed_out) {
/*
* Rotate the buffers and return what's here
* if we are in immediate mode, non-blocking
* flag is set, or this descriptor timed out.
*/
ROTATE_BUFFERS(d);
break;
}
}
/*
* No data is available, check to see if the bpf device
* is still pointed at a real interface. If not, return
* ENXIO so that the userland process knows to rebind
* it before using it again.
*/
if (d->bd_bif == NULL) {
BPFD_UNLOCK(d);
return (ENXIO);
}
if (non_block) {
BPFD_UNLOCK(d);
return (EWOULDBLOCK);
}
error = msleep(d, &d->bd_lock, PRINET|PCATCH,
"bpf", d->bd_rtout);
if (error == EINTR || error == ERESTART) {
BPFD_UNLOCK(d);
return (error);
}
if (error == EWOULDBLOCK) {
/*
* On a timeout, return what's in the buffer,
* which may be nothing. If there is something
* in the store buffer, we can rotate the buffers.
*/
if (d->bd_hbuf)
/*
* We filled up the buffer in between
* getting the timeout and arriving
* here, so we don't need to rotate.
*/
break;
if (d->bd_slen == 0) {
BPFD_UNLOCK(d);
return (0);
}
ROTATE_BUFFERS(d);
break;
}
}
/*
* At this point, we know we have something in the hold slot.
*/
d->bd_hbuf_in_use = 1;
BPFD_UNLOCK(d);
/*
* Move data from hold buffer into user space.
* We know the entire buffer is transferred since
* we checked above that the read buffer is bpf_bufsize bytes.
*
* We do not have to worry about simultaneous reads because
* we waited for sole access to the hold buffer above.
*/
error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
BPFD_LOCK(d);
KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
d->bd_fbuf = d->bd_hbuf;
d->bd_hbuf = NULL;
d->bd_hlen = 0;
bpf_buf_reclaimed(d);
d->bd_hbuf_in_use = 0;
wakeup(&d->bd_hbuf_in_use);
BPFD_UNLOCK(d);
return (error);
}
/*
* If there are processes sleeping on this descriptor, wake them up.
*/
static __inline void
bpf_wakeup(struct bpf_d *d)
{
BPFD_LOCK_ASSERT(d);
if (d->bd_state == BPF_WAITING) {
callout_stop(&d->bd_callout);
d->bd_state = BPF_IDLE;
}
wakeup(d);
if (d->bd_async && d->bd_sig && d->bd_sigio)
pgsigio(&d->bd_sigio, d->bd_sig, 0);
selwakeuppri(&d->bd_sel, PRINET);
KNOTE_LOCKED(&d->bd_sel.si_note, 0);
}
static void
bpf_timed_out(void *arg)
{
struct bpf_d *d = (struct bpf_d *)arg;
BPFD_LOCK_ASSERT(d);
if (callout_pending(&d->bd_callout) || !callout_active(&d->bd_callout))
return;
if (d->bd_state == BPF_WAITING) {
d->bd_state = BPF_TIMED_OUT;
if (d->bd_slen != 0)
bpf_wakeup(d);
}
}
static int
bpf_ready(struct bpf_d *d)
{
BPFD_LOCK_ASSERT(d);
if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
return (1);
if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
d->bd_slen != 0)
return (1);
return (0);
}
static int
bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
{
struct bpf_d *d;
struct ifnet *ifp;
struct mbuf *m, *mc;
struct sockaddr dst;
struct route ro;
int error, hlen;
error = devfs_get_cdevpriv((void **)&d);
if (error != 0)
return (error);
BPF_PID_REFRESH_CUR(d);
d->bd_wcount++;
/* XXX: locking required */
if (d->bd_bif == NULL) {
d->bd_wdcount++;
return (ENXIO);
}
ifp = d->bd_bif->bif_ifp;
if ((ifp->if_flags & IFF_UP) == 0) {
d->bd_wdcount++;
return (ENETDOWN);
}
if (uio->uio_resid == 0) {
d->bd_wdcount++;
return (0);
}
bzero(&dst, sizeof(dst));
m = NULL;
hlen = 0;
/* XXX: bpf_movein() can sleep */
error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp,
&m, &dst, &hlen, d);
if (error) {
d->bd_wdcount++;
return (error);
}
d->bd_wfcount++;
if (d->bd_hdrcmplt)
dst.sa_family = pseudo_AF_HDRCMPLT;
if (d->bd_feedback) {
mc = m_dup(m, M_NOWAIT);
if (mc != NULL)
mc->m_pkthdr.rcvif = ifp;
/* Set M_PROMISC for outgoing packets to be discarded. */
if (d->bd_direction == BPF_D_INOUT)
m->m_flags |= M_PROMISC;
} else
mc = NULL;
m->m_pkthdr.len -= hlen;
m->m_len -= hlen;
m->m_data += hlen; /* XXX */
CURVNET_SET(ifp->if_vnet);
#ifdef MAC
BPFD_LOCK(d);
mac_bpfdesc_create_mbuf(d, m);
if (mc != NULL)
mac_bpfdesc_create_mbuf(d, mc);
BPFD_UNLOCK(d);
#endif
bzero(&ro, sizeof(ro));
if (hlen != 0) {
ro.ro_prepend = (u_char *)&dst.sa_data;
ro.ro_plen = hlen;
ro.ro_flags = RT_HAS_HEADER;
}
error = (*ifp->if_output)(ifp, m, &dst, &ro);
if (error)
d->bd_wdcount++;
if (mc != NULL) {
if (error == 0)
(*ifp->if_input)(ifp, mc);
else
m_freem(mc);
}
CURVNET_RESTORE();
return (error);
}
/*
* Reset a descriptor by flushing its packet buffer and clearing the receive
* and drop counts. This is doable for kernel-only buffers, but with
* zero-copy buffers, we can't write to (or rotate) buffers that are
* currently owned by userspace. It would be nice if we could encapsulate
* this logic in the buffer code rather than here.
*/
static void
reset_d(struct bpf_d *d)
{
BPFD_LOCK_ASSERT(d);
while (d->bd_hbuf_in_use)
mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
"bd_hbuf", 0);
if ((d->bd_hbuf != NULL) &&
(d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
/* Free the hold buffer. */
d->bd_fbuf = d->bd_hbuf;
d->bd_hbuf = NULL;
d->bd_hlen = 0;
bpf_buf_reclaimed(d);
}
if (bpf_canwritebuf(d))
d->bd_slen = 0;
d->bd_rcount = 0;
d->bd_dcount = 0;
d->bd_fcount = 0;
d->bd_wcount = 0;
d->bd_wfcount = 0;
d->bd_wdcount = 0;
d->bd_zcopy = 0;
}
/*
* FIONREAD Check for read packet available.
* BIOCGBLEN Get buffer len [for read()].
* BIOCSETF Set read filter.
* BIOCSETFNR Set read filter without resetting descriptor.
* BIOCSETWF Set write filter.
* BIOCFLUSH Flush read packet buffer.
* BIOCPROMISC Put interface into promiscuous mode.
* BIOCGDLT Get link layer type.
* BIOCGETIF Get interface name.
* BIOCSETIF Set interface.
* BIOCSRTIMEOUT Set read timeout.
* BIOCGRTIMEOUT Get read timeout.
* BIOCGSTATS Get packet stats.
* BIOCIMMEDIATE Set immediate mode.
* BIOCVERSION Get filter language version.
* BIOCGHDRCMPLT Get "header already complete" flag
* BIOCSHDRCMPLT Set "header already complete" flag
* BIOCGDIRECTION Get packet direction flag
* BIOCSDIRECTION Set packet direction flag
* BIOCGTSTAMP Get time stamp format and resolution.
* BIOCSTSTAMP Set time stamp format and resolution.
* BIOCLOCK Set "locked" flag
* BIOCFEEDBACK Set packet feedback mode.
* BIOCSETZBUF Set current zero-copy buffer locations.
* BIOCGETZMAX Get maximum zero-copy buffer size.
* BIOCROTZBUF Force rotation of zero-copy buffer
* BIOCSETBUFMODE Set buffer mode.
* BIOCGETBUFMODE Get current buffer mode.
*/
/* ARGSUSED */
static int
bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
struct thread *td)
{
struct bpf_d *d;
int error;
error = devfs_get_cdevpriv((void **)&d);
if (error != 0)
return (error);
/*
* Refresh PID associated with this descriptor.
*/
BPFD_LOCK(d);
BPF_PID_REFRESH(d, td);
if (d->bd_state == BPF_WAITING)
callout_stop(&d->bd_callout);
d->bd_state = BPF_IDLE;
BPFD_UNLOCK(d);
if (d->bd_locked == 1) {
switch (cmd) {
case BIOCGBLEN:
case BIOCFLUSH:
case BIOCGDLT:
case BIOCGDLTLIST:
#ifdef COMPAT_FREEBSD32
case BIOCGDLTLIST32:
#endif
case BIOCGETIF:
case BIOCGRTIMEOUT:
#if defined(COMPAT_FREEBSD32) && !defined(__mips__)
case BIOCGRTIMEOUT32:
#endif
case BIOCGSTATS:
case BIOCVERSION:
case BIOCGRSIG:
case BIOCGHDRCMPLT:
case BIOCSTSTAMP:
case BIOCFEEDBACK:
case FIONREAD:
case BIOCLOCK:
case BIOCSRTIMEOUT:
#if defined(COMPAT_FREEBSD32) && !defined(__mips__)
case BIOCSRTIMEOUT32:
#endif
case BIOCIMMEDIATE:
case TIOCGPGRP:
case BIOCROTZBUF:
break;
default:
return (EPERM);
}
}
#ifdef COMPAT_FREEBSD32
/*
* If we see a 32-bit compat ioctl, mark the stream as 32-bit so
* that it will get 32-bit packet headers.
*/
switch (cmd) {
case BIOCSETF32:
case BIOCSETFNR32:
case BIOCSETWF32:
case BIOCGDLTLIST32:
case BIOCGRTIMEOUT32:
case BIOCSRTIMEOUT32:
BPFD_LOCK(d);
d->bd_compat32 = 1;
BPFD_UNLOCK(d);
}
#endif
CURVNET_SET(TD_TO_VNET(td));
switch (cmd) {
default:
error = EINVAL;
break;
/*
* Check for read packet available.
*/
case FIONREAD:
{
int n;
BPFD_LOCK(d);
n = d->bd_slen;
while (d->bd_hbuf_in_use)
mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
PRINET, "bd_hbuf", 0);
if (d->bd_hbuf)
n += d->bd_hlen;
BPFD_UNLOCK(d);
*(int *)addr = n;
break;
}
/*
* Get buffer len [for read()].
*/
case BIOCGBLEN:
BPFD_LOCK(d);
*(u_int *)addr = d->bd_bufsize;
BPFD_UNLOCK(d);
break;
/*
* Set buffer length.
*/
case BIOCSBLEN:
error = bpf_ioctl_sblen(d, (u_int *)addr);
break;
/*
* Set link layer read filter.
*/
case BIOCSETF:
case BIOCSETFNR:
case BIOCSETWF:
#ifdef COMPAT_FREEBSD32
case BIOCSETF32:
case BIOCSETFNR32:
case BIOCSETWF32:
#endif
error = bpf_setf(d, (struct bpf_program *)addr, cmd);
break;
/*
* Flush read packet buffer.
*/
case BIOCFLUSH:
BPFD_LOCK(d);
reset_d(d);
BPFD_UNLOCK(d);
break;
/*
* Put interface into promiscuous mode.
*/
case BIOCPROMISC:
if (d->bd_bif == NULL) {
/*
* No interface attached yet.
*/
error = EINVAL;
break;
}
if (d->bd_promisc == 0) {
error = ifpromisc(d->bd_bif->bif_ifp, 1);
if (error == 0)
d->bd_promisc = 1;
}
break;
/*
* Get current data link type.
*/
case BIOCGDLT:
BPF_LOCK();
if (d->bd_bif == NULL)
error = EINVAL;
else
*(u_int *)addr = d->bd_bif->bif_dlt;
BPF_UNLOCK();
break;
/*
* Get a list of supported data link types.
*/
#ifdef COMPAT_FREEBSD32
case BIOCGDLTLIST32:
{
struct bpf_dltlist32 *list32;
struct bpf_dltlist dltlist;
list32 = (struct bpf_dltlist32 *)addr;
dltlist.bfl_len = list32->bfl_len;
dltlist.bfl_list = PTRIN(list32->bfl_list);
BPF_LOCK();
if (d->bd_bif == NULL)
error = EINVAL;
else {
error = bpf_getdltlist(d, &dltlist);
if (error == 0)
list32->bfl_len = dltlist.bfl_len;
}
BPF_UNLOCK();
break;
}
#endif
case BIOCGDLTLIST:
BPF_LOCK();
if (d->bd_bif == NULL)
error = EINVAL;
else
error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
BPF_UNLOCK();
break;
/*
* Set data link type.
*/
case BIOCSDLT:
BPF_LOCK();
if (d->bd_bif == NULL)
error = EINVAL;
else
error = bpf_setdlt(d, *(u_int *)addr);
BPF_UNLOCK();
break;
/*
* Get interface name.
*/
case BIOCGETIF:
BPF_LOCK();
if (d->bd_bif == NULL)
error = EINVAL;
else {
struct ifnet *const ifp = d->bd_bif->bif_ifp;
struct ifreq *const ifr = (struct ifreq *)addr;
strlcpy(ifr->ifr_name, ifp->if_xname,
sizeof(ifr->ifr_name));
}
BPF_UNLOCK();
break;
/*
* Set interface.
*/
case BIOCSETIF:
{
int alloc_buf, size;
/*
* Behavior here depends on the buffering model. If
* we're using kernel memory buffers, then we can
* allocate them here. If we're using zero-copy,
* then the user process must have registered buffers
* by the time we get here.
*/
alloc_buf = 0;
BPFD_LOCK(d);
if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
d->bd_sbuf == NULL)
alloc_buf = 1;
BPFD_UNLOCK(d);
if (alloc_buf) {
size = d->bd_bufsize;
error = bpf_buffer_ioctl_sblen(d, &size);
if (error != 0)
break;
}
BPF_LOCK();
error = bpf_setif(d, (struct ifreq *)addr);
BPF_UNLOCK();
break;
}
/*
* Set read timeout.
*/
case BIOCSRTIMEOUT:
#if defined(COMPAT_FREEBSD32) && !defined(__mips__)
case BIOCSRTIMEOUT32:
#endif
{
struct timeval *tv = (struct timeval *)addr;
#if defined(COMPAT_FREEBSD32) && !defined(__mips__)
struct timeval32 *tv32;
struct timeval tv64;
if (cmd == BIOCSRTIMEOUT32) {
tv32 = (struct timeval32 *)addr;
tv = &tv64;
tv->tv_sec = tv32->tv_sec;
tv->tv_usec = tv32->tv_usec;
} else
#endif
tv = (struct timeval *)addr;
/*
* Subtract 1 tick from tvtohz() since this isn't
* a one-shot timer.
*/
if ((error = itimerfix(tv)) == 0)
d->bd_rtout = tvtohz(tv) - 1;
break;
}
/*
* Get read timeout.
*/
case BIOCGRTIMEOUT:
#if defined(COMPAT_FREEBSD32) && !defined(__mips__)
case BIOCGRTIMEOUT32:
#endif
{
struct timeval *tv;
#if defined(COMPAT_FREEBSD32) && !defined(__mips__)
struct timeval32 *tv32;
struct timeval tv64;
if (cmd == BIOCGRTIMEOUT32)
tv = &tv64;
else
#endif
tv = (struct timeval *)addr;
tv->tv_sec = d->bd_rtout / hz;
tv->tv_usec = (d->bd_rtout % hz) * tick;
#if defined(COMPAT_FREEBSD32) && !defined(__mips__)
if (cmd == BIOCGRTIMEOUT32) {
tv32 = (struct timeval32 *)addr;
tv32->tv_sec = tv->tv_sec;
tv32->tv_usec = tv->tv_usec;
}
#endif
break;
}
/*
* Get packet stats.
*/
case BIOCGSTATS:
{
struct bpf_stat *bs = (struct bpf_stat *)addr;
/* XXXCSJP overflow */
bs->bs_recv = d->bd_rcount;
bs->bs_drop = d->bd_dcount;
break;
}
/*
* Set immediate mode.
*/
case BIOCIMMEDIATE:
BPFD_LOCK(d);
d->bd_immediate = *(u_int *)addr;
BPFD_UNLOCK(d);
break;
case BIOCVERSION:
{
struct bpf_version *bv = (struct bpf_version *)addr;
bv->bv_major = BPF_MAJOR_VERSION;
bv->bv_minor = BPF_MINOR_VERSION;
break;
}
/*
* Get "header already complete" flag
*/
case BIOCGHDRCMPLT:
BPFD_LOCK(d);
*(u_int *)addr = d->bd_hdrcmplt;
BPFD_UNLOCK(d);
break;
/*
* Set "header already complete" flag
*/
case BIOCSHDRCMPLT:
BPFD_LOCK(d);
d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
BPFD_UNLOCK(d);
break;
/*
* Get packet direction flag
*/
case BIOCGDIRECTION:
BPFD_LOCK(d);
*(u_int *)addr = d->bd_direction;
BPFD_UNLOCK(d);
break;
/*
* Set packet direction flag
*/
case BIOCSDIRECTION:
{
u_int direction;
direction = *(u_int *)addr;
switch (direction) {
case BPF_D_IN:
case BPF_D_INOUT:
case BPF_D_OUT:
BPFD_LOCK(d);
d->bd_direction = direction;
BPFD_UNLOCK(d);
break;
default:
error = EINVAL;
}
}
break;
/*
* Get packet timestamp format and resolution.
*/
case BIOCGTSTAMP:
BPFD_LOCK(d);
*(u_int *)addr = d->bd_tstamp;
BPFD_UNLOCK(d);
break;
/*
* Set packet timestamp format and resolution.
*/
case BIOCSTSTAMP:
{
u_int func;
func = *(u_int *)addr;
if (BPF_T_VALID(func))
d->bd_tstamp = func;
else
error = EINVAL;
}
break;
case BIOCFEEDBACK:
BPFD_LOCK(d);
d->bd_feedback = *(u_int *)addr;
BPFD_UNLOCK(d);
break;
case BIOCLOCK:
BPFD_LOCK(d);
d->bd_locked = 1;
BPFD_UNLOCK(d);
break;
case FIONBIO: /* Non-blocking I/O */
break;
case FIOASYNC: /* Send signal on receive packets */
BPFD_LOCK(d);
d->bd_async = *(int *)addr;
BPFD_UNLOCK(d);
break;
case FIOSETOWN:
/*
* XXX: Add some sort of locking here?
* fsetown() can sleep.
*/
error = fsetown(*(int *)addr, &d->bd_sigio);
break;
case FIOGETOWN:
BPFD_LOCK(d);
*(int *)addr = fgetown(&d->bd_sigio);
BPFD_UNLOCK(d);
break;
/* This is deprecated, FIOSETOWN should be used instead. */
case TIOCSPGRP:
error = fsetown(-(*(int *)addr), &d->bd_sigio);
break;
/* This is deprecated, FIOGETOWN should be used instead. */
case TIOCGPGRP:
*(int *)addr = -fgetown(&d->bd_sigio);
break;
case BIOCSRSIG: /* Set receive signal */
{
u_int sig;
sig = *(u_int *)addr;
if (sig >= NSIG)
error = EINVAL;
else {
BPFD_LOCK(d);
d->bd_sig = sig;
BPFD_UNLOCK(d);
}
break;
}
case BIOCGRSIG:
BPFD_LOCK(d);
*(u_int *)addr = d->bd_sig;
BPFD_UNLOCK(d);
break;
case BIOCGETBUFMODE:
BPFD_LOCK(d);
*(u_int *)addr = d->bd_bufmode;
BPFD_UNLOCK(d);
break;
case BIOCSETBUFMODE:
/*
* Allow the buffering mode to be changed as long as we
* haven't yet committed to a particular mode. Our
* definition of commitment, for now, is whether or not a
* buffer has been allocated or an interface attached, since
* that's the point where things get tricky.
*/
switch (*(u_int *)addr) {
case BPF_BUFMODE_BUFFER:
break;
case BPF_BUFMODE_ZBUF:
if (bpf_zerocopy_enable)
break;
/* FALLSTHROUGH */
default:
CURVNET_RESTORE();
return (EINVAL);
}
BPFD_LOCK(d);
if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
d->bd_fbuf != NULL || d->bd_bif != NULL) {
BPFD_UNLOCK(d);
CURVNET_RESTORE();
return (EBUSY);
}
d->bd_bufmode = *(u_int *)addr;
BPFD_UNLOCK(d);
break;
case BIOCGETZMAX:
error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
break;
case BIOCSETZBUF:
error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
break;
case BIOCROTZBUF:
error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
break;
}
CURVNET_RESTORE();
return (error);
}
/*
* Set d's packet filter program to fp. If this file already has a filter,
* free it and replace it. Returns EINVAL for bogus requests.
*
* Note we need global lock here to serialize bpf_setf() and bpf_setif() calls
* since reading d->bd_bif can't be protected by d or interface lock due to
* lock order.
*
* Additionally, we have to acquire interface write lock due to bpf_mtap() uses
* interface read lock to read all filers.
*
*/
static int
bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
{
#ifdef COMPAT_FREEBSD32
struct bpf_program fp_swab;
struct bpf_program32 *fp32;
#endif
struct bpf_insn *fcode, *old;
#ifdef BPF_JITTER
bpf_jit_filter *jfunc, *ofunc;
#endif
size_t size;
u_int flen;
int need_upgrade;
#ifdef COMPAT_FREEBSD32
switch (cmd) {
case BIOCSETF32:
case BIOCSETWF32:
case BIOCSETFNR32:
fp32 = (struct bpf_program32 *)fp;
fp_swab.bf_len = fp32->bf_len;
fp_swab.bf_insns = (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
fp = &fp_swab;
switch (cmd) {
case BIOCSETF32:
cmd = BIOCSETF;
break;
case BIOCSETWF32:
cmd = BIOCSETWF;
break;
}
break;
}
#endif
fcode = NULL;
#ifdef BPF_JITTER
jfunc = ofunc = NULL;
#endif
need_upgrade = 0;
/*
* Check new filter validness before acquiring any locks.
* Allocate memory for new filter, if needed.
*/
flen = fp->bf_len;
if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
return (EINVAL);
size = flen * sizeof(*fp->bf_insns);
if (size > 0) {
/* We're setting up new filter. Copy and check actual data. */
fcode = malloc(size, M_BPF, M_WAITOK);
if (copyin(fp->bf_insns, fcode, size) != 0 ||
!bpf_validate(fcode, flen)) {
free(fcode, M_BPF);
return (EINVAL);
}
#ifdef BPF_JITTER
/* Filter is copied inside fcode and is perfectly valid. */
jfunc = bpf_jitter(fcode, flen);
#endif
}
BPF_LOCK();
/*
* Set up new filter.
* Protect filter change by interface lock.
* Additionally, we are protected by global lock here.
*/
if (d->bd_bif != NULL)
BPFIF_WLOCK(d->bd_bif);
BPFD_LOCK(d);
if (cmd == BIOCSETWF) {
old = d->bd_wfilter;
d->bd_wfilter = fcode;
} else {
old = d->bd_rfilter;
d->bd_rfilter = fcode;
#ifdef BPF_JITTER
ofunc = d->bd_bfilter;
d->bd_bfilter = jfunc;
#endif
if (cmd == BIOCSETF)
reset_d(d);
need_upgrade = bpf_check_upgrade(cmd, d, fcode, flen);
}
BPFD_UNLOCK(d);
if (d->bd_bif != NULL)
BPFIF_WUNLOCK(d->bd_bif);
if (old != NULL)
free(old, M_BPF);
#ifdef BPF_JITTER
if (ofunc != NULL)
bpf_destroy_jit_filter(ofunc);
#endif
/* Move d to active readers list. */
if (need_upgrade != 0)
bpf_upgraded(d);
BPF_UNLOCK();
return (0);
}
/*
* Detach a file from its current interface (if attached at all) and attach
* to the interface indicated by the name stored in ifr.
* Return an errno or 0.
*/
static int
bpf_setif(struct bpf_d *d, struct ifreq *ifr)
{
struct bpf_if *bp;
struct ifnet *theywant;
BPF_LOCK_ASSERT();
theywant = ifunit(ifr->ifr_name);
if (theywant == NULL || theywant->if_bpf == NULL)
return (ENXIO);
bp = theywant->if_bpf;
/* Check if interface is not being detached from BPF */
BPFIF_RLOCK(bp);
if (bp->bif_flags & BPFIF_FLAG_DYING) {
BPFIF_RUNLOCK(bp);
return (ENXIO);
}
BPFIF_RUNLOCK(bp);
/*
* At this point, we expect the buffer is already allocated. If not,
* return an error.
*/
switch (d->bd_bufmode) {
case BPF_BUFMODE_BUFFER:
case BPF_BUFMODE_ZBUF:
if (d->bd_sbuf == NULL)
return (EINVAL);
break;
default:
panic("bpf_setif: bufmode %d", d->bd_bufmode);
}
if (bp != d->bd_bif)
bpf_attachd(d, bp);
BPFD_LOCK(d);
reset_d(d);
BPFD_UNLOCK(d);
return (0);
}
/*
* Support for select() and poll() system calls
*
* Return true iff the specific operation will not block indefinitely.
* Otherwise, return false but make a note that a selwakeup() must be done.
*/
static int
bpfpoll(struct cdev *dev, int events, struct thread *td)
{
struct bpf_d *d;
int revents;
if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
return (events &
(POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
/*
* Refresh PID associated with this descriptor.
*/
revents = events & (POLLOUT | POLLWRNORM);
BPFD_LOCK(d);
BPF_PID_REFRESH(d, td);
if (events & (POLLIN | POLLRDNORM)) {
if (bpf_ready(d))
revents |= events & (POLLIN | POLLRDNORM);
else {
selrecord(td, &d->bd_sel);
/* Start the read timeout if necessary. */
if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
callout_reset(&d->bd_callout, d->bd_rtout,
bpf_timed_out, d);
d->bd_state = BPF_WAITING;
}
}
}
BPFD_UNLOCK(d);
return (revents);
}
/*
* Support for kevent() system call. Register EVFILT_READ filters and
* reject all others.
*/
int
bpfkqfilter(struct cdev *dev, struct knote *kn)
{
struct bpf_d *d;
if (devfs_get_cdevpriv((void **)&d) != 0 ||
kn->kn_filter != EVFILT_READ)
return (1);
/*
* Refresh PID associated with this descriptor.
*/
BPFD_LOCK(d);
BPF_PID_REFRESH_CUR(d);
kn->kn_fop = &bpfread_filtops;
kn->kn_hook = d;
knlist_add(&d->bd_sel.si_note, kn, 1);
BPFD_UNLOCK(d);
return (0);
}
static void
filt_bpfdetach(struct knote *kn)
{
struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
knlist_remove(&d->bd_sel.si_note, kn, 0);
}
static int
filt_bpfread(struct knote *kn, long hint)
{
struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
int ready;
BPFD_LOCK_ASSERT(d);
ready = bpf_ready(d);
if (ready) {
kn->kn_data = d->bd_slen;
/*
* Ignore the hold buffer if it is being copied to user space.
*/
if (!d->bd_hbuf_in_use && d->bd_hbuf)
kn->kn_data += d->bd_hlen;
} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
callout_reset(&d->bd_callout, d->bd_rtout,
bpf_timed_out, d);
d->bd_state = BPF_WAITING;
}
return (ready);
}
#define BPF_TSTAMP_NONE 0
#define BPF_TSTAMP_FAST 1
#define BPF_TSTAMP_NORMAL 2
#define BPF_TSTAMP_EXTERN 3
static int
bpf_ts_quality(int tstype)
{
if (tstype == BPF_T_NONE)
return (BPF_TSTAMP_NONE);
if ((tstype & BPF_T_FAST) != 0)
return (BPF_TSTAMP_FAST);
return (BPF_TSTAMP_NORMAL);
}
static int
bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
{
struct m_tag *tag;
int quality;
quality = bpf_ts_quality(tstype);
if (quality == BPF_TSTAMP_NONE)
return (quality);
if (m != NULL) {
tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
if (tag != NULL) {
*bt = *(struct bintime *)(tag + 1);
return (BPF_TSTAMP_EXTERN);
}
}
if (quality == BPF_TSTAMP_NORMAL)
binuptime(bt);
else
getbinuptime(bt);
return (quality);
}
/*
* Incoming linkage from device drivers. Process the packet pkt, of length
* pktlen, which is stored in a contiguous buffer. The packet is parsed
* by each process' filter, and if accepted, stashed into the corresponding
* buffer.
*/
void
bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
{
struct bintime bt;
struct bpf_d *d;
#ifdef BPF_JITTER
bpf_jit_filter *bf;
#endif
u_int slen;
int gottime;
gottime = BPF_TSTAMP_NONE;
BPFIF_RLOCK(bp);
LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
/*
* We are not using any locks for d here because:
* 1) any filter change is protected by interface
* write lock
* 2) destroying/detaching d is protected by interface
* write lock, too
*/
/* XXX: Do not protect counter for the sake of performance. */
++d->bd_rcount;
/*
* NB: We dont call BPF_CHECK_DIRECTION() here since there is no
* way for the caller to indiciate to us whether this packet
* is inbound or outbound. In the bpf_mtap() routines, we use
* the interface pointers on the mbuf to figure it out.
*/
#ifdef BPF_JITTER
bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
if (bf != NULL)
slen = (*(bf->func))(pkt, pktlen, pktlen);
else
#endif
slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
if (slen != 0) {
/*
* Filter matches. Let's to acquire write lock.
*/
BPFD_LOCK(d);
d->bd_fcount++;
if (gottime < bpf_ts_quality(d->bd_tstamp))
gottime = bpf_gettime(&bt, d->bd_tstamp, NULL);
#ifdef MAC
if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
#endif
catchpacket(d, pkt, pktlen, slen,
bpf_append_bytes, &bt);
BPFD_UNLOCK(d);
}
}
BPFIF_RUNLOCK(bp);
}
#define BPF_CHECK_DIRECTION(d, r, i) \
(((d)->bd_direction == BPF_D_IN && (r) != (i)) || \
((d)->bd_direction == BPF_D_OUT && (r) == (i)))
/*
* Incoming linkage from device drivers, when packet is in an mbuf chain.
* Locking model is explained in bpf_tap().
*/
void
bpf_mtap(struct bpf_if *bp, struct mbuf *m)
{
struct bintime bt;
struct bpf_d *d;
#ifdef BPF_JITTER
bpf_jit_filter *bf;
#endif
u_int pktlen, slen;
int gottime;
/* Skip outgoing duplicate packets. */
if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
m->m_flags &= ~M_PROMISC;
return;
}
pktlen = m_length(m, NULL);
gottime = BPF_TSTAMP_NONE;
BPFIF_RLOCK(bp);
LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
continue;
++d->bd_rcount;
#ifdef BPF_JITTER
bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
/* XXX We cannot handle multiple mbufs. */
if (bf != NULL && m->m_next == NULL)
slen = (*(bf->func))(mtod(m, u_char *), pktlen, pktlen);
else
#endif
slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
if (slen != 0) {
BPFD_LOCK(d);
d->bd_fcount++;
if (gottime < bpf_ts_quality(d->bd_tstamp))
gottime = bpf_gettime(&bt, d->bd_tstamp, m);
#ifdef MAC
if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
#endif
catchpacket(d, (u_char *)m, pktlen, slen,
bpf_append_mbuf, &bt);
BPFD_UNLOCK(d);
}
}
BPFIF_RUNLOCK(bp);
}
/*
* Incoming linkage from device drivers, when packet is in
* an mbuf chain and to be prepended by a contiguous header.
*/
void
bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
{
struct bintime bt;
struct mbuf mb;
struct bpf_d *d;
u_int pktlen, slen;
int gottime;
/* Skip outgoing duplicate packets. */
if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
m->m_flags &= ~M_PROMISC;
return;
}
pktlen = m_length(m, NULL);
/*
* Craft on-stack mbuf suitable for passing to bpf_filter.
* Note that we cut corners here; we only setup what's
* absolutely needed--this mbuf should never go anywhere else.
*/
mb.m_next = m;
mb.m_data = data;
mb.m_len = dlen;
pktlen += dlen;
gottime = BPF_TSTAMP_NONE;
BPFIF_RLOCK(bp);
LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
continue;
++d->bd_rcount;
slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
if (slen != 0) {
BPFD_LOCK(d);
d->bd_fcount++;
if (gottime < bpf_ts_quality(d->bd_tstamp))
gottime = bpf_gettime(&bt, d->bd_tstamp, m);
#ifdef MAC
if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
#endif
catchpacket(d, (u_char *)&mb, pktlen, slen,
bpf_append_mbuf, &bt);
BPFD_UNLOCK(d);
}
}
BPFIF_RUNLOCK(bp);
}
#undef BPF_CHECK_DIRECTION
#undef BPF_TSTAMP_NONE
#undef BPF_TSTAMP_FAST
#undef BPF_TSTAMP_NORMAL
#undef BPF_TSTAMP_EXTERN
static int
bpf_hdrlen(struct bpf_d *d)
{
int hdrlen;
hdrlen = d->bd_bif->bif_hdrlen;
#ifndef BURN_BRIDGES
if (d->bd_tstamp == BPF_T_NONE ||
BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
#ifdef COMPAT_FREEBSD32
if (d->bd_compat32)
hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
else
#endif
hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
else
#endif
hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
#ifdef COMPAT_FREEBSD32
if (d->bd_compat32)
hdrlen = BPF_WORDALIGN32(hdrlen);
else
#endif
hdrlen = BPF_WORDALIGN(hdrlen);
return (hdrlen - d->bd_bif->bif_hdrlen);
}
static void
bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
{
struct bintime bt2, boottimebin;
struct timeval tsm;
struct timespec tsn;
if ((tstype & BPF_T_MONOTONIC) == 0) {
bt2 = *bt;
getboottimebin(&boottimebin);
bintime_add(&bt2, &boottimebin);
bt = &bt2;
}
switch (BPF_T_FORMAT(tstype)) {
case BPF_T_MICROTIME:
bintime2timeval(bt, &tsm);
ts->bt_sec = tsm.tv_sec;
ts->bt_frac = tsm.tv_usec;
break;
case BPF_T_NANOTIME:
bintime2timespec(bt, &tsn);
ts->bt_sec = tsn.tv_sec;
ts->bt_frac = tsn.tv_nsec;
break;
case BPF_T_BINTIME:
ts->bt_sec = bt->sec;
ts->bt_frac = bt->frac;
break;
}
}
/*
* Move the packet data from interface memory (pkt) into the
* store buffer. "cpfn" is the routine called to do the actual data
* transfer. bcopy is passed in to copy contiguous chunks, while
* bpf_append_mbuf is passed in to copy mbuf chains. In the latter case,
* pkt is really an mbuf.
*/
static void
catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
struct bintime *bt)
{
struct bpf_xhdr hdr;
#ifndef BURN_BRIDGES
struct bpf_hdr hdr_old;
#ifdef COMPAT_FREEBSD32
struct bpf_hdr32 hdr32_old;
#endif
#endif
int caplen, curlen, hdrlen, totlen;
int do_wakeup = 0;
int do_timestamp;
int tstype;
BPFD_LOCK_ASSERT(d);
/*
* Detect whether user space has released a buffer back to us, and if
* so, move it from being a hold buffer to a free buffer. This may
* not be the best place to do it (for example, we might only want to
* run this check if we need the space), but for now it's a reliable
* spot to do it.
*/
if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
d->bd_fbuf = d->bd_hbuf;
d->bd_hbuf = NULL;
d->bd_hlen = 0;
bpf_buf_reclaimed(d);
}
/*
* Figure out how many bytes to move. If the packet is
* greater or equal to the snapshot length, transfer that
* much. Otherwise, transfer the whole packet (unless
* we hit the buffer size limit).
*/
hdrlen = bpf_hdrlen(d);
totlen = hdrlen + min(snaplen, pktlen);
if (totlen > d->bd_bufsize)
totlen = d->bd_bufsize;
/*
* Round up the end of the previous packet to the next longword.
*
* Drop the packet if there's no room and no hope of room
* If the packet would overflow the storage buffer or the storage
* buffer is considered immutable by the buffer model, try to rotate
* the buffer and wakeup pending processes.
*/
#ifdef COMPAT_FREEBSD32
if (d->bd_compat32)
curlen = BPF_WORDALIGN32(d->bd_slen);
else
#endif
curlen = BPF_WORDALIGN(d->bd_slen);
if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
if (d->bd_fbuf == NULL) {
/*
* There's no room in the store buffer, and no
* prospect of room, so drop the packet. Notify the
* buffer model.
*/
bpf_buffull(d);
++d->bd_dcount;
return;
}
KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
ROTATE_BUFFERS(d);
do_wakeup = 1;
curlen = 0;
} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
/*
* Immediate mode is set, or the read timeout has already
* expired during a select call. A packet arrived, so the
* reader should be woken up.
*/
do_wakeup = 1;
caplen = totlen - hdrlen;
tstype = d->bd_tstamp;
do_timestamp = tstype != BPF_T_NONE;
#ifndef BURN_BRIDGES
if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
struct bpf_ts ts;
if (do_timestamp)
bpf_bintime2ts(bt, &ts, tstype);
#ifdef COMPAT_FREEBSD32
if (d->bd_compat32) {
bzero(&hdr32_old, sizeof(hdr32_old));
if (do_timestamp) {
hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
}
hdr32_old.bh_datalen = pktlen;
hdr32_old.bh_hdrlen = hdrlen;
hdr32_old.bh_caplen = caplen;
bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
sizeof(hdr32_old));
goto copy;
}
#endif
bzero(&hdr_old, sizeof(hdr_old));
if (do_timestamp) {
hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
}
hdr_old.bh_datalen = pktlen;
hdr_old.bh_hdrlen = hdrlen;
hdr_old.bh_caplen = caplen;
bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
sizeof(hdr_old));
goto copy;
}
#endif
/*
* Append the bpf header. Note we append the actual header size, but
* move forward the length of the header plus padding.
*/
bzero(&hdr, sizeof(hdr));
if (do_timestamp)
bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
hdr.bh_datalen = pktlen;
hdr.bh_hdrlen = hdrlen;
hdr.bh_caplen = caplen;
bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
/*
* Copy the packet data into the store buffer and update its length.
*/
#ifndef BURN_BRIDGES
copy:
#endif
(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
d->bd_slen = curlen + totlen;
if (do_wakeup)
bpf_wakeup(d);
}
/*
* Free buffers currently in use by a descriptor.
* Called on close.
*/
static void
bpf_freed(struct bpf_d *d)
{
/*
* We don't need to lock out interrupts since this descriptor has
* been detached from its interface and it yet hasn't been marked
* free.
*/
bpf_free(d);
if (d->bd_rfilter != NULL) {
free((caddr_t)d->bd_rfilter, M_BPF);
#ifdef BPF_JITTER
if (d->bd_bfilter != NULL)
bpf_destroy_jit_filter(d->bd_bfilter);
#endif
}
if (d->bd_wfilter != NULL)
free((caddr_t)d->bd_wfilter, M_BPF);
mtx_destroy(&d->bd_lock);
}
/*
* Attach an interface to bpf. dlt is the link layer type; hdrlen is the
* fixed size of the link header (variable length headers not yet supported).
*/
void
bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
{
bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
}
/*
* Attach an interface to bpf. ifp is a pointer to the structure
* defining the interface to be attached, dlt is the link layer type,
* and hdrlen is the fixed size of the link header (variable length
* headers are not yet supporrted).
*/
void
bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
{
struct bpf_if *bp;
bp = malloc(sizeof(*bp), M_BPF, M_NOWAIT | M_ZERO);
if (bp == NULL)
panic("bpfattach");
LIST_INIT(&bp->bif_dlist);
LIST_INIT(&bp->bif_wlist);
bp->bif_ifp = ifp;
bp->bif_dlt = dlt;
rw_init(&bp->bif_lock, "bpf interface lock");
KASSERT(*driverp == NULL, ("bpfattach2: driverp already initialized"));
*driverp = bp;
BPF_LOCK();
LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
BPF_UNLOCK();
bp->bif_hdrlen = hdrlen;
if (bootverbose && IS_DEFAULT_VNET(curvnet))
if_printf(ifp, "bpf attached\n");
}
#ifdef VIMAGE
/*
* When moving interfaces between vnet instances we need a way to
* query the dlt and hdrlen before detach so we can re-attch the if_bpf
* after the vmove. We unfortunately have no device driver infrastructure
* to query the interface for these values after creation/attach, thus
* add this as a workaround.
*/
int
bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
{
if (bp == NULL)
return (ENXIO);
if (bif_dlt == NULL && bif_hdrlen == NULL)
return (0);
if (bif_dlt != NULL)
*bif_dlt = bp->bif_dlt;
if (bif_hdrlen != NULL)
*bif_hdrlen = bp->bif_hdrlen;
return (0);
}
#endif
/*
* Detach bpf from an interface. This involves detaching each descriptor
* associated with the interface. Notify each descriptor as it's detached
* so that any sleepers wake up and get ENXIO.
*/
void
bpfdetach(struct ifnet *ifp)
{
struct bpf_if *bp, *bp_temp;
struct bpf_d *d;
int ndetached;
ndetached = 0;
BPF_LOCK();
/* Find all bpf_if struct's which reference ifp and detach them. */
LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
if (ifp != bp->bif_ifp)
continue;
LIST_REMOVE(bp, bif_next);
/* Add to to-be-freed list */
LIST_INSERT_HEAD(&bpf_freelist, bp, bif_next);
ndetached++;
/*
* Delay freeing bp till interface is detached
* and all routes through this interface are removed.
* Mark bp as detached to restrict new consumers.
*/
BPFIF_WLOCK(bp);
bp->bif_flags |= BPFIF_FLAG_DYING;
BPFIF_WUNLOCK(bp);
CTR4(KTR_NET, "%s: sheduling free for encap %d (%p) for if %p",
__func__, bp->bif_dlt, bp, ifp);
/* Free common descriptors */
while ((d = LIST_FIRST(&bp->bif_dlist)) != NULL) {
bpf_detachd_locked(d);
BPFD_LOCK(d);
bpf_wakeup(d);
BPFD_UNLOCK(d);
}
/* Free writer-only descriptors */
while ((d = LIST_FIRST(&bp->bif_wlist)) != NULL) {
bpf_detachd_locked(d);
BPFD_LOCK(d);
bpf_wakeup(d);
BPFD_UNLOCK(d);
}
}
BPF_UNLOCK();
#ifdef INVARIANTS
if (ndetached == 0)
printf("bpfdetach: %s was not attached\n", ifp->if_xname);
#endif
}
/*
* Interface departure handler.
* Note departure event does not guarantee interface is going down.
* Interface renaming is currently done via departure/arrival event set.
*
* Departure handled is called after all routes pointing to
* given interface are removed and interface is in down state
* restricting any packets to be sent/received. We assume it is now safe
* to free data allocated by BPF.
*/
static void
bpf_ifdetach(void *arg __unused, struct ifnet *ifp)
{
struct bpf_if *bp, *bp_temp;
int nmatched = 0;
BPF_LOCK();
/*
* Find matching entries in free list.
* Nothing should be found if bpfdetach() was not called.
*/
LIST_FOREACH_SAFE(bp, &bpf_freelist, bif_next, bp_temp) {
if (ifp != bp->bif_ifp)
continue;
CTR3(KTR_NET, "%s: freeing BPF instance %p for interface %p",
__func__, bp, ifp);
LIST_REMOVE(bp, bif_next);
rw_destroy(&bp->bif_lock);
free(bp, M_BPF);
nmatched++;
}
BPF_UNLOCK();
/*
* Note that we cannot zero other pointers to
* custom DLTs possibly used by given interface.
*/
if (nmatched != 0)
ifp->if_bpf = NULL;
}
/*
* Get a list of available data link type of the interface.
*/
static int
bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
{
struct ifnet *ifp;
struct bpf_if *bp;
u_int *lst;
int error, n, n1;
BPF_LOCK_ASSERT();
ifp = d->bd_bif->bif_ifp;
again:
n1 = 0;
LIST_FOREACH(bp, &bpf_iflist, bif_next) {
if (bp->bif_ifp == ifp)
n1++;
}
if (bfl->bfl_list == NULL) {
bfl->bfl_len = n1;
return (0);
}
if (n1 > bfl->bfl_len)
return (ENOMEM);
BPF_UNLOCK();
lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
n = 0;
BPF_LOCK();
LIST_FOREACH(bp, &bpf_iflist, bif_next) {
if (bp->bif_ifp != ifp)
continue;
if (n >= n1) {
free(lst, M_TEMP);
goto again;
}
lst[n] = bp->bif_dlt;
n++;
}
BPF_UNLOCK();
error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
free(lst, M_TEMP);
BPF_LOCK();
bfl->bfl_len = n;
return (error);
}
/*
* Set the data link type of a BPF instance.
*/
static int
bpf_setdlt(struct bpf_d *d, u_int dlt)
{
int error, opromisc;
struct ifnet *ifp;
struct bpf_if *bp;
BPF_LOCK_ASSERT();
if (d->bd_bif->bif_dlt == dlt)
return (0);
ifp = d->bd_bif->bif_ifp;
LIST_FOREACH(bp, &bpf_iflist, bif_next) {
if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
break;
}
if (bp != NULL) {
opromisc = d->bd_promisc;
bpf_attachd(d, bp);
BPFD_LOCK(d);
reset_d(d);
BPFD_UNLOCK(d);
if (opromisc) {
error = ifpromisc(bp->bif_ifp, 1);
if (error)
if_printf(bp->bif_ifp,
"bpf_setdlt: ifpromisc failed (%d)\n",
error);
else
d->bd_promisc = 1;
}
}
return (bp == NULL ? EINVAL : 0);
}
static void
bpf_drvinit(void *unused)
{
struct cdev *dev;
mtx_init(&bpf_mtx, "bpf global lock", NULL, MTX_DEF);
LIST_INIT(&bpf_iflist);
LIST_INIT(&bpf_freelist);
dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
/* For compatibility */
make_dev_alias(dev, "bpf0");
/* Register interface departure handler */
bpf_ifdetach_cookie = EVENTHANDLER_REGISTER(
ifnet_departure_event, bpf_ifdetach, NULL,
EVENTHANDLER_PRI_ANY);
}
/*
* Zero out the various packet counters associated with all of the bpf
* descriptors. At some point, we will probably want to get a bit more
* granular and allow the user to specify descriptors to be zeroed.
*/
static void
bpf_zero_counters(void)
{
struct bpf_if *bp;
struct bpf_d *bd;
BPF_LOCK();
LIST_FOREACH(bp, &bpf_iflist, bif_next) {
BPFIF_RLOCK(bp);
LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
BPFD_LOCK(bd);
bd->bd_rcount = 0;
bd->bd_dcount = 0;
bd->bd_fcount = 0;
bd->bd_wcount = 0;
bd->bd_wfcount = 0;
bd->bd_zcopy = 0;
BPFD_UNLOCK(bd);
}
BPFIF_RUNLOCK(bp);
}
BPF_UNLOCK();
}
/*
* Fill filter statistics
*/
static void
bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
{
bzero(d, sizeof(*d));
BPFD_LOCK_ASSERT(bd);
d->bd_structsize = sizeof(*d);
/* XXX: reading should be protected by global lock */
d->bd_immediate = bd->bd_immediate;
d->bd_promisc = bd->bd_promisc;
d->bd_hdrcmplt = bd->bd_hdrcmplt;
d->bd_direction = bd->bd_direction;
d->bd_feedback = bd->bd_feedback;
d->bd_async = bd->bd_async;
d->bd_rcount = bd->bd_rcount;
d->bd_dcount = bd->bd_dcount;
d->bd_fcount = bd->bd_fcount;
d->bd_sig = bd->bd_sig;
d->bd_slen = bd->bd_slen;
d->bd_hlen = bd->bd_hlen;
d->bd_bufsize = bd->bd_bufsize;
d->bd_pid = bd->bd_pid;
strlcpy(d->bd_ifname,
bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
d->bd_locked = bd->bd_locked;
d->bd_wcount = bd->bd_wcount;
d->bd_wdcount = bd->bd_wdcount;
d->bd_wfcount = bd->bd_wfcount;
d->bd_zcopy = bd->bd_zcopy;
d->bd_bufmode = bd->bd_bufmode;
}
/*
* Handle `netstat -B' stats request
*/
static int
bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
{
static const struct xbpf_d zerostats;
struct xbpf_d *xbdbuf, *xbd, tempstats;
int index, error;
struct bpf_if *bp;
struct bpf_d *bd;
/*
* XXX This is not technically correct. It is possible for non
* privileged users to open bpf devices. It would make sense
* if the users who opened the devices were able to retrieve
* the statistics for them, too.
*/
error = priv_check(req->td, PRIV_NET_BPF);
if (error)
return (error);
/*
* Check to see if the user is requesting that the counters be
* zeroed out. Explicitly check that the supplied data is zeroed,
* as we aren't allowing the user to set the counters currently.
*/
if (req->newptr != NULL) {
if (req->newlen != sizeof(tempstats))
return (EINVAL);
memset(&tempstats, 0, sizeof(tempstats));
error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
if (error)
return (error);
if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
return (EINVAL);
bpf_zero_counters();
return (0);
}
if (req->oldptr == NULL)
return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
if (bpf_bpfd_cnt == 0)
return (SYSCTL_OUT(req, 0, 0));
xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
BPF_LOCK();
if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
BPF_UNLOCK();
free(xbdbuf, M_BPF);
return (ENOMEM);
}
index = 0;
LIST_FOREACH(bp, &bpf_iflist, bif_next) {
BPFIF_RLOCK(bp);
/* Send writers-only first */
LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
xbd = &xbdbuf[index++];
BPFD_LOCK(bd);
bpfstats_fill_xbpf(xbd, bd);
BPFD_UNLOCK(bd);
}
LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
xbd = &xbdbuf[index++];
BPFD_LOCK(bd);
bpfstats_fill_xbpf(xbd, bd);
BPFD_UNLOCK(bd);
}
BPFIF_RUNLOCK(bp);
}
BPF_UNLOCK();
error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
free(xbdbuf, M_BPF);
return (error);
}
SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
#else /* !DEV_BPF && !NETGRAPH_BPF */
/*
* NOP stubs to allow bpf-using drivers to load and function.
*
* A 'better' implementation would allow the core bpf functionality
* to be loaded at runtime.
*/
static struct bpf_if bp_null;
void
bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
{
}
void
bpf_mtap(struct bpf_if *bp, struct mbuf *m)
{
}
void
bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
{
}
void
bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
{
bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
}
void
bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
{
*driverp = &bp_null;
}
void
bpfdetach(struct ifnet *ifp)
{
}
u_int
bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
{
return -1; /* "no filter" behaviour */
}
int
bpf_validate(const struct bpf_insn *f, int len)
{
return 0; /* false */
}
#endif /* !DEV_BPF && !NETGRAPH_BPF */
#ifdef DDB
static void
bpf_show_bpf_if(struct bpf_if *bpf_if)
{
if (bpf_if == NULL)
return;
db_printf("%p:\n", bpf_if);
#define BPF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, bpf_if->e);
/* bif_ext.bif_next */
/* bif_ext.bif_dlist */
BPF_DB_PRINTF("%#x", bif_dlt);
BPF_DB_PRINTF("%u", bif_hdrlen);
BPF_DB_PRINTF("%p", bif_ifp);
/* bif_lock */
/* bif_wlist */
BPF_DB_PRINTF("%#x", bif_flags);
}
DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
{
if (!have_addr) {
db_printf("usage: show bpf_if <struct bpf_if *>\n");
return;
}
bpf_show_bpf_if((struct bpf_if *)addr);
}
#endif