freebsd-skq/usr.sbin/ppp/lqr.c
Eitan Adler e3febf407d Fix warning when compiling with gcc46:
error: variable 'extra_async_bytes' set but not used

Approved by:    dim, cperciva (mentor, blanket for pre-mentorship already-approved commits)
MFC After:	3 days
2012-01-20 01:37:39 +00:00

532 lines
17 KiB
C

/*-
* Copyright (c) 1996 - 2001 Brian Somers <brian@Awfulhak.org>
* based on work by Toshiharu OHNO <tony-o@iij.ad.jp>
* Internet Initiative Japan, Inc (IIJ)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#ifdef __FreeBSD__
#include <netinet/in.h>
#endif
#include <sys/un.h>
#include <string.h>
#include <termios.h>
#include "layer.h"
#include "mbuf.h"
#include "log.h"
#include "defs.h"
#include "timer.h"
#include "fsm.h"
#include "acf.h"
#include "proto.h"
#include "lqr.h"
#include "hdlc.h"
#include "lcp.h"
#include "async.h"
#include "throughput.h"
#include "ccp.h"
#include "link.h"
#include "descriptor.h"
#include "physical.h"
#include "mp.h"
#include "chat.h"
#include "auth.h"
#include "chap.h"
#include "command.h"
#include "cbcp.h"
#include "datalink.h"
struct echolqr {
u_int32_t magic;
u_int32_t signature;
u_int32_t sequence;
};
#define SIGNATURE 0x594e4f54
static void
SendEchoReq(struct lcp *lcp)
{
struct hdlc *hdlc = &link2physical(lcp->fsm.link)->hdlc;
struct echolqr echo;
echo.magic = htonl(lcp->want_magic);
echo.signature = htonl(SIGNATURE);
echo.sequence = htonl(hdlc->lqm.echo.seq_sent);
fsm_Output(&lcp->fsm, CODE_ECHOREQ, hdlc->lqm.echo.seq_sent++,
(u_char *)&echo, sizeof echo, MB_ECHOOUT);
}
struct mbuf *
lqr_RecvEcho(struct fsm *fp, struct mbuf *bp)
{
struct hdlc *hdlc = &link2physical(fp->link)->hdlc;
struct lcp *lcp = fsm2lcp(fp);
struct echolqr lqr;
if (m_length(bp) >= sizeof lqr) {
m_freem(mbuf_Read(bp, &lqr, sizeof lqr));
bp = NULL;
lqr.magic = ntohl(lqr.magic);
lqr.signature = ntohl(lqr.signature);
lqr.sequence = ntohl(lqr.sequence);
/* Tolerate echo replies with either magic number */
if (lqr.magic != 0 && lqr.magic != lcp->his_magic &&
lqr.magic != lcp->want_magic) {
log_Printf(LogWARN, "%s: lqr_RecvEcho: Bad magic: expected 0x%08x,"
" got 0x%08x\n", fp->link->name, lcp->his_magic, lqr.magic);
/*
* XXX: We should send a terminate request. But poor implementations may
* die as a result.
*/
}
if (lqr.signature == SIGNATURE) {
/* careful not to update lqm.echo.seq_recv with older values */
if ((hdlc->lqm.echo.seq_recv > (u_int32_t)0 - 5 && lqr.sequence < 5) ||
(hdlc->lqm.echo.seq_recv <= (u_int32_t)0 - 5 &&
lqr.sequence > hdlc->lqm.echo.seq_recv))
hdlc->lqm.echo.seq_recv = lqr.sequence;
} else
log_Printf(LogWARN, "lqr_RecvEcho: Got sig 0x%08lx, not 0x%08lx !\n",
(u_long)lqr.signature, (u_long)SIGNATURE);
} else
log_Printf(LogWARN, "lqr_RecvEcho: Got packet size %zd, expecting %ld !\n",
m_length(bp), (long)sizeof(struct echolqr));
return bp;
}
void
lqr_ChangeOrder(struct lqrdata *src, struct lqrdata *dst)
{
u_int32_t *sp, *dp;
unsigned n;
sp = (u_int32_t *) src;
dp = (u_int32_t *) dst;
for (n = 0; n < sizeof(struct lqrdata) / sizeof(u_int32_t); n++, sp++, dp++)
*dp = ntohl(*sp);
}
static void
SendLqrData(struct lcp *lcp)
{
struct mbuf *bp;
int extra;
extra = proto_WrapperOctets(lcp, PROTO_LQR) +
acf_WrapperOctets(lcp, PROTO_LQR);
bp = m_get(sizeof(struct lqrdata) + extra, MB_LQROUT);
bp->m_len -= extra;
bp->m_offset += extra;
/*
* Send on the highest priority queue. We send garbage - the real data
* is written by lqr_LayerPush() where we know how to fill in all the
* fields. Note, lqr_LayerPush() ``knows'' that we're pushing onto the
* highest priority queue, and factors out packet & octet values from
* other queues!
*/
link_PushPacket(lcp->fsm.link, bp, lcp->fsm.bundle,
LINK_QUEUES(lcp->fsm.link) - 1, PROTO_LQR);
}
static void
SendLqrReport(void *v)
{
struct lcp *lcp = (struct lcp *)v;
struct physical *p = link2physical(lcp->fsm.link);
timer_Stop(&p->hdlc.lqm.timer);
if (p->hdlc.lqm.method & LQM_LQR) {
if (p->hdlc.lqm.lqr.resent > 5) {
/* XXX: Should implement LQM strategy */
log_Printf(LogPHASE, "%s: ** Too many LQR packets lost **\n",
lcp->fsm.link->name);
log_Printf(LogLQM, "%s: Too many LQR packets lost\n",
lcp->fsm.link->name);
p->hdlc.lqm.method = 0;
datalink_Down(p->dl, CLOSE_NORMAL);
} else {
SendLqrData(lcp);
p->hdlc.lqm.lqr.resent++;
}
} else if (p->hdlc.lqm.method & LQM_ECHO) {
if ((p->hdlc.lqm.echo.seq_sent > 5 &&
p->hdlc.lqm.echo.seq_sent - 5 > p->hdlc.lqm.echo.seq_recv) ||
(p->hdlc.lqm.echo.seq_sent <= 5 &&
p->hdlc.lqm.echo.seq_sent > p->hdlc.lqm.echo.seq_recv + 5)) {
log_Printf(LogPHASE, "%s: ** Too many LCP ECHO packets lost **\n",
lcp->fsm.link->name);
log_Printf(LogLQM, "%s: Too many LCP ECHO packets lost\n",
lcp->fsm.link->name);
p->hdlc.lqm.method = 0;
datalink_Down(p->dl, CLOSE_NORMAL);
} else
SendEchoReq(lcp);
}
if (p->hdlc.lqm.method && p->hdlc.lqm.timer.load)
timer_Start(&p->hdlc.lqm.timer);
}
struct mbuf *
lqr_Input(struct bundle *bundle __unused, struct link *l, struct mbuf *bp)
{
struct physical *p = link2physical(l);
struct lcp *lcp = p->hdlc.lqm.owner;
int len;
if (p == NULL) {
log_Printf(LogERROR, "lqr_Input: Not a physical link - dropped\n");
m_freem(bp);
return NULL;
}
len = m_length(bp);
if (len != sizeof(struct lqrdata))
log_Printf(LogWARN, "lqr_Input: Got packet size %d, expecting %ld !\n",
len, (long)sizeof(struct lqrdata));
else if (!IsAccepted(l->lcp.cfg.lqr) && !(p->hdlc.lqm.method & LQM_LQR)) {
bp = m_pullup(proto_Prepend(bp, PROTO_LQR, 0, 0));
lcp_SendProtoRej(lcp, MBUF_CTOP(bp), bp->m_len);
} else {
struct lqrdata *lqr;
bp = m_pullup(bp);
lqr = (struct lqrdata *)MBUF_CTOP(bp);
if (ntohl(lqr->MagicNumber) != lcp->his_magic)
log_Printf(LogWARN, "lqr_Input: magic 0x%08lx is wrong,"
" expecting 0x%08lx\n",
(u_long)ntohl(lqr->MagicNumber), (u_long)lcp->his_magic);
else {
struct lqrdata lastlqr;
memcpy(&lastlqr, &p->hdlc.lqm.lqr.peer, sizeof lastlqr);
lqr_ChangeOrder(lqr, &p->hdlc.lqm.lqr.peer);
lqr_Dump(l->name, "Input", &p->hdlc.lqm.lqr.peer);
/* we have received an LQR from our peer */
p->hdlc.lqm.lqr.resent = 0;
/* Snapshot our state when the LQR packet was received */
memcpy(&p->hdlc.lqm.lqr.prevSave, &p->hdlc.lqm.lqr.Save,
sizeof p->hdlc.lqm.lqr.prevSave);
p->hdlc.lqm.lqr.Save.InLQRs = ++p->hdlc.lqm.lqr.InLQRs;
p->hdlc.lqm.lqr.Save.InPackets = p->hdlc.lqm.ifInUniPackets;
p->hdlc.lqm.lqr.Save.InDiscards = p->hdlc.lqm.ifInDiscards;
p->hdlc.lqm.lqr.Save.InErrors = p->hdlc.lqm.ifInErrors;
p->hdlc.lqm.lqr.Save.InOctets = p->hdlc.lqm.lqr.InGoodOctets;
lqr_Analyse(&p->hdlc, &lastlqr, &p->hdlc.lqm.lqr.peer);
/*
* Generate an LQR response if we're not running an LQR timer OR
* two successive LQR's PeerInLQRs are the same.
*/
if (p->hdlc.lqm.timer.load == 0 || !(p->hdlc.lqm.method & LQM_LQR) ||
(lastlqr.PeerInLQRs &&
lastlqr.PeerInLQRs == p->hdlc.lqm.lqr.peer.PeerInLQRs))
SendLqrData(lcp);
}
}
m_freem(bp);
return NULL;
}
/*
* When LCP is reached to opened state, We'll start LQM activity.
*/
static void
lqr_Setup(struct lcp *lcp)
{
struct physical *physical = link2physical(lcp->fsm.link);
int period;
physical->hdlc.lqm.lqr.resent = 0;
physical->hdlc.lqm.echo.seq_sent = 0;
physical->hdlc.lqm.echo.seq_recv = 0;
memset(&physical->hdlc.lqm.lqr.peer, '\0',
sizeof physical->hdlc.lqm.lqr.peer);
physical->hdlc.lqm.method = lcp->cfg.echo ? LQM_ECHO : 0;
if (IsEnabled(lcp->cfg.lqr) && !REJECTED(lcp, TY_QUALPROTO))
physical->hdlc.lqm.method |= LQM_LQR;
timer_Stop(&physical->hdlc.lqm.timer);
physical->hdlc.lqm.lqr.peer_timeout = lcp->his_lqrperiod;
if (lcp->his_lqrperiod)
log_Printf(LogLQM, "%s: Expecting LQR every %d.%02d secs\n",
physical->link.name, lcp->his_lqrperiod / 100,
lcp->his_lqrperiod % 100);
period = lcp->want_lqrperiod ?
lcp->want_lqrperiod : lcp->cfg.lqrperiod * 100;
physical->hdlc.lqm.timer.func = SendLqrReport;
physical->hdlc.lqm.timer.name = "lqm";
physical->hdlc.lqm.timer.arg = lcp;
if (lcp->want_lqrperiod || physical->hdlc.lqm.method & LQM_ECHO) {
log_Printf(LogLQM, "%s: Will send %s every %d.%02d secs\n",
physical->link.name, lcp->want_lqrperiod ? "LQR" : "LCP ECHO",
period / 100, period % 100);
physical->hdlc.lqm.timer.load = period * SECTICKS / 100;
} else {
physical->hdlc.lqm.timer.load = 0;
if (!lcp->his_lqrperiod)
log_Printf(LogLQM, "%s: LQR/LCP ECHO not negotiated\n",
physical->link.name);
}
}
void
lqr_Start(struct lcp *lcp)
{
struct physical *p = link2physical(lcp->fsm.link);
lqr_Setup(lcp);
if (p->hdlc.lqm.timer.load)
SendLqrReport(lcp);
}
void
lqr_reStart(struct lcp *lcp)
{
struct physical *p = link2physical(lcp->fsm.link);
lqr_Setup(lcp);
if (p->hdlc.lqm.timer.load)
timer_Start(&p->hdlc.lqm.timer);
}
void
lqr_StopTimer(struct physical *physical)
{
timer_Stop(&physical->hdlc.lqm.timer);
}
void
lqr_Stop(struct physical *physical, int method)
{
if (method == LQM_LQR)
log_Printf(LogLQM, "%s: Stop sending LQR, Use LCP ECHO instead.\n",
physical->link.name);
if (method == LQM_ECHO)
log_Printf(LogLQM, "%s: Stop sending LCP ECHO.\n",
physical->link.name);
physical->hdlc.lqm.method &= ~method;
if (physical->hdlc.lqm.method)
SendLqrReport(physical->hdlc.lqm.owner);
else
timer_Stop(&physical->hdlc.lqm.timer);
}
void
lqr_Dump(const char *link, const char *message, const struct lqrdata *lqr)
{
if (log_IsKept(LogLQM)) {
log_Printf(LogLQM, "%s: %s:\n", link, message);
log_Printf(LogLQM, " Magic: %08x LastOutLQRs: %08x\n",
lqr->MagicNumber, lqr->LastOutLQRs);
log_Printf(LogLQM, " LastOutPackets: %08x LastOutOctets: %08x\n",
lqr->LastOutPackets, lqr->LastOutOctets);
log_Printf(LogLQM, " PeerInLQRs: %08x PeerInPackets: %08x\n",
lqr->PeerInLQRs, lqr->PeerInPackets);
log_Printf(LogLQM, " PeerInDiscards: %08x PeerInErrors: %08x\n",
lqr->PeerInDiscards, lqr->PeerInErrors);
log_Printf(LogLQM, " PeerInOctets: %08x PeerOutLQRs: %08x\n",
lqr->PeerInOctets, lqr->PeerOutLQRs);
log_Printf(LogLQM, " PeerOutPackets: %08x PeerOutOctets: %08x\n",
lqr->PeerOutPackets, lqr->PeerOutOctets);
}
}
void
lqr_Analyse(const struct hdlc *hdlc, const struct lqrdata *oldlqr,
const struct lqrdata *newlqr)
{
u_int32_t LQRs, transitLQRs, pkts, octets, disc, err;
if (!newlqr->PeerInLQRs) /* No analysis possible yet! */
return;
log_Printf(LogLQM, "Analysis:\n");
LQRs = (newlqr->LastOutLQRs - oldlqr->LastOutLQRs) -
(newlqr->PeerInLQRs - oldlqr->PeerInLQRs);
transitLQRs = hdlc->lqm.lqr.OutLQRs - newlqr->LastOutLQRs;
pkts = (newlqr->LastOutPackets - oldlqr->LastOutPackets) -
(newlqr->PeerInPackets - oldlqr->PeerInPackets);
octets = (newlqr->LastOutOctets - oldlqr->LastOutOctets) -
(newlqr->PeerInOctets - oldlqr->PeerInOctets);
log_Printf(LogLQM, " Outbound lossage: %d LQR%s (%d en route), %d packet%s,"
" %d octet%s\n", (int)LQRs, LQRs == 1 ? "" : "s", (int)transitLQRs,
(int)pkts, pkts == 1 ? "" : "s",
(int)octets, octets == 1 ? "" : "s");
pkts = (newlqr->PeerOutPackets - oldlqr->PeerOutPackets) -
(hdlc->lqm.lqr.Save.InPackets - hdlc->lqm.lqr.prevSave.InPackets);
octets = (newlqr->PeerOutOctets - oldlqr->PeerOutOctets) -
(hdlc->lqm.lqr.Save.InOctets - hdlc->lqm.lqr.prevSave.InOctets);
log_Printf(LogLQM, " Inbound lossage: %d packet%s, %d octet%s\n",
(int)pkts, pkts == 1 ? "" : "s",
(int)octets, octets == 1 ? "" : "s");
disc = newlqr->PeerInDiscards - oldlqr->PeerInDiscards;
err = newlqr->PeerInErrors - oldlqr->PeerInErrors;
if (disc && err)
log_Printf(LogLQM, " Likely due to both peer congestion"
" and physical errors\n");
else if (disc)
log_Printf(LogLQM, " Likely due to peer congestion\n");
else if (err)
log_Printf(LogLQM, " Likely due to physical errors\n");
else if (pkts)
log_Printf(LogLQM, " Likely due to transport "
"congestion\n");
}
static struct mbuf *
lqr_LayerPush(struct bundle *b __unused, struct link *l, struct mbuf *bp,
int pri __unused, u_short *proto)
{
struct physical *p = link2physical(l);
int len, layer;
if (!p) {
/* Oops - can't happen :-] */
m_freem(bp);
return NULL;
}
bp = m_pullup(bp);
len = m_length(bp);
/*-
* From rfc1989:
*
* All octets which are included in the FCS calculation MUST be counted,
* including the packet header, the information field, and any padding.
* The FCS octets MUST also be counted, and one flag octet per frame
* MUST be counted. All other octets (such as additional flag
* sequences, and escape bits or octets) MUST NOT be counted.
*
* As we're stacked higher than the HDLC layer (otherwise HDLC wouldn't be
* able to calculate the FCS), we must not forget about these additional
* bytes when we're asynchronous.
*
* We're also expecting to be stacked *before* the likes of the proto and
* acf layers (to avoid alignment issues), so deal with this too.
*/
p->hdlc.lqm.ifOutUniPackets++;
p->hdlc.lqm.ifOutOctets += len + 1; /* plus 1 flag octet! */
for (layer = 0; layer < l->nlayers; layer++)
switch (l->layer[layer]->type) {
case LAYER_ACF:
p->hdlc.lqm.ifOutOctets += acf_WrapperOctets(&l->lcp, *proto);
break;
case LAYER_ASYNC:
/* Not included - see rfc1989 */
break;
case LAYER_HDLC:
p->hdlc.lqm.ifOutOctets += hdlc_WrapperOctets();
break;
case LAYER_LQR:
layer = l->nlayers;
break;
case LAYER_PROTO:
p->hdlc.lqm.ifOutOctets += proto_WrapperOctets(&l->lcp, *proto);
break;
case LAYER_SYNC:
/* Nothing to add on */
break;
default:
log_Printf(LogWARN, "Oops, don't know how to do octets for %s layer\n",
l->layer[layer]->name);
break;
}
if (*proto == PROTO_LQR) {
/* Overwrite the entire packet (created in SendLqrData()) */
struct lqrdata lqr;
size_t pending_pkts, pending_octets;
p->hdlc.lqm.lqr.OutLQRs++;
/*
* We need to compensate for the fact that we're pushing our data
* onto the highest priority queue by factoring out packet & octet
* values from other queues!
*/
link_PendingLowPriorityData(l, &pending_pkts, &pending_octets);
memset(&lqr, '\0', sizeof lqr);
lqr.MagicNumber = p->link.lcp.want_magic;
lqr.LastOutLQRs = p->hdlc.lqm.lqr.peer.PeerOutLQRs;
lqr.LastOutPackets = p->hdlc.lqm.lqr.peer.PeerOutPackets;
lqr.LastOutOctets = p->hdlc.lqm.lqr.peer.PeerOutOctets;
lqr.PeerInLQRs = p->hdlc.lqm.lqr.Save.InLQRs;
lqr.PeerInPackets = p->hdlc.lqm.lqr.Save.InPackets;
lqr.PeerInDiscards = p->hdlc.lqm.lqr.Save.InDiscards;
lqr.PeerInErrors = p->hdlc.lqm.lqr.Save.InErrors;
lqr.PeerInOctets = p->hdlc.lqm.lqr.Save.InOctets;
lqr.PeerOutLQRs = p->hdlc.lqm.lqr.OutLQRs;
lqr.PeerOutPackets = p->hdlc.lqm.ifOutUniPackets - pending_pkts;
/* Don't forget our ``flag'' octets.... */
lqr.PeerOutOctets = p->hdlc.lqm.ifOutOctets - pending_octets - pending_pkts;
lqr_Dump(l->name, "Output", &lqr);
lqr_ChangeOrder(&lqr, (struct lqrdata *)MBUF_CTOP(bp));
}
return bp;
}
static struct mbuf *
lqr_LayerPull(struct bundle *b __unused, struct link *l __unused,
struct mbuf *bp, u_short *proto)
{
/*
* This is the ``Rx'' process from rfc1989, although a part of it is
* actually performed by sync_LayerPull() & hdlc_LayerPull() so that
* our octet counts are correct.
*/
if (*proto == PROTO_LQR)
m_settype(bp, MB_LQRIN);
return bp;
}
/*
* Statistics for pulled packets are recorded either in hdlc_PullPacket()
* or sync_PullPacket()
*/
struct layer lqrlayer = { LAYER_LQR, "lqr", lqr_LayerPush, lqr_LayerPull };