freebsd-skq/sys/powerpc/mpc85xx/platform_mpc85xx.c
jhibbits 3595fbc972 powerpc/mpc85xx: Synchronize timebase the platform correct way
Summary:
To safely synchronize timebase we need to disable the timebase on all
cores, set timebase, and resynchronize.  This adds two new devices, mutually
exclusive, which attach on the SoC simplebus, to freeze and unfreeze the
timebase.  The devices are singletons, and platform-specific, so no reason
to make them optional and in separate files.

This was found to be necessary for top(1) to work correctly on an AmigaOne
X5000 (P5020 SoC).  It also fixes bufdaemon and bufspacedaemon hangs at
shutdown.

Test Plan: Regression test on various Book-E hardware.

Reviewed by:	nwhitehorn
Tested by:	Brandon Bergren (git_bdragon.rtk0.net)
MFC after:	2 weeks
Differential Revision: https://reviews.freebsd.org/D19208
2019-02-27 03:30:49 +00:00

709 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2008-2012 Semihalf.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_platform.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/hid.h>
#include <machine/_inttypes.h>
#include <machine/machdep.h>
#include <machine/md_var.h>
#include <machine/platform.h>
#include <machine/platformvar.h>
#include <machine/smp.h>
#include <machine/spr.h>
#include <machine/vmparam.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <powerpc/mpc85xx/mpc85xx.h>
#include "platform_if.h"
#ifdef SMP
extern void *ap_pcpu;
extern vm_paddr_t kernload; /* Kernel physical load address */
extern uint8_t __boot_page[]; /* Boot page body */
extern uint32_t bp_kernload;
extern vm_offset_t __startkernel;
struct cpu_release {
uint32_t entry_h;
uint32_t entry_l;
uint32_t r3_h;
uint32_t r3_l;
uint32_t reserved;
uint32_t pir;
};
#endif
extern uint32_t *bootinfo;
vm_paddr_t ccsrbar_pa;
vm_offset_t ccsrbar_va;
vm_size_t ccsrbar_size;
static int cpu, maxcpu;
static device_t rcpm_dev;
static void dummy_freeze(device_t, bool);
static void (*freeze_timebase)(device_t, bool) = dummy_freeze;
static int mpc85xx_probe(platform_t);
static void mpc85xx_mem_regions(platform_t, struct mem_region *phys,
int *physsz, struct mem_region *avail, int *availsz);
static u_long mpc85xx_timebase_freq(platform_t, struct cpuref *cpuref);
static int mpc85xx_smp_first_cpu(platform_t, struct cpuref *cpuref);
static int mpc85xx_smp_next_cpu(platform_t, struct cpuref *cpuref);
static int mpc85xx_smp_get_bsp(platform_t, struct cpuref *cpuref);
static int mpc85xx_smp_start_cpu(platform_t, struct pcpu *cpu);
static void mpc85xx_smp_timebase_sync(platform_t, u_long tb, int ap);
static void mpc85xx_reset(platform_t);
static platform_method_t mpc85xx_methods[] = {
PLATFORMMETHOD(platform_probe, mpc85xx_probe),
PLATFORMMETHOD(platform_attach, mpc85xx_attach),
PLATFORMMETHOD(platform_mem_regions, mpc85xx_mem_regions),
PLATFORMMETHOD(platform_timebase_freq, mpc85xx_timebase_freq),
PLATFORMMETHOD(platform_smp_first_cpu, mpc85xx_smp_first_cpu),
PLATFORMMETHOD(platform_smp_next_cpu, mpc85xx_smp_next_cpu),
PLATFORMMETHOD(platform_smp_get_bsp, mpc85xx_smp_get_bsp),
PLATFORMMETHOD(platform_smp_start_cpu, mpc85xx_smp_start_cpu),
PLATFORMMETHOD(platform_smp_timebase_sync, mpc85xx_smp_timebase_sync),
PLATFORMMETHOD(platform_reset, mpc85xx_reset),
PLATFORMMETHOD_END
};
DEFINE_CLASS_0(mpc85xx, mpc85xx_platform, mpc85xx_methods, 0);
PLATFORM_DEF(mpc85xx_platform);
static int
mpc85xx_probe(platform_t plat)
{
u_int pvr = (mfpvr() >> 16) & 0xFFFF;
switch (pvr) {
case FSL_E500v1:
case FSL_E500v2:
case FSL_E500mc:
case FSL_E5500:
case FSL_E6500:
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
int
mpc85xx_attach(platform_t plat)
{
phandle_t cpus, child, ccsr;
const char *soc_name_guesses[] = {"/soc", "soc", NULL};
const char **name;
pcell_t ranges[6], acells, pacells, scells;
uint64_t ccsrbar, ccsrsize;
int i;
if ((cpus = OF_finddevice("/cpus")) != -1) {
for (maxcpu = 0, child = OF_child(cpus); child != 0;
child = OF_peer(child), maxcpu++)
;
} else
maxcpu = 1;
/*
* Locate CCSR region. Irritatingly, there is no way to find it
* unless you already know where it is. Try to infer its location
* from the device tree.
*/
ccsr = -1;
for (name = soc_name_guesses; *name != NULL && ccsr == -1; name++)
ccsr = OF_finddevice(*name);
if (ccsr == -1) {
char type[64];
/* That didn't work. Search for devices of type "soc" */
child = OF_child(OF_peer(0));
for (OF_child(child); child != 0; child = OF_peer(child)) {
if (OF_getprop(child, "device_type", type, sizeof(type))
<= 0)
continue;
if (strcmp(type, "soc") == 0) {
ccsr = child;
break;
}
}
}
if (ccsr == -1)
panic("Could not locate CCSR window!");
OF_getprop(ccsr, "#size-cells", &scells, sizeof(scells));
OF_getprop(ccsr, "#address-cells", &acells, sizeof(acells));
OF_searchprop(OF_parent(ccsr), "#address-cells", &pacells,
sizeof(pacells));
OF_getprop(ccsr, "ranges", ranges, sizeof(ranges));
ccsrbar = ccsrsize = 0;
for (i = acells; i < acells + pacells; i++) {
ccsrbar <<= 32;
ccsrbar |= ranges[i];
}
for (i = acells + pacells; i < acells + pacells + scells; i++) {
ccsrsize <<= 32;
ccsrsize |= ranges[i];
}
ccsrbar_va = pmap_early_io_map(ccsrbar, ccsrsize);
ccsrbar_pa = ccsrbar;
ccsrbar_size = ccsrsize;
mpc85xx_enable_l3_cache();
return (0);
}
void
mpc85xx_mem_regions(platform_t plat, struct mem_region *phys, int *physsz,
struct mem_region *avail, int *availsz)
{
ofw_mem_regions(phys, physsz, avail, availsz);
}
static u_long
mpc85xx_timebase_freq(platform_t plat, struct cpuref *cpuref)
{
u_long ticks;
phandle_t cpus, child;
pcell_t freq;
if (bootinfo != NULL) {
if (bootinfo[0] == 1) {
/* Backward compatibility. See 8-STABLE. */
ticks = bootinfo[3] >> 3;
} else {
/* Compatibility with Juniper's loader. */
ticks = bootinfo[5] >> 3;
}
} else
ticks = 0;
if ((cpus = OF_finddevice("/cpus")) == -1)
goto out;
if ((child = OF_child(cpus)) == 0)
goto out;
switch (OF_getproplen(child, "timebase-frequency")) {
case 4:
{
uint32_t tbase;
OF_getprop(child, "timebase-frequency", &tbase, sizeof(tbase));
ticks = tbase;
return (ticks);
}
case 8:
{
uint64_t tbase;
OF_getprop(child, "timebase-frequency", &tbase, sizeof(tbase));
ticks = tbase;
return (ticks);
}
default:
break;
}
freq = 0;
if (OF_getprop(child, "bus-frequency", (void *)&freq,
sizeof(freq)) <= 0)
goto out;
if (freq == 0)
goto out;
/*
* Time Base and Decrementer are updated every 8 CCB bus clocks.
* HID0[SEL_TBCLK] = 0
*/
if (mpc85xx_is_qoriq())
ticks = freq / 32;
else
ticks = freq / 8;
out:
if (ticks <= 0)
panic("Unable to determine timebase frequency!");
return (ticks);
}
static int
mpc85xx_smp_first_cpu(platform_t plat, struct cpuref *cpuref)
{
cpu = 0;
cpuref->cr_cpuid = cpu;
cpuref->cr_hwref = cpuref->cr_cpuid;
if (bootverbose)
printf("powerpc_smp_first_cpu: cpuid %d\n", cpuref->cr_cpuid);
cpu++;
return (0);
}
static int
mpc85xx_smp_next_cpu(platform_t plat, struct cpuref *cpuref)
{
if (cpu >= maxcpu)
return (ENOENT);
cpuref->cr_cpuid = cpu++;
cpuref->cr_hwref = cpuref->cr_cpuid;
if (bootverbose)
printf("powerpc_smp_next_cpu: cpuid %d\n", cpuref->cr_cpuid);
return (0);
}
static int
mpc85xx_smp_get_bsp(platform_t plat, struct cpuref *cpuref)
{
cpuref->cr_cpuid = mfspr(SPR_PIR);
cpuref->cr_hwref = cpuref->cr_cpuid;
return (0);
}
#ifdef SMP
static int
mpc85xx_smp_start_cpu_epapr(platform_t plat, struct pcpu *pc)
{
vm_paddr_t rel_pa, bptr;
volatile struct cpu_release *rel;
vm_offset_t rel_va, rel_page;
phandle_t node;
int i;
/* If we're calling this, the node already exists. */
node = OF_finddevice("/cpus");
for (i = 0, node = OF_child(node); i < pc->pc_cpuid;
i++, node = OF_peer(node))
;
if (OF_getencprop(node, "cpu-release-addr", (pcell_t *)&rel_pa,
sizeof(rel_pa)) == -1) {
return (ENOENT);
}
rel_page = kva_alloc(PAGE_SIZE);
if (rel_page == 0)
return (ENOMEM);
critical_enter();
rel_va = rel_page + (rel_pa & PAGE_MASK);
pmap_kenter(rel_page, rel_pa & ~PAGE_MASK);
rel = (struct cpu_release *)rel_va;
bptr = pmap_kextract((uintptr_t)__boot_page);
cpu_flush_dcache(__DEVOLATILE(struct cpu_release *,rel), sizeof(*rel));
rel->pir = pc->pc_cpuid; __asm __volatile("sync");
rel->entry_h = (bptr >> 32);
rel->entry_l = bptr; __asm __volatile("sync");
cpu_flush_dcache(__DEVOLATILE(struct cpu_release *,rel), sizeof(*rel));
if (bootverbose)
printf("Waking up CPU %d via CPU release page %p\n",
pc->pc_cpuid, rel);
critical_exit();
pmap_kremove(rel_page);
kva_free(rel_page, PAGE_SIZE);
return (0);
}
#endif
static int
mpc85xx_smp_start_cpu(platform_t plat, struct pcpu *pc)
{
#ifdef SMP
vm_paddr_t bptr;
uint32_t reg;
int timeout;
uintptr_t brr;
int cpuid;
int epapr_boot = 0;
uint32_t tgt;
if (mpc85xx_is_qoriq()) {
reg = ccsr_read4(OCP85XX_COREDISR);
cpuid = pc->pc_cpuid;
if ((reg & (1 << cpuid)) != 0) {
printf("%s: CPU %d is disabled!\n", __func__, pc->pc_cpuid);
return (-1);
}
brr = OCP85XX_BRR;
} else {
brr = OCP85XX_EEBPCR;
cpuid = pc->pc_cpuid + 24;
}
bp_kernload = kernload;
/*
* bp_kernload is in the boot page. Sync the cache because ePAPR
* booting has the other core(s) already running.
*/
cpu_flush_dcache(&bp_kernload, sizeof(bp_kernload));
ap_pcpu = pc;
__asm __volatile("msync; isync");
/* First try the ePAPR way. */
if (mpc85xx_smp_start_cpu_epapr(plat, pc) == 0) {
epapr_boot = 1;
goto spin_wait;
}
reg = ccsr_read4(brr);
if ((reg & (1 << cpuid)) != 0) {
printf("SMP: CPU %d already out of hold-off state!\n",
pc->pc_cpuid);
return (ENXIO);
}
/* Flush caches to have our changes hit DRAM. */
cpu_flush_dcache(__boot_page, 4096);
bptr = pmap_kextract((uintptr_t)__boot_page);
KASSERT((bptr & 0xfff) == 0,
("%s: boot page is not aligned (%#jx)", __func__, (uintmax_t)bptr));
if (mpc85xx_is_qoriq()) {
/*
* Read DDR controller configuration to select proper BPTR target ID.
*
* On P5020 bit 29 of DDR1_CS0_CONFIG enables DDR controllers
* interleaving. If this bit is set, we have to use
* OCP85XX_TGTIF_RAM_INTL as BPTR target ID. On other QorIQ DPAA SoCs,
* this bit is reserved and always 0.
*/
reg = ccsr_read4(OCP85XX_DDR1_CS0_CONFIG);
if (reg & (1 << 29))
tgt = OCP85XX_TGTIF_RAM_INTL;
else
tgt = OCP85XX_TGTIF_RAM1;
/*
* Set BSTR to the physical address of the boot page
*/
ccsr_write4(OCP85XX_BSTRH, bptr >> 32);
ccsr_write4(OCP85XX_BSTRL, bptr);
ccsr_write4(OCP85XX_BSTAR, OCP85XX_ENA_MASK |
(tgt << OCP85XX_TRGT_SHIFT_QORIQ) | (ffsl(PAGE_SIZE) - 2));
/* Read back OCP85XX_BSTAR to synchronize write */
ccsr_read4(OCP85XX_BSTAR);
/*
* Enable and configure time base on new CPU.
*/
/* Set TB clock source to platform clock / 32 */
reg = ccsr_read4(CCSR_CTBCKSELR);
ccsr_write4(CCSR_CTBCKSELR, reg & ~(1 << pc->pc_cpuid));
/* Enable TB */
reg = ccsr_read4(CCSR_CTBENR);
ccsr_write4(CCSR_CTBENR, reg | (1 << pc->pc_cpuid));
} else {
/*
* Set BPTR to the physical address of the boot page
*/
bptr = (bptr >> 12) | 0x80000000u;
ccsr_write4(OCP85XX_BPTR, bptr);
__asm __volatile("isync; msync");
}
/*
* Release AP from hold-off state
*/
reg = ccsr_read4(brr);
ccsr_write4(brr, reg | (1 << cpuid));
__asm __volatile("isync; msync");
spin_wait:
timeout = 500;
while (!pc->pc_awake && timeout--)
DELAY(1000); /* wait 1ms */
/*
* Disable boot page translation so that the 4K page at the default
* address (= 0xfffff000) isn't permanently remapped and thus not
* usable otherwise.
*/
if (!epapr_boot) {
if (mpc85xx_is_qoriq())
ccsr_write4(OCP85XX_BSTAR, 0);
else
ccsr_write4(OCP85XX_BPTR, 0);
__asm __volatile("isync; msync");
}
if (!pc->pc_awake)
panic("SMP: CPU %d didn't wake up.\n", pc->pc_cpuid);
return ((pc->pc_awake) ? 0 : EBUSY);
#else
/* No SMP support */
return (ENXIO);
#endif
}
static void
mpc85xx_reset(platform_t plat)
{
/*
* Try the dedicated reset register first.
* If the SoC doesn't have one, we'll fall
* back to using the debug control register.
*/
ccsr_write4(OCP85XX_RSTCR, 2);
/* Clear DBCR0, disables debug interrupts and events. */
mtspr(SPR_DBCR0, 0);
__asm __volatile("isync");
/* Enable Debug Interrupts in MSR. */
mtmsr(mfmsr() | PSL_DE);
/* Enable debug interrupts and issue reset. */
mtspr(SPR_DBCR0, mfspr(SPR_DBCR0) | DBCR0_IDM | DBCR0_RST_SYSTEM);
printf("Reset failed...\n");
while (1)
;
}
static void
mpc85xx_smp_timebase_sync(platform_t plat, u_long tb, int ap)
{
static volatile bool tb_ready;
static volatile int cpu_done;
if (ap) {
/* APs. Hold off until we get a stable timebase. */
while (!tb_ready)
atomic_thread_fence_seq_cst();
mttb(tb);
atomic_add_int(&cpu_done, 1);
while (cpu_done < mp_ncpus)
atomic_thread_fence_seq_cst();
} else {
/* BSP */
freeze_timebase(rcpm_dev, true);
tb_ready = true;
mttb(tb);
atomic_add_int(&cpu_done, 1);
while (cpu_done < mp_ncpus)
atomic_thread_fence_seq_cst();
freeze_timebase(rcpm_dev, false);
}
}
/* Fallback freeze. In case no real handler is found in the device tree. */
static void
dummy_freeze(device_t dev, bool freeze)
{
/* Nothing to do here, move along. */
}
/* QorIQ Run control/power management timebase management. */
#define RCPM_CTBENR 0x00000084
struct mpc85xx_rcpm_softc {
struct resource *sc_mem;
};
static void
mpc85xx_rcpm_freeze_timebase(device_t dev, bool freeze)
{
struct mpc85xx_rcpm_softc *sc;
sc = device_get_softc(dev);
if (freeze)
bus_write_4(sc->sc_mem, RCPM_CTBENR, 0);
else
bus_write_4(sc->sc_mem, RCPM_CTBENR, (1 << maxcpu) - 1);
}
static int
mpc85xx_rcpm_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "fsl,qoriq-rcpm-1.0"))
return (ENXIO);
device_set_desc(dev, "QorIQ Run control and power management");
return (BUS_PROBE_GENERIC);
}
static int
mpc85xx_rcpm_attach(device_t dev)
{
struct mpc85xx_rcpm_softc *sc;
int rid;
sc = device_get_softc(dev);
freeze_timebase = mpc85xx_rcpm_freeze_timebase;
rcpm_dev = dev;
rid = 0;
sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE | RF_SHAREABLE);
return (0);
}
static device_method_t mpc85xx_rcpm_methods[] = {
DEVMETHOD(device_probe, mpc85xx_rcpm_probe),
DEVMETHOD(device_attach, mpc85xx_rcpm_attach),
DEVMETHOD_END
};
static devclass_t mpc85xx_rcpm_devclass;
static driver_t mpc85xx_rcpm_driver = {
"rcpm",
mpc85xx_rcpm_methods,
sizeof(struct mpc85xx_rcpm_softc)
};
EARLY_DRIVER_MODULE(mpc85xx_rcpm, simplebus, mpc85xx_rcpm_driver,
mpc85xx_rcpm_devclass, 0, 0, BUS_PASS_BUS);
/* "Global utilities" power management/Timebase management. */
#define GUTS_DEVDISR 0x00000070
#define DEVDISR_TB0 0x00004000
#define DEVDISR_TB1 0x00001000
struct mpc85xx_guts_softc {
struct resource *sc_mem;
};
static void
mpc85xx_guts_freeze_timebase(device_t dev, bool freeze)
{
struct mpc85xx_guts_softc *sc;
uint32_t devdisr;
sc = device_get_softc(dev);
devdisr = bus_read_4(sc->sc_mem, GUTS_DEVDISR);
if (freeze)
bus_write_4(sc->sc_mem, GUTS_DEVDISR,
devdisr | (DEVDISR_TB0 | DEVDISR_TB1));
else
bus_write_4(sc->sc_mem, GUTS_DEVDISR,
devdisr & ~(DEVDISR_TB0 | DEVDISR_TB1));
}
static int
mpc85xx_guts_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "fsl,mpc8572-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p1020-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p1021-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p1022-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p1023-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p2020-guts"))
return (ENXIO);
device_set_desc(dev, "MPC85xx Global Utilities");
return (BUS_PROBE_GENERIC);
}
static int
mpc85xx_guts_attach(device_t dev)
{
struct mpc85xx_rcpm_softc *sc;
int rid;
sc = device_get_softc(dev);
freeze_timebase = mpc85xx_guts_freeze_timebase;
rcpm_dev = dev;
rid = 0;
sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE | RF_SHAREABLE);
return (0);
}
static device_method_t mpc85xx_guts_methods[] = {
DEVMETHOD(device_probe, mpc85xx_guts_probe),
DEVMETHOD(device_attach, mpc85xx_guts_attach),
DEVMETHOD_END
};
static driver_t mpc85xx_guts_driver = {
"guts",
mpc85xx_guts_methods,
sizeof(struct mpc85xx_guts_softc)
};
static devclass_t mpc85xx_guts_devclass;
EARLY_DRIVER_MODULE(mpc85xx_guts, simplebus, mpc85xx_guts_driver,
mpc85xx_guts_devclass, 0, 0, BUS_PASS_BUS);