freebsd-skq/sys/dev/ath/ath_hal/ah_regdomain.c
Adrian Chadd c48e24c122 Migrate the regulatory database definitions into separate header files
to both make things clearer, and to make it easier to write userland
code which pulls in these definitions without needing to pull in the
rest of the HAL.

This stuff should be deprecated at some point in the future once
the net80211 regulatory domain support encapsulates all of the
defintions here.
2011-03-10 03:13:56 +00:00

828 lines
23 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2005-2006 Atheros Communications, Inc.
* All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include <net80211/_ieee80211.h>
#include <net80211/ieee80211_regdomain.h>
#include "ah_internal.h"
#include "ah_eeprom.h"
#include "ah_devid.h"
#include "ah_regdomain.h"
/*
* XXX this code needs a audit+review
*/
/* used throughout this file... */
#define N(a) (sizeof (a) / sizeof (a[0]))
#define HAL_MODE_11A_TURBO HAL_MODE_108A
#define HAL_MODE_11G_TURBO HAL_MODE_108G
/*
* Mask to check whether a domain is a multidomain or a single domain
*/
#define MULTI_DOMAIN_MASK 0xFF00
/*
* Enumerated Regulatory Domain Information 8 bit values indicate that
* the regdomain is really a pair of unitary regdomains. 12 bit values
* are the real unitary regdomains and are the only ones which have the
* frequency bitmasks and flags set.
*/
#include "ah_regdomain/ah_rd_regenum.h"
#define WORLD_SKU_MASK 0x00F0
#define WORLD_SKU_PREFIX 0x0060
/*
* THE following table is the mapping of regdomain pairs specified by
* an 8 bit regdomain value to the individual unitary reg domains
*/
#include "ah_regdomain/ah_rd_regmap.h"
/*
* The following tables are the master list for all different freqeuncy
* bands with the complete matrix of all possible flags and settings
* for each band if it is used in ANY reg domain.
*/
#define COUNTRY_ERD_FLAG 0x8000
#define WORLDWIDE_ROAMING_FLAG 0x4000
/*
* This table maps country ISO codes from net80211 into regulatory
* domains which the ath regulatory domain code understands.
*/
#include "ah_regdomain/ah_rd_ctry.h"
/*
* The frequency band collections are a set of frequency ranges
* with shared properties - max tx power, max antenna gain, channel width,
* channel spacing, DFS requirements and passive scanning requirements.
*
* These are represented as entries in a frequency band bitmask.
* Each regulatory domain entry in ah_regdomain_domains.h uses one
* or more frequency band entries for each of the channel modes
* supported (11bg, 11a, half, quarter, turbo, etc.)
*
*/
#include "ah_regdomain/ah_rd_freqbands.h"
/*
* This is the main regulatory database. It defines the supported
* set of features and requirements for each of the defined regulatory
* zones. It uses combinations of frequency ranges - represented in
* a bitmask - to determine the requirements and limitations needed.
*/
#include "ah_regdomain/ah_rd_domains.h"
static const struct cmode modes[] = {
{ HAL_MODE_TURBO, IEEE80211_CHAN_ST },
{ HAL_MODE_11A, IEEE80211_CHAN_A },
{ HAL_MODE_11B, IEEE80211_CHAN_B },
{ HAL_MODE_11G, IEEE80211_CHAN_G },
{ HAL_MODE_11G_TURBO, IEEE80211_CHAN_108G },
{ HAL_MODE_11A_TURBO, IEEE80211_CHAN_108A },
{ HAL_MODE_11A_QUARTER_RATE,
IEEE80211_CHAN_A | IEEE80211_CHAN_QUARTER },
{ HAL_MODE_11A_HALF_RATE,
IEEE80211_CHAN_A | IEEE80211_CHAN_HALF },
{ HAL_MODE_11G_QUARTER_RATE,
IEEE80211_CHAN_G | IEEE80211_CHAN_QUARTER },
{ HAL_MODE_11G_HALF_RATE,
IEEE80211_CHAN_G | IEEE80211_CHAN_HALF },
{ HAL_MODE_11NG_HT20, IEEE80211_CHAN_G | IEEE80211_CHAN_HT20 },
{ HAL_MODE_11NG_HT40PLUS,
IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U },
{ HAL_MODE_11NG_HT40MINUS,
IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D },
{ HAL_MODE_11NA_HT20, IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 },
{ HAL_MODE_11NA_HT40PLUS,
IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U },
{ HAL_MODE_11NA_HT40MINUS,
IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D },
};
static OS_INLINE uint16_t
getEepromRD(struct ath_hal *ah)
{
return AH_PRIVATE(ah)->ah_currentRD &~ WORLDWIDE_ROAMING_FLAG;
}
/*
* Test to see if the bitmask array is all zeros
*/
static HAL_BOOL
isChanBitMaskZero(const uint64_t *bitmask)
{
#if BMLEN > 2
#error "add more cases"
#endif
#if BMLEN > 1
if (bitmask[1] != 0)
return AH_FALSE;
#endif
return (bitmask[0] == 0);
}
/*
* Return whether or not the regulatory domain/country in EEPROM
* is acceptable.
*/
static HAL_BOOL
isEepromValid(struct ath_hal *ah)
{
uint16_t rd = getEepromRD(ah);
int i;
if (rd & COUNTRY_ERD_FLAG) {
uint16_t cc = rd &~ COUNTRY_ERD_FLAG;
for (i = 0; i < N(allCountries); i++)
if (allCountries[i].countryCode == cc)
return AH_TRUE;
} else {
for (i = 0; i < N(regDomainPairs); i++)
if (regDomainPairs[i].regDmnEnum == rd)
return AH_TRUE;
}
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: invalid regulatory domain/country code 0x%x\n", __func__, rd);
return AH_FALSE;
}
/*
* Find the pointer to the country element in the country table
* corresponding to the country code
*/
static COUNTRY_CODE_TO_ENUM_RD*
findCountry(HAL_CTRY_CODE countryCode)
{
int i;
for (i = 0; i < N(allCountries); i++) {
if (allCountries[i].countryCode == countryCode)
return &allCountries[i];
}
return AH_NULL;
}
static REG_DOMAIN *
findRegDmn(int regDmn)
{
int i;
for (i = 0; i < N(regDomains); i++) {
if (regDomains[i].regDmnEnum == regDmn)
return &regDomains[i];
}
return AH_NULL;
}
static REG_DMN_PAIR_MAPPING *
findRegDmnPair(int regDmnPair)
{
int i;
if (regDmnPair != NO_ENUMRD) {
for (i = 0; i < N(regDomainPairs); i++) {
if (regDomainPairs[i].regDmnEnum == regDmnPair)
return &regDomainPairs[i];
}
}
return AH_NULL;
}
/*
* Calculate a default country based on the EEPROM setting.
*/
static HAL_CTRY_CODE
getDefaultCountry(struct ath_hal *ah)
{
REG_DMN_PAIR_MAPPING *regpair;
uint16_t rd;
rd = getEepromRD(ah);
if (rd & COUNTRY_ERD_FLAG) {
COUNTRY_CODE_TO_ENUM_RD *country;
uint16_t cc = rd & ~COUNTRY_ERD_FLAG;
country = findCountry(cc);
if (country != AH_NULL)
return cc;
}
/*
* Check reg domains that have only one country
*/
regpair = findRegDmnPair(rd);
return (regpair != AH_NULL) ? regpair->singleCC : CTRY_DEFAULT;
}
static HAL_BOOL
IS_BIT_SET(int bit, const uint64_t bitmask[])
{
int byteOffset, bitnum;
uint64_t val;
byteOffset = bit/64;
bitnum = bit - byteOffset*64;
val = ((uint64_t) 1) << bitnum;
return (bitmask[byteOffset] & val) != 0;
}
static HAL_STATUS
getregstate(struct ath_hal *ah, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
COUNTRY_CODE_TO_ENUM_RD **pcountry,
REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
{
COUNTRY_CODE_TO_ENUM_RD *country;
REG_DOMAIN *rd5GHz, *rd2GHz;
if (cc == CTRY_DEFAULT && regDmn == SKU_NONE) {
/*
* Validate the EEPROM setting and setup defaults
*/
if (!isEepromValid(ah)) {
/*
* Don't return any channels if the EEPROM has an
* invalid regulatory domain/country code setting.
*/
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: invalid EEPROM contents\n",__func__);
return HAL_EEBADREG;
}
cc = getDefaultCountry(ah);
country = findCountry(cc);
if (country == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"NULL Country!, cc %d\n", cc);
return HAL_EEBADCC;
}
regDmn = country->regDmnEnum;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: EEPROM cc %u rd 0x%x\n",
__func__, cc, regDmn);
if (country->countryCode == CTRY_DEFAULT) {
/*
* Check EEPROM; SKU may be for a country, single
* domain, or multiple domains (WWR).
*/
uint16_t rdnum = getEepromRD(ah);
if ((rdnum & COUNTRY_ERD_FLAG) == 0 &&
(findRegDmn(rdnum) != AH_NULL ||
findRegDmnPair(rdnum) != AH_NULL)) {
regDmn = rdnum;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: EEPROM rd 0x%x\n", __func__, rdnum);
}
}
} else {
country = findCountry(cc);
if (country == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"unknown country, cc %d\n", cc);
return HAL_EINVAL;
}
if (regDmn == SKU_NONE)
regDmn = country->regDmnEnum;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u rd 0x%x\n",
__func__, cc, regDmn);
}
/*
* Setup per-band state.
*/
if ((regDmn & MULTI_DOMAIN_MASK) == 0) {
REG_DMN_PAIR_MAPPING *regpair = findRegDmnPair(regDmn);
if (regpair == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: no reg domain pair %u for country %u\n",
__func__, regDmn, country->countryCode);
return HAL_EINVAL;
}
rd5GHz = findRegDmn(regpair->regDmn5GHz);
if (rd5GHz == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: no 5GHz reg domain %u for country %u\n",
__func__, regpair->regDmn5GHz, country->countryCode);
return HAL_EINVAL;
}
rd2GHz = findRegDmn(regpair->regDmn2GHz);
if (rd2GHz == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: no 2GHz reg domain %u for country %u\n",
__func__, regpair->regDmn2GHz, country->countryCode);
return HAL_EINVAL;
}
} else {
rd5GHz = rd2GHz = findRegDmn(regDmn);
if (rd2GHz == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: no unitary reg domain %u for country %u\n",
__func__, regDmn, country->countryCode);
return HAL_EINVAL;
}
}
if (pcountry != AH_NULL)
*pcountry = country;
*prd2GHz = rd2GHz;
*prd5GHz = rd5GHz;
return HAL_OK;
}
/*
* Construct the channel list for the specified regulatory config.
*/
static HAL_STATUS
getchannels(struct ath_hal *ah,
struct ieee80211_channel chans[], u_int maxchans, int *nchans,
u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
HAL_BOOL enableExtendedChannels,
COUNTRY_CODE_TO_ENUM_RD **pcountry,
REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
{
#define CHANNEL_HALF_BW 10
#define CHANNEL_QUARTER_BW 5
#define HAL_MODE_11A_ALL \
(HAL_MODE_11A | HAL_MODE_11A_TURBO | HAL_MODE_TURBO | \
HAL_MODE_11A_QUARTER_RATE | HAL_MODE_11A_HALF_RATE)
REG_DOMAIN *rd5GHz, *rd2GHz;
u_int modesAvail;
const struct cmode *cm;
struct ieee80211_channel *ic;
int next, b;
HAL_STATUS status;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u regDmn 0x%x mode 0x%x%s\n",
__func__, cc, regDmn, modeSelect,
enableExtendedChannels ? " ecm" : "");
status = getregstate(ah, cc, regDmn, pcountry, &rd2GHz, &rd5GHz);
if (status != HAL_OK)
return status;
/* get modes that HW is capable of */
modesAvail = ath_hal_getWirelessModes(ah);
/* optimize work below if no 11a channels */
if (isChanBitMaskZero(rd5GHz->chan11a) &&
(modesAvail & HAL_MODE_11A_ALL)) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: disallow all 11a\n", __func__);
modesAvail &= ~HAL_MODE_11A_ALL;
}
next = 0;
ic = &chans[0];
for (cm = modes; cm < &modes[N(modes)]; cm++) {
uint16_t c, c_hi, c_lo;
uint64_t *channelBM = AH_NULL;
REG_DMN_FREQ_BAND *fband = AH_NULL,*freqs;
int low_adj, hi_adj, channelSep, lastc;
uint32_t rdflags;
uint64_t dfsMask;
uint64_t pscan;
if ((cm->mode & modeSelect) == 0) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: skip mode 0x%x flags 0x%x\n",
__func__, cm->mode, cm->flags);
continue;
}
if ((cm->mode & modesAvail) == 0) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: !avail mode 0x%x (0x%x) flags 0x%x\n",
__func__, modesAvail, cm->mode, cm->flags);
continue;
}
if (!ath_hal_getChannelEdges(ah, cm->flags, &c_lo, &c_hi)) {
/* channel not supported by hardware, skip it */
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: channels 0x%x not supported by hardware\n",
__func__,cm->flags);
continue;
}
switch (cm->mode) {
case HAL_MODE_TURBO:
case HAL_MODE_11A_TURBO:
rdflags = rd5GHz->flags;
dfsMask = rd5GHz->dfsMask;
pscan = rd5GHz->pscan;
if (cm->mode == HAL_MODE_TURBO)
channelBM = rd5GHz->chan11a_turbo;
else
channelBM = rd5GHz->chan11a_dyn_turbo;
freqs = &regDmn5GhzTurboFreq[0];
break;
case HAL_MODE_11G_TURBO:
rdflags = rd2GHz->flags;
dfsMask = rd2GHz->dfsMask;
pscan = rd2GHz->pscan;
channelBM = rd2GHz->chan11g_turbo;
freqs = &regDmn2Ghz11gTurboFreq[0];
break;
case HAL_MODE_11A:
case HAL_MODE_11A_HALF_RATE:
case HAL_MODE_11A_QUARTER_RATE:
case HAL_MODE_11NA_HT20:
case HAL_MODE_11NA_HT40PLUS:
case HAL_MODE_11NA_HT40MINUS:
rdflags = rd5GHz->flags;
dfsMask = rd5GHz->dfsMask;
pscan = rd5GHz->pscan;
if (cm->mode == HAL_MODE_11A_HALF_RATE)
channelBM = rd5GHz->chan11a_half;
else if (cm->mode == HAL_MODE_11A_QUARTER_RATE)
channelBM = rd5GHz->chan11a_quarter;
else
channelBM = rd5GHz->chan11a;
freqs = &regDmn5GhzFreq[0];
break;
case HAL_MODE_11B:
case HAL_MODE_11G:
case HAL_MODE_11G_HALF_RATE:
case HAL_MODE_11G_QUARTER_RATE:
case HAL_MODE_11NG_HT20:
case HAL_MODE_11NG_HT40PLUS:
case HAL_MODE_11NG_HT40MINUS:
rdflags = rd2GHz->flags;
dfsMask = rd2GHz->dfsMask;
pscan = rd2GHz->pscan;
if (cm->mode == HAL_MODE_11G_HALF_RATE)
channelBM = rd2GHz->chan11g_half;
else if (cm->mode == HAL_MODE_11G_QUARTER_RATE)
channelBM = rd2GHz->chan11g_quarter;
else if (cm->mode == HAL_MODE_11B)
channelBM = rd2GHz->chan11b;
else
channelBM = rd2GHz->chan11g;
if (cm->mode == HAL_MODE_11B)
freqs = &regDmn2GhzFreq[0];
else
freqs = &regDmn2Ghz11gFreq[0];
break;
default:
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: Unkonwn HAL mode 0x%x\n", __func__, cm->mode);
continue;
}
if (isChanBitMaskZero(channelBM))
continue;
/*
* Setup special handling for HT40 channels; e.g.
* 5G HT40 channels require 40Mhz channel separation.
*/
hi_adj = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
cm->mode == HAL_MODE_11NG_HT40PLUS) ? -20 : 0;
low_adj = (cm->mode == HAL_MODE_11NA_HT40MINUS ||
cm->mode == HAL_MODE_11NG_HT40MINUS) ? 20 : 0;
channelSep = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
cm->mode == HAL_MODE_11NA_HT40MINUS) ? 40 : 0;
for (b = 0; b < 64*BMLEN; b++) {
if (!IS_BIT_SET(b, channelBM))
continue;
fband = &freqs[b];
lastc = 0;
for (c = fband->lowChannel + low_adj;
c <= fband->highChannel + hi_adj;
c += fband->channelSep) {
if (!(c_lo <= c && c <= c_hi)) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: c %u out of range [%u..%u]\n",
__func__, c, c_lo, c_hi);
continue;
}
if (next >= maxchans){
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: too many channels for channel table\n",
__func__);
goto done;
}
if ((fband->usePassScan & IS_ECM_CHAN) &&
!enableExtendedChannels) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"skip ecm channel\n");
continue;
}
if ((fband->useDfs & dfsMask) &&
(cm->flags & IEEE80211_CHAN_HT40)) {
/* NB: DFS and HT40 don't mix */
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"skip HT40 chan, DFS required\n");
continue;
}
/*
* Make sure that channel separation
* meets the requirement.
*/
if (lastc && channelSep &&
(c-lastc) < channelSep)
continue;
lastc = c;
OS_MEMZERO(ic, sizeof(*ic));
ic->ic_freq = c;
ic->ic_flags = cm->flags;
ic->ic_maxregpower = fband->powerDfs;
ath_hal_getpowerlimits(ah, ic);
ic->ic_maxantgain = fband->antennaMax;
if (fband->usePassScan & pscan)
ic->ic_flags |= IEEE80211_CHAN_PASSIVE;
if (fband->useDfs & dfsMask)
ic->ic_flags |= IEEE80211_CHAN_DFS;
if (IEEE80211_IS_CHAN_5GHZ(ic) &&
(rdflags & DISALLOW_ADHOC_11A))
ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
if (IEEE80211_IS_CHAN_TURBO(ic) &&
(rdflags & DISALLOW_ADHOC_11A_TURB))
ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
if (rdflags & NO_HOSTAP)
ic->ic_flags |= IEEE80211_CHAN_NOHOSTAP;
if (rdflags & LIMIT_FRAME_4MS)
ic->ic_flags |= IEEE80211_CHAN_4MSXMIT;
if (rdflags & NEED_NFC)
ic->ic_flags |= CHANNEL_NFCREQUIRED;
ic++, next++;
}
}
}
done:
*nchans = next;
/* NB: pcountry set above by getregstate */
if (prd2GHz != AH_NULL)
*prd2GHz = rd2GHz;
if (prd5GHz != AH_NULL)
*prd5GHz = rd5GHz;
return HAL_OK;
#undef HAL_MODE_11A_ALL
#undef CHANNEL_HALF_BW
#undef CHANNEL_QUARTER_BW
}
/*
* Retrieve a channel list without affecting runtime state.
*/
HAL_STATUS
ath_hal_getchannels(struct ath_hal *ah,
struct ieee80211_channel chans[], u_int maxchans, int *nchans,
u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
HAL_BOOL enableExtendedChannels)
{
return getchannels(ah, chans, maxchans, nchans, modeSelect,
cc, regDmn, enableExtendedChannels, AH_NULL, AH_NULL, AH_NULL);
}
/*
* Handle frequency mapping from 900Mhz range to 2.4GHz range
* for GSM radios. This is done when we need the h/w frequency
* and the channel is marked IEEE80211_CHAN_GSM.
*/
static int
ath_hal_mapgsm(int sku, int freq)
{
if (sku == SKU_XR9)
return 1520 + freq;
if (sku == SKU_GZ901)
return 1544 + freq;
if (sku == SKU_SR9)
return 3344 - freq;
HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
"%s: cannot map freq %u unknown gsm sku %u\n",
__func__, freq, sku);
return freq;
}
/*
* Setup the internal/private channel state given a table of
* net80211 channels. We collapse entries for the same frequency
* and record the frequency for doing noise floor processing
* where we don't have net80211 channel context.
*/
static HAL_BOOL
assignPrivateChannels(struct ath_hal *ah,
struct ieee80211_channel chans[], int nchans, int sku)
{
HAL_CHANNEL_INTERNAL *ic;
int i, j, next, freq;
next = 0;
for (i = 0; i < nchans; i++) {
struct ieee80211_channel *c = &chans[i];
for (j = i-1; j >= 0; j--)
if (chans[j].ic_freq == c->ic_freq) {
c->ic_devdata = chans[j].ic_devdata;
break;
}
if (j < 0) {
/* new entry, assign a private channel entry */
if (next >= N(AH_PRIVATE(ah)->ah_channels)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: too many channels, max %zu\n",
__func__, N(AH_PRIVATE(ah)->ah_channels));
return AH_FALSE;
}
/*
* Handle frequency mapping for 900MHz devices.
* The hardware uses 2.4GHz frequencies that are
* down-converted. The 802.11 layer uses the
* true frequencies.
*/
freq = IEEE80211_IS_CHAN_GSM(c) ?
ath_hal_mapgsm(sku, c->ic_freq) : c->ic_freq;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: private[%3u] %u/0x%x -> channel %u\n",
__func__, next, c->ic_freq, c->ic_flags, freq);
ic = &AH_PRIVATE(ah)->ah_channels[next];
/*
* NB: This clears privFlags which means ancillary
* code like ANI and IQ calibration will be
* restarted and re-setup any per-channel state.
*/
OS_MEMZERO(ic, sizeof(*ic));
ic->channel = freq;
c->ic_devdata = next;
next++;
}
}
AH_PRIVATE(ah)->ah_nchan = next;
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: %u public, %u private channels\n",
__func__, nchans, next);
return AH_TRUE;
}
/*
* Setup the channel list based on the information in the EEPROM.
*/
HAL_STATUS
ath_hal_init_channels(struct ath_hal *ah,
struct ieee80211_channel chans[], u_int maxchans, int *nchans,
u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
HAL_BOOL enableExtendedChannels)
{
COUNTRY_CODE_TO_ENUM_RD *country;
REG_DOMAIN *rd5GHz, *rd2GHz;
HAL_STATUS status;
status = getchannels(ah, chans, maxchans, nchans, modeSelect,
cc, regDmn, enableExtendedChannels, &country, &rd2GHz, &rd5GHz);
if (status == HAL_OK &&
assignPrivateChannels(ah, chans, *nchans, AH_PRIVATE(ah)->ah_currentRD)) {
AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
ah->ah_countryCode = country->countryCode;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
__func__, ah->ah_countryCode);
} else
status = HAL_EINVAL;
return status;
}
/*
* Set the channel list.
*/
HAL_STATUS
ath_hal_set_channels(struct ath_hal *ah,
struct ieee80211_channel chans[], int nchans,
HAL_CTRY_CODE cc, HAL_REG_DOMAIN rd)
{
COUNTRY_CODE_TO_ENUM_RD *country;
REG_DOMAIN *rd5GHz, *rd2GHz;
HAL_STATUS status;
switch (rd) {
case SKU_SR9:
case SKU_XR9:
case SKU_GZ901:
/*
* Map 900MHz sku's. The frequencies will be mapped
* according to the sku to compensate for the down-converter.
* We use the FCC for these sku's as the mapped channel
* list is known compatible (will need to change if/when
* vendors do different mapping in different locales).
*/
status = getregstate(ah, CTRY_DEFAULT, SKU_FCC,
&country, &rd2GHz, &rd5GHz);
break;
default:
status = getregstate(ah, cc, rd,
&country, &rd2GHz, &rd5GHz);
rd = AH_PRIVATE(ah)->ah_currentRD;
break;
}
if (status == HAL_OK && assignPrivateChannels(ah, chans, nchans, rd)) {
AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
ah->ah_countryCode = country->countryCode;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
__func__, ah->ah_countryCode);
} else
status = HAL_EINVAL;
return status;
}
#ifdef AH_DEBUG
/*
* Return the internal channel corresponding to a public channel.
* NB: normally this routine is inline'd (see ah_internal.h)
*/
HAL_CHANNEL_INTERNAL *
ath_hal_checkchannel(struct ath_hal *ah, const struct ieee80211_channel *c)
{
HAL_CHANNEL_INTERNAL *cc = &AH_PRIVATE(ah)->ah_channels[c->ic_devdata];
if (c->ic_devdata < AH_PRIVATE(ah)->ah_nchan &&
(c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c)))
return cc;
if (c->ic_devdata >= AH_PRIVATE(ah)->ah_nchan) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: bad mapping, devdata %u nchans %u\n",
__func__, c->ic_devdata, AH_PRIVATE(ah)->ah_nchan);
HALASSERT(c->ic_devdata < AH_PRIVATE(ah)->ah_nchan);
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no match for %u/0x%x devdata %u channel %u\n",
__func__, c->ic_freq, c->ic_flags, c->ic_devdata,
cc->channel);
HALASSERT(c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c));
}
return AH_NULL;
}
#endif /* AH_DEBUG */
#define isWwrSKU(_ah) \
((getEepromRD((_ah)) & WORLD_SKU_MASK) == WORLD_SKU_PREFIX || \
getEepromRD(_ah) == WORLD)
/*
* Return the test group for the specific channel based on
* the current regulatory setup.
*/
u_int
ath_hal_getctl(struct ath_hal *ah, const struct ieee80211_channel *c)
{
u_int ctl;
if (AH_PRIVATE(ah)->ah_rd2GHz == AH_PRIVATE(ah)->ah_rd5GHz ||
(ah->ah_countryCode == CTRY_DEFAULT && isWwrSKU(ah)))
ctl = SD_NO_CTL;
else if (IEEE80211_IS_CHAN_2GHZ(c))
ctl = AH_PRIVATE(ah)->ah_rd2GHz->conformanceTestLimit;
else
ctl = AH_PRIVATE(ah)->ah_rd5GHz->conformanceTestLimit;
if (IEEE80211_IS_CHAN_B(c))
return ctl | CTL_11B;
if (IEEE80211_IS_CHAN_G(c))
return ctl | CTL_11G;
if (IEEE80211_IS_CHAN_108G(c))
return ctl | CTL_108G;
if (IEEE80211_IS_CHAN_TURBO(c))
return ctl | CTL_TURBO;
if (IEEE80211_IS_CHAN_A(c))
return ctl | CTL_11A;
return ctl;
}
/*
* Return the max allowed antenna gain and apply any regulatory
* domain specific changes.
*
* NOTE: a negative reduction is possible in RD's that only
* measure radiated power (e.g., ETSI) which would increase
* that actual conducted output power (though never beyond
* the calibrated target power).
*/
u_int
ath_hal_getantennareduction(struct ath_hal *ah,
const struct ieee80211_channel *chan, u_int twiceGain)
{
int8_t antennaMax = twiceGain - chan->ic_maxantgain*2;
return (antennaMax < 0) ? 0 : antennaMax;
}