freebsd-skq/sys/dev/bfe/if_bfe.c
mmacy 7aeac9ef18 ifnet: Replace if_addr_lock rwlock with epoch + mutex
Run on LLNW canaries and tested by pho@

gallatin:
Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5
based ConnectX 4-LX NIC, I see an almost 12% improvement in received
packet rate, and a larger improvement in bytes delivered all the way
to userspace.

When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1,
I see, using nstat -I mce0 1 before the patch:

InMpps OMpps  InGbs  OGbs err TCP Est %CPU syscalls csw     irq GBfree
4.98   0.00   4.42   0.00 4235592     33   83.80 4720653 2149771   1235 247.32
4.73   0.00   4.20   0.00 4025260     33   82.99 4724900 2139833   1204 247.32
4.72   0.00   4.20   0.00 4035252     33   82.14 4719162 2132023   1264 247.32
4.71   0.00   4.21   0.00 4073206     33   83.68 4744973 2123317   1347 247.32
4.72   0.00   4.21   0.00 4061118     33   80.82 4713615 2188091   1490 247.32
4.72   0.00   4.21   0.00 4051675     33   85.29 4727399 2109011   1205 247.32
4.73   0.00   4.21   0.00 4039056     33   84.65 4724735 2102603   1053 247.32

After the patch

InMpps OMpps  InGbs  OGbs err TCP Est %CPU syscalls csw     irq GBfree
5.43   0.00   4.20   0.00 3313143     33   84.96 5434214 1900162   2656 245.51
5.43   0.00   4.20   0.00 3308527     33   85.24 5439695 1809382   2521 245.51
5.42   0.00   4.19   0.00 3316778     33   87.54 5416028 1805835   2256 245.51
5.42   0.00   4.19   0.00 3317673     33   90.44 5426044 1763056   2332 245.51
5.42   0.00   4.19   0.00 3314839     33   88.11 5435732 1792218   2499 245.52
5.44   0.00   4.19   0.00 3293228     33   91.84 5426301 1668597   2121 245.52

Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch

Reviewed by:	gallatin
Sponsored by:	Limelight Networks
Differential Revision:	https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00

1969 lines
50 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2003 Stuart Walsh<stu@ipng.org.uk>
* and Duncan Barclay<dmlb@dmlb.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS 'AS IS' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <dev/bfe/if_bfereg.h>
MODULE_DEPEND(bfe, pci, 1, 1, 1);
MODULE_DEPEND(bfe, ether, 1, 1, 1);
MODULE_DEPEND(bfe, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define BFE_DEVDESC_MAX 64 /* Maximum device description length */
static struct bfe_type bfe_devs[] = {
{ BCOM_VENDORID, BCOM_DEVICEID_BCM4401,
"Broadcom BCM4401 Fast Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM4401B0,
"Broadcom BCM4401-B0 Fast Ethernet" },
{ 0, 0, NULL }
};
static int bfe_probe (device_t);
static int bfe_attach (device_t);
static int bfe_detach (device_t);
static int bfe_suspend (device_t);
static int bfe_resume (device_t);
static void bfe_release_resources (struct bfe_softc *);
static void bfe_intr (void *);
static int bfe_encap (struct bfe_softc *, struct mbuf **);
static void bfe_start (struct ifnet *);
static void bfe_start_locked (struct ifnet *);
static int bfe_ioctl (struct ifnet *, u_long, caddr_t);
static void bfe_init (void *);
static void bfe_init_locked (void *);
static void bfe_stop (struct bfe_softc *);
static void bfe_watchdog (struct bfe_softc *);
static int bfe_shutdown (device_t);
static void bfe_tick (void *);
static void bfe_txeof (struct bfe_softc *);
static void bfe_rxeof (struct bfe_softc *);
static void bfe_set_rx_mode (struct bfe_softc *);
static int bfe_list_rx_init (struct bfe_softc *);
static void bfe_list_tx_init (struct bfe_softc *);
static void bfe_discard_buf (struct bfe_softc *, int);
static int bfe_list_newbuf (struct bfe_softc *, int);
static void bfe_rx_ring_free (struct bfe_softc *);
static void bfe_pci_setup (struct bfe_softc *, u_int32_t);
static int bfe_ifmedia_upd (struct ifnet *);
static void bfe_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static int bfe_miibus_readreg (device_t, int, int);
static int bfe_miibus_writereg (device_t, int, int, int);
static void bfe_miibus_statchg (device_t);
static int bfe_wait_bit (struct bfe_softc *, u_int32_t, u_int32_t,
u_long, const int);
static void bfe_get_config (struct bfe_softc *sc);
static void bfe_read_eeprom (struct bfe_softc *, u_int8_t *);
static void bfe_stats_update (struct bfe_softc *);
static void bfe_clear_stats (struct bfe_softc *);
static int bfe_readphy (struct bfe_softc *, u_int32_t, u_int32_t*);
static int bfe_writephy (struct bfe_softc *, u_int32_t, u_int32_t);
static int bfe_resetphy (struct bfe_softc *);
static int bfe_setupphy (struct bfe_softc *);
static void bfe_chip_reset (struct bfe_softc *);
static void bfe_chip_halt (struct bfe_softc *);
static void bfe_core_reset (struct bfe_softc *);
static void bfe_core_disable (struct bfe_softc *);
static int bfe_dma_alloc (struct bfe_softc *);
static void bfe_dma_free (struct bfe_softc *sc);
static void bfe_dma_map (void *, bus_dma_segment_t *, int, int);
static void bfe_cam_write (struct bfe_softc *, u_char *, int);
static int sysctl_bfe_stats (SYSCTL_HANDLER_ARGS);
static device_method_t bfe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bfe_probe),
DEVMETHOD(device_attach, bfe_attach),
DEVMETHOD(device_detach, bfe_detach),
DEVMETHOD(device_shutdown, bfe_shutdown),
DEVMETHOD(device_suspend, bfe_suspend),
DEVMETHOD(device_resume, bfe_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, bfe_miibus_readreg),
DEVMETHOD(miibus_writereg, bfe_miibus_writereg),
DEVMETHOD(miibus_statchg, bfe_miibus_statchg),
DEVMETHOD_END
};
static driver_t bfe_driver = {
"bfe",
bfe_methods,
sizeof(struct bfe_softc)
};
static devclass_t bfe_devclass;
DRIVER_MODULE(bfe, pci, bfe_driver, bfe_devclass, 0, 0);
DRIVER_MODULE(miibus, bfe, miibus_driver, miibus_devclass, 0, 0);
/*
* Probe for a Broadcom 4401 chip.
*/
static int
bfe_probe(device_t dev)
{
struct bfe_type *t;
t = bfe_devs;
while (t->bfe_name != NULL) {
if (pci_get_vendor(dev) == t->bfe_vid &&
pci_get_device(dev) == t->bfe_did) {
device_set_desc(dev, t->bfe_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
struct bfe_dmamap_arg {
bus_addr_t bfe_busaddr;
};
static int
bfe_dma_alloc(struct bfe_softc *sc)
{
struct bfe_dmamap_arg ctx;
struct bfe_rx_data *rd;
struct bfe_tx_data *td;
int error, i;
/*
* parent tag. Apparently the chip cannot handle any DMA address
* greater than 1GB.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->bfe_dev), /* parent */
1, 0, /* alignment, boundary */
BFE_DMA_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->bfe_parent_tag);
if (error != 0) {
device_printf(sc->bfe_dev, "cannot create parent DMA tag.\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(sc->bfe_parent_tag, /* parent */
BFE_TX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BFE_TX_LIST_SIZE, /* maxsize */
1, /* nsegments */
BFE_TX_LIST_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->bfe_tx_tag);
if (error != 0) {
device_printf(sc->bfe_dev, "cannot create Tx ring DMA tag.\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(sc->bfe_parent_tag, /* parent */
BFE_RX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BFE_RX_LIST_SIZE, /* maxsize */
1, /* nsegments */
BFE_RX_LIST_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->bfe_rx_tag);
if (error != 0) {
device_printf(sc->bfe_dev, "cannot create Rx ring DMA tag.\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(sc->bfe_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * BFE_MAXTXSEGS, /* maxsize */
BFE_MAXTXSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->bfe_txmbuf_tag);
if (error != 0) {
device_printf(sc->bfe_dev,
"cannot create Tx buffer DMA tag.\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(sc->bfe_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->bfe_rxmbuf_tag);
if (error != 0) {
device_printf(sc->bfe_dev,
"cannot create Rx buffer DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load DMA map. */
error = bus_dmamem_alloc(sc->bfe_tx_tag, (void *)&sc->bfe_tx_list,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->bfe_tx_map);
if (error != 0) {
device_printf(sc->bfe_dev,
"cannot allocate DMA'able memory for Tx ring.\n");
goto fail;
}
ctx.bfe_busaddr = 0;
error = bus_dmamap_load(sc->bfe_tx_tag, sc->bfe_tx_map,
sc->bfe_tx_list, BFE_TX_LIST_SIZE, bfe_dma_map, &ctx,
BUS_DMA_NOWAIT);
if (error != 0 || ctx.bfe_busaddr == 0) {
device_printf(sc->bfe_dev,
"cannot load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->bfe_tx_dma = BFE_ADDR_LO(ctx.bfe_busaddr);
error = bus_dmamem_alloc(sc->bfe_rx_tag, (void *)&sc->bfe_rx_list,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->bfe_rx_map);
if (error != 0) {
device_printf(sc->bfe_dev,
"cannot allocate DMA'able memory for Rx ring.\n");
goto fail;
}
ctx.bfe_busaddr = 0;
error = bus_dmamap_load(sc->bfe_rx_tag, sc->bfe_rx_map,
sc->bfe_rx_list, BFE_RX_LIST_SIZE, bfe_dma_map, &ctx,
BUS_DMA_NOWAIT);
if (error != 0 || ctx.bfe_busaddr == 0) {
device_printf(sc->bfe_dev,
"cannot load DMA'able memory for Rx ring.\n");
goto fail;
}
sc->bfe_rx_dma = BFE_ADDR_LO(ctx.bfe_busaddr);
/* Create DMA maps for Tx buffers. */
for (i = 0; i < BFE_TX_LIST_CNT; i++) {
td = &sc->bfe_tx_ring[i];
td->bfe_mbuf = NULL;
td->bfe_map = NULL;
error = bus_dmamap_create(sc->bfe_txmbuf_tag, 0, &td->bfe_map);
if (error != 0) {
device_printf(sc->bfe_dev,
"cannot create DMA map for Tx.\n");
goto fail;
}
}
/* Create spare DMA map for Rx buffers. */
error = bus_dmamap_create(sc->bfe_rxmbuf_tag, 0, &sc->bfe_rx_sparemap);
if (error != 0) {
device_printf(sc->bfe_dev, "cannot create spare DMA map for Rx.\n");
goto fail;
}
/* Create DMA maps for Rx buffers. */
for (i = 0; i < BFE_RX_LIST_CNT; i++) {
rd = &sc->bfe_rx_ring[i];
rd->bfe_mbuf = NULL;
rd->bfe_map = NULL;
rd->bfe_ctrl = 0;
error = bus_dmamap_create(sc->bfe_rxmbuf_tag, 0, &rd->bfe_map);
if (error != 0) {
device_printf(sc->bfe_dev,
"cannot create DMA map for Rx.\n");
goto fail;
}
}
fail:
return (error);
}
static void
bfe_dma_free(struct bfe_softc *sc)
{
struct bfe_tx_data *td;
struct bfe_rx_data *rd;
int i;
/* Tx ring. */
if (sc->bfe_tx_tag != NULL) {
if (sc->bfe_tx_dma != 0)
bus_dmamap_unload(sc->bfe_tx_tag, sc->bfe_tx_map);
if (sc->bfe_tx_list != NULL)
bus_dmamem_free(sc->bfe_tx_tag, sc->bfe_tx_list,
sc->bfe_tx_map);
sc->bfe_tx_dma = 0;
sc->bfe_tx_list = NULL;
bus_dma_tag_destroy(sc->bfe_tx_tag);
sc->bfe_tx_tag = NULL;
}
/* Rx ring. */
if (sc->bfe_rx_tag != NULL) {
if (sc->bfe_rx_dma != 0)
bus_dmamap_unload(sc->bfe_rx_tag, sc->bfe_rx_map);
if (sc->bfe_rx_list != NULL)
bus_dmamem_free(sc->bfe_rx_tag, sc->bfe_rx_list,
sc->bfe_rx_map);
sc->bfe_rx_dma = 0;
sc->bfe_rx_list = NULL;
bus_dma_tag_destroy(sc->bfe_rx_tag);
sc->bfe_rx_tag = NULL;
}
/* Tx buffers. */
if (sc->bfe_txmbuf_tag != NULL) {
for (i = 0; i < BFE_TX_LIST_CNT; i++) {
td = &sc->bfe_tx_ring[i];
if (td->bfe_map != NULL) {
bus_dmamap_destroy(sc->bfe_txmbuf_tag,
td->bfe_map);
td->bfe_map = NULL;
}
}
bus_dma_tag_destroy(sc->bfe_txmbuf_tag);
sc->bfe_txmbuf_tag = NULL;
}
/* Rx buffers. */
if (sc->bfe_rxmbuf_tag != NULL) {
for (i = 0; i < BFE_RX_LIST_CNT; i++) {
rd = &sc->bfe_rx_ring[i];
if (rd->bfe_map != NULL) {
bus_dmamap_destroy(sc->bfe_rxmbuf_tag,
rd->bfe_map);
rd->bfe_map = NULL;
}
}
if (sc->bfe_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->bfe_rxmbuf_tag,
sc->bfe_rx_sparemap);
sc->bfe_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->bfe_rxmbuf_tag);
sc->bfe_rxmbuf_tag = NULL;
}
if (sc->bfe_parent_tag != NULL) {
bus_dma_tag_destroy(sc->bfe_parent_tag);
sc->bfe_parent_tag = NULL;
}
}
static int
bfe_attach(device_t dev)
{
struct ifnet *ifp = NULL;
struct bfe_softc *sc;
int error = 0, rid;
sc = device_get_softc(dev);
mtx_init(&sc->bfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->bfe_stat_co, &sc->bfe_mtx, 0);
sc->bfe_dev = dev;
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = PCIR_BAR(0);
sc->bfe_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->bfe_res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
/* Allocate interrupt */
rid = 0;
sc->bfe_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->bfe_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
if (bfe_dma_alloc(sc) != 0) {
device_printf(dev, "failed to allocate DMA resources\n");
error = ENXIO;
goto fail;
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_bfe_stats,
"I", "Statistics");
/* Set up ifnet structure */
ifp = sc->bfe_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "failed to if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bfe_ioctl;
ifp->if_start = bfe_start;
ifp->if_init = bfe_init;
IFQ_SET_MAXLEN(&ifp->if_snd, BFE_TX_QLEN);
ifp->if_snd.ifq_drv_maxlen = BFE_TX_QLEN;
IFQ_SET_READY(&ifp->if_snd);
bfe_get_config(sc);
/* Reset the chip and turn on the PHY */
BFE_LOCK(sc);
bfe_chip_reset(sc);
BFE_UNLOCK(sc);
error = mii_attach(dev, &sc->bfe_miibus, ifp, bfe_ifmedia_upd,
bfe_ifmedia_sts, BMSR_DEFCAPMASK, sc->bfe_phyaddr, MII_OFFSET_ANY,
0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ether_ifattach(ifp, sc->bfe_enaddr);
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU;
/*
* Hook interrupt last to avoid having to lock softc
*/
error = bus_setup_intr(dev, sc->bfe_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, bfe_intr, sc, &sc->bfe_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
goto fail;
}
fail:
if (error != 0)
bfe_detach(dev);
return (error);
}
static int
bfe_detach(device_t dev)
{
struct bfe_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->bfe_ifp;
if (device_is_attached(dev)) {
BFE_LOCK(sc);
sc->bfe_flags |= BFE_FLAG_DETACH;
bfe_stop(sc);
BFE_UNLOCK(sc);
callout_drain(&sc->bfe_stat_co);
if (ifp != NULL)
ether_ifdetach(ifp);
}
BFE_LOCK(sc);
bfe_chip_reset(sc);
BFE_UNLOCK(sc);
bus_generic_detach(dev);
if (sc->bfe_miibus != NULL)
device_delete_child(dev, sc->bfe_miibus);
bfe_release_resources(sc);
bfe_dma_free(sc);
mtx_destroy(&sc->bfe_mtx);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
bfe_shutdown(device_t dev)
{
struct bfe_softc *sc;
sc = device_get_softc(dev);
BFE_LOCK(sc);
bfe_stop(sc);
BFE_UNLOCK(sc);
return (0);
}
static int
bfe_suspend(device_t dev)
{
struct bfe_softc *sc;
sc = device_get_softc(dev);
BFE_LOCK(sc);
bfe_stop(sc);
BFE_UNLOCK(sc);
return (0);
}
static int
bfe_resume(device_t dev)
{
struct bfe_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->bfe_ifp;
BFE_LOCK(sc);
bfe_chip_reset(sc);
if (ifp->if_flags & IFF_UP) {
bfe_init_locked(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bfe_start_locked(ifp);
}
BFE_UNLOCK(sc);
return (0);
}
static int
bfe_miibus_readreg(device_t dev, int phy, int reg)
{
struct bfe_softc *sc;
u_int32_t ret;
sc = device_get_softc(dev);
bfe_readphy(sc, reg, &ret);
return (ret);
}
static int
bfe_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct bfe_softc *sc;
sc = device_get_softc(dev);
bfe_writephy(sc, reg, val);
return (0);
}
static void
bfe_miibus_statchg(device_t dev)
{
struct bfe_softc *sc;
struct mii_data *mii;
u_int32_t val, flow;
sc = device_get_softc(dev);
mii = device_get_softc(sc->bfe_miibus);
sc->bfe_flags &= ~BFE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->bfe_flags |= BFE_FLAG_LINK;
break;
default:
break;
}
}
/* XXX Should stop Rx/Tx engine prior to touching MAC. */
val = CSR_READ_4(sc, BFE_TX_CTRL);
val &= ~BFE_TX_DUPLEX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
val |= BFE_TX_DUPLEX;
flow = 0;
#ifdef notyet
flow = CSR_READ_4(sc, BFE_RXCONF);
flow &= ~BFE_RXCONF_FLOW;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0)
flow |= BFE_RXCONF_FLOW;
CSR_WRITE_4(sc, BFE_RXCONF, flow);
/*
* It seems that the hardware has Tx pause issues
* so enable only Rx pause.
*/
flow = CSR_READ_4(sc, BFE_MAC_FLOW);
flow &= ~BFE_FLOW_PAUSE_ENAB;
CSR_WRITE_4(sc, BFE_MAC_FLOW, flow);
#endif
}
CSR_WRITE_4(sc, BFE_TX_CTRL, val);
}
static void
bfe_tx_ring_free(struct bfe_softc *sc)
{
int i;
for(i = 0; i < BFE_TX_LIST_CNT; i++) {
if (sc->bfe_tx_ring[i].bfe_mbuf != NULL) {
bus_dmamap_sync(sc->bfe_txmbuf_tag,
sc->bfe_tx_ring[i].bfe_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bfe_txmbuf_tag,
sc->bfe_tx_ring[i].bfe_map);
m_freem(sc->bfe_tx_ring[i].bfe_mbuf);
sc->bfe_tx_ring[i].bfe_mbuf = NULL;
}
}
bzero(sc->bfe_tx_list, BFE_TX_LIST_SIZE);
bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
bfe_rx_ring_free(struct bfe_softc *sc)
{
int i;
for (i = 0; i < BFE_RX_LIST_CNT; i++) {
if (sc->bfe_rx_ring[i].bfe_mbuf != NULL) {
bus_dmamap_sync(sc->bfe_rxmbuf_tag,
sc->bfe_rx_ring[i].bfe_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bfe_rxmbuf_tag,
sc->bfe_rx_ring[i].bfe_map);
m_freem(sc->bfe_rx_ring[i].bfe_mbuf);
sc->bfe_rx_ring[i].bfe_mbuf = NULL;
}
}
bzero(sc->bfe_rx_list, BFE_RX_LIST_SIZE);
bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
bfe_list_rx_init(struct bfe_softc *sc)
{
struct bfe_rx_data *rd;
int i;
sc->bfe_rx_prod = sc->bfe_rx_cons = 0;
bzero(sc->bfe_rx_list, BFE_RX_LIST_SIZE);
for (i = 0; i < BFE_RX_LIST_CNT; i++) {
rd = &sc->bfe_rx_ring[i];
rd->bfe_mbuf = NULL;
rd->bfe_ctrl = 0;
if (bfe_list_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, BFE_DMARX_PTR, (i * sizeof(struct bfe_desc)));
return (0);
}
static void
bfe_list_tx_init(struct bfe_softc *sc)
{
int i;
sc->bfe_tx_cnt = sc->bfe_tx_prod = sc->bfe_tx_cons = 0;
bzero(sc->bfe_tx_list, BFE_TX_LIST_SIZE);
for (i = 0; i < BFE_TX_LIST_CNT; i++)
sc->bfe_tx_ring[i].bfe_mbuf = NULL;
bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
bfe_discard_buf(struct bfe_softc *sc, int c)
{
struct bfe_rx_data *r;
struct bfe_desc *d;
r = &sc->bfe_rx_ring[c];
d = &sc->bfe_rx_list[c];
d->bfe_ctrl = htole32(r->bfe_ctrl);
}
static int
bfe_list_newbuf(struct bfe_softc *sc, int c)
{
struct bfe_rxheader *rx_header;
struct bfe_desc *d;
struct bfe_rx_data *r;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
u_int32_t ctrl;
int nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
if (bus_dmamap_load_mbuf_sg(sc->bfe_rxmbuf_tag, sc->bfe_rx_sparemap,
m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
r = &sc->bfe_rx_ring[c];
if (r->bfe_mbuf != NULL) {
bus_dmamap_sync(sc->bfe_rxmbuf_tag, r->bfe_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bfe_rxmbuf_tag, r->bfe_map);
}
map = r->bfe_map;
r->bfe_map = sc->bfe_rx_sparemap;
sc->bfe_rx_sparemap = map;
r->bfe_mbuf = m;
rx_header = mtod(m, struct bfe_rxheader *);
rx_header->len = 0;
rx_header->flags = 0;
bus_dmamap_sync(sc->bfe_rxmbuf_tag, r->bfe_map, BUS_DMASYNC_PREREAD);
ctrl = segs[0].ds_len & BFE_DESC_LEN;
KASSERT(ctrl > ETHER_MAX_LEN + 32, ("%s: buffer size too small(%d)!",
__func__, ctrl));
if (c == BFE_RX_LIST_CNT - 1)
ctrl |= BFE_DESC_EOT;
r->bfe_ctrl = ctrl;
d = &sc->bfe_rx_list[c];
d->bfe_ctrl = htole32(ctrl);
/* The chip needs all addresses to be added to BFE_PCI_DMA. */
d->bfe_addr = htole32(BFE_ADDR_LO(segs[0].ds_addr) + BFE_PCI_DMA);
return (0);
}
static void
bfe_get_config(struct bfe_softc *sc)
{
u_int8_t eeprom[128];
bfe_read_eeprom(sc, eeprom);
sc->bfe_enaddr[0] = eeprom[79];
sc->bfe_enaddr[1] = eeprom[78];
sc->bfe_enaddr[2] = eeprom[81];
sc->bfe_enaddr[3] = eeprom[80];
sc->bfe_enaddr[4] = eeprom[83];
sc->bfe_enaddr[5] = eeprom[82];
sc->bfe_phyaddr = eeprom[90] & 0x1f;
sc->bfe_mdc_port = (eeprom[90] >> 14) & 0x1;
sc->bfe_core_unit = 0;
sc->bfe_dma_offset = BFE_PCI_DMA;
}
static void
bfe_pci_setup(struct bfe_softc *sc, u_int32_t cores)
{
u_int32_t bar_orig, pci_rev, val;
bar_orig = pci_read_config(sc->bfe_dev, BFE_BAR0_WIN, 4);
pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, BFE_REG_PCI, 4);
pci_rev = CSR_READ_4(sc, BFE_SBIDHIGH) & BFE_RC_MASK;
val = CSR_READ_4(sc, BFE_SBINTVEC);
val |= cores;
CSR_WRITE_4(sc, BFE_SBINTVEC, val);
val = CSR_READ_4(sc, BFE_SSB_PCI_TRANS_2);
val |= BFE_SSB_PCI_PREF | BFE_SSB_PCI_BURST;
CSR_WRITE_4(sc, BFE_SSB_PCI_TRANS_2, val);
pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, bar_orig, 4);
}
static void
bfe_clear_stats(struct bfe_softc *sc)
{
uint32_t reg;
BFE_LOCK_ASSERT(sc);
CSR_WRITE_4(sc, BFE_MIB_CTRL, BFE_MIB_CLR_ON_READ);
for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4)
CSR_READ_4(sc, reg);
for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4)
CSR_READ_4(sc, reg);
}
static int
bfe_resetphy(struct bfe_softc *sc)
{
u_int32_t val;
bfe_writephy(sc, 0, BMCR_RESET);
DELAY(100);
bfe_readphy(sc, 0, &val);
if (val & BMCR_RESET) {
device_printf(sc->bfe_dev, "PHY Reset would not complete.\n");
return (ENXIO);
}
return (0);
}
static void
bfe_chip_halt(struct bfe_softc *sc)
{
BFE_LOCK_ASSERT(sc);
/* disable interrupts - not that it actually does..*/
CSR_WRITE_4(sc, BFE_IMASK, 0);
CSR_READ_4(sc, BFE_IMASK);
CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE);
bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 200, 1);
CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0);
CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0);
DELAY(10);
}
static void
bfe_chip_reset(struct bfe_softc *sc)
{
u_int32_t val;
BFE_LOCK_ASSERT(sc);
/* Set the interrupt vector for the enet core */
bfe_pci_setup(sc, BFE_INTVEC_ENET0);
/* is core up? */
val = CSR_READ_4(sc, BFE_SBTMSLOW) &
(BFE_RESET | BFE_REJECT | BFE_CLOCK);
if (val == BFE_CLOCK) {
/* It is, so shut it down */
CSR_WRITE_4(sc, BFE_RCV_LAZY, 0);
CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE);
bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 100, 1);
CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0);
if (CSR_READ_4(sc, BFE_DMARX_STAT) & BFE_STAT_EMASK)
bfe_wait_bit(sc, BFE_DMARX_STAT, BFE_STAT_SIDLE,
100, 0);
CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0);
}
bfe_core_reset(sc);
bfe_clear_stats(sc);
/*
* We want the phy registers to be accessible even when
* the driver is "downed" so initialize MDC preamble, frequency,
* and whether internal or external phy here.
*/
/* 4402 has 62.5Mhz SB clock and internal phy */
CSR_WRITE_4(sc, BFE_MDIO_CTRL, 0x8d);
/* Internal or external PHY? */
val = CSR_READ_4(sc, BFE_DEVCTRL);
if (!(val & BFE_IPP))
CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_EPSEL);
else if (CSR_READ_4(sc, BFE_DEVCTRL) & BFE_EPR) {
BFE_AND(sc, BFE_DEVCTRL, ~BFE_EPR);
DELAY(100);
}
/* Enable CRC32 generation and set proper LED modes */
BFE_OR(sc, BFE_MAC_CTRL, BFE_CTRL_CRC32_ENAB | BFE_CTRL_LED);
/* Reset or clear powerdown control bit */
BFE_AND(sc, BFE_MAC_CTRL, ~BFE_CTRL_PDOWN);
CSR_WRITE_4(sc, BFE_RCV_LAZY, ((1 << BFE_LAZY_FC_SHIFT) &
BFE_LAZY_FC_MASK));
/*
* We don't want lazy interrupts, so just send them at
* the end of a frame, please
*/
BFE_OR(sc, BFE_RCV_LAZY, 0);
/* Set max lengths, accounting for VLAN tags */
CSR_WRITE_4(sc, BFE_RXMAXLEN, ETHER_MAX_LEN+32);
CSR_WRITE_4(sc, BFE_TXMAXLEN, ETHER_MAX_LEN+32);
/* Set watermark XXX - magic */
CSR_WRITE_4(sc, BFE_TX_WMARK, 56);
/*
* Initialise DMA channels
* - not forgetting dma addresses need to be added to BFE_PCI_DMA
*/
CSR_WRITE_4(sc, BFE_DMATX_CTRL, BFE_TX_CTRL_ENABLE);
CSR_WRITE_4(sc, BFE_DMATX_ADDR, sc->bfe_tx_dma + BFE_PCI_DMA);
CSR_WRITE_4(sc, BFE_DMARX_CTRL, (BFE_RX_OFFSET << BFE_RX_CTRL_ROSHIFT) |
BFE_RX_CTRL_ENABLE);
CSR_WRITE_4(sc, BFE_DMARX_ADDR, sc->bfe_rx_dma + BFE_PCI_DMA);
bfe_resetphy(sc);
bfe_setupphy(sc);
}
static void
bfe_core_disable(struct bfe_softc *sc)
{
if ((CSR_READ_4(sc, BFE_SBTMSLOW)) & BFE_RESET)
return;
/*
* Set reject, wait for it set, then wait for the core to stop
* being busy, then set reset and reject and enable the clocks.
*/
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_CLOCK));
bfe_wait_bit(sc, BFE_SBTMSLOW, BFE_REJECT, 1000, 0);
bfe_wait_bit(sc, BFE_SBTMSHIGH, BFE_BUSY, 1000, 1);
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_FGC | BFE_CLOCK | BFE_REJECT |
BFE_RESET));
CSR_READ_4(sc, BFE_SBTMSLOW);
DELAY(10);
/* Leave reset and reject set */
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_RESET));
DELAY(10);
}
static void
bfe_core_reset(struct bfe_softc *sc)
{
u_int32_t val;
/* Disable the core */
bfe_core_disable(sc);
/* and bring it back up */
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_RESET | BFE_CLOCK | BFE_FGC));
CSR_READ_4(sc, BFE_SBTMSLOW);
DELAY(10);
/* Chip bug, clear SERR, IB and TO if they are set. */
if (CSR_READ_4(sc, BFE_SBTMSHIGH) & BFE_SERR)
CSR_WRITE_4(sc, BFE_SBTMSHIGH, 0);
val = CSR_READ_4(sc, BFE_SBIMSTATE);
if (val & (BFE_IBE | BFE_TO))
CSR_WRITE_4(sc, BFE_SBIMSTATE, val & ~(BFE_IBE | BFE_TO));
/* Clear reset and allow it to move through the core */
CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_CLOCK | BFE_FGC));
CSR_READ_4(sc, BFE_SBTMSLOW);
DELAY(10);
/* Leave the clock set */
CSR_WRITE_4(sc, BFE_SBTMSLOW, BFE_CLOCK);
CSR_READ_4(sc, BFE_SBTMSLOW);
DELAY(10);
}
static void
bfe_cam_write(struct bfe_softc *sc, u_char *data, int index)
{
u_int32_t val;
val = ((u_int32_t) data[2]) << 24;
val |= ((u_int32_t) data[3]) << 16;
val |= ((u_int32_t) data[4]) << 8;
val |= ((u_int32_t) data[5]);
CSR_WRITE_4(sc, BFE_CAM_DATA_LO, val);
val = (BFE_CAM_HI_VALID |
(((u_int32_t) data[0]) << 8) |
(((u_int32_t) data[1])));
CSR_WRITE_4(sc, BFE_CAM_DATA_HI, val);
CSR_WRITE_4(sc, BFE_CAM_CTRL, (BFE_CAM_WRITE |
((u_int32_t) index << BFE_CAM_INDEX_SHIFT)));
bfe_wait_bit(sc, BFE_CAM_CTRL, BFE_CAM_BUSY, 10000, 1);
}
static void
bfe_set_rx_mode(struct bfe_softc *sc)
{
struct ifnet *ifp = sc->bfe_ifp;
struct ifmultiaddr *ifma;
u_int32_t val;
int i = 0;
BFE_LOCK_ASSERT(sc);
val = CSR_READ_4(sc, BFE_RXCONF);
if (ifp->if_flags & IFF_PROMISC)
val |= BFE_RXCONF_PROMISC;
else
val &= ~BFE_RXCONF_PROMISC;
if (ifp->if_flags & IFF_BROADCAST)
val &= ~BFE_RXCONF_DBCAST;
else
val |= BFE_RXCONF_DBCAST;
CSR_WRITE_4(sc, BFE_CAM_CTRL, 0);
bfe_cam_write(sc, IF_LLADDR(sc->bfe_ifp), i++);
if (ifp->if_flags & IFF_ALLMULTI)
val |= BFE_RXCONF_ALLMULTI;
else {
val &= ~BFE_RXCONF_ALLMULTI;
if_maddr_rlock(ifp);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
bfe_cam_write(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i++);
}
if_maddr_runlock(ifp);
}
CSR_WRITE_4(sc, BFE_RXCONF, val);
BFE_OR(sc, BFE_CAM_CTRL, BFE_CAM_ENABLE);
}
static void
bfe_dma_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct bfe_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nseg == 1, ("%s : %d segments returned!", __func__, nseg));
ctx = (struct bfe_dmamap_arg *)arg;
ctx->bfe_busaddr = segs[0].ds_addr;
}
static void
bfe_release_resources(struct bfe_softc *sc)
{
if (sc->bfe_intrhand != NULL)
bus_teardown_intr(sc->bfe_dev, sc->bfe_irq, sc->bfe_intrhand);
if (sc->bfe_irq != NULL)
bus_release_resource(sc->bfe_dev, SYS_RES_IRQ, 0, sc->bfe_irq);
if (sc->bfe_res != NULL)
bus_release_resource(sc->bfe_dev, SYS_RES_MEMORY, PCIR_BAR(0),
sc->bfe_res);
if (sc->bfe_ifp != NULL)
if_free(sc->bfe_ifp);
}
static void
bfe_read_eeprom(struct bfe_softc *sc, u_int8_t *data)
{
long i;
u_int16_t *ptr = (u_int16_t *)data;
for(i = 0; i < 128; i += 2)
ptr[i/2] = CSR_READ_4(sc, 4096 + i);
}
static int
bfe_wait_bit(struct bfe_softc *sc, u_int32_t reg, u_int32_t bit,
u_long timeout, const int clear)
{
u_long i;
for (i = 0; i < timeout; i++) {
u_int32_t val = CSR_READ_4(sc, reg);
if (clear && !(val & bit))
break;
if (!clear && (val & bit))
break;
DELAY(10);
}
if (i == timeout) {
device_printf(sc->bfe_dev,
"BUG! Timeout waiting for bit %08x of register "
"%x to %s.\n", bit, reg, (clear ? "clear" : "set"));
return (-1);
}
return (0);
}
static int
bfe_readphy(struct bfe_softc *sc, u_int32_t reg, u_int32_t *val)
{
int err;
/* Clear MII ISR */
CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII);
CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START |
(BFE_MDIO_OP_READ << BFE_MDIO_OP_SHIFT) |
(sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) |
(reg << BFE_MDIO_RA_SHIFT) |
(BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT)));
err = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0);
*val = CSR_READ_4(sc, BFE_MDIO_DATA) & BFE_MDIO_DATA_DATA;
return (err);
}
static int
bfe_writephy(struct bfe_softc *sc, u_int32_t reg, u_int32_t val)
{
int status;
CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII);
CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START |
(BFE_MDIO_OP_WRITE << BFE_MDIO_OP_SHIFT) |
(sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) |
(reg << BFE_MDIO_RA_SHIFT) |
(BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT) |
(val & BFE_MDIO_DATA_DATA)));
status = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0);
return (status);
}
/*
* XXX - I think this is handled by the PHY driver, but it can't hurt to do it
* twice
*/
static int
bfe_setupphy(struct bfe_softc *sc)
{
u_int32_t val;
/* Enable activity LED */
bfe_readphy(sc, 26, &val);
bfe_writephy(sc, 26, val & 0x7fff);
bfe_readphy(sc, 26, &val);
/* Enable traffic meter LED mode */
bfe_readphy(sc, 27, &val);
bfe_writephy(sc, 27, val | (1 << 6));
return (0);
}
static void
bfe_stats_update(struct bfe_softc *sc)
{
struct bfe_hw_stats *stats;
struct ifnet *ifp;
uint32_t mib[BFE_MIB_CNT];
uint32_t reg, *val;
BFE_LOCK_ASSERT(sc);
val = mib;
CSR_WRITE_4(sc, BFE_MIB_CTRL, BFE_MIB_CLR_ON_READ);
for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4)
*val++ = CSR_READ_4(sc, reg);
for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4)
*val++ = CSR_READ_4(sc, reg);
ifp = sc->bfe_ifp;
stats = &sc->bfe_stats;
/* Tx stat. */
stats->tx_good_octets += mib[MIB_TX_GOOD_O];
stats->tx_good_frames += mib[MIB_TX_GOOD_P];
stats->tx_octets += mib[MIB_TX_O];
stats->tx_frames += mib[MIB_TX_P];
stats->tx_bcast_frames += mib[MIB_TX_BCAST];
stats->tx_mcast_frames += mib[MIB_TX_MCAST];
stats->tx_pkts_64 += mib[MIB_TX_64];
stats->tx_pkts_65_127 += mib[MIB_TX_65_127];
stats->tx_pkts_128_255 += mib[MIB_TX_128_255];
stats->tx_pkts_256_511 += mib[MIB_TX_256_511];
stats->tx_pkts_512_1023 += mib[MIB_TX_512_1023];
stats->tx_pkts_1024_max += mib[MIB_TX_1024_MAX];
stats->tx_jabbers += mib[MIB_TX_JABBER];
stats->tx_oversize_frames += mib[MIB_TX_OSIZE];
stats->tx_frag_frames += mib[MIB_TX_FRAG];
stats->tx_underruns += mib[MIB_TX_URUNS];
stats->tx_colls += mib[MIB_TX_TCOLS];
stats->tx_single_colls += mib[MIB_TX_SCOLS];
stats->tx_multi_colls += mib[MIB_TX_MCOLS];
stats->tx_excess_colls += mib[MIB_TX_ECOLS];
stats->tx_late_colls += mib[MIB_TX_LCOLS];
stats->tx_deferrals += mib[MIB_TX_DEFERED];
stats->tx_carrier_losts += mib[MIB_TX_CLOST];
stats->tx_pause_frames += mib[MIB_TX_PAUSE];
/* Rx stat. */
stats->rx_good_octets += mib[MIB_RX_GOOD_O];
stats->rx_good_frames += mib[MIB_RX_GOOD_P];
stats->rx_octets += mib[MIB_RX_O];
stats->rx_frames += mib[MIB_RX_P];
stats->rx_bcast_frames += mib[MIB_RX_BCAST];
stats->rx_mcast_frames += mib[MIB_RX_MCAST];
stats->rx_pkts_64 += mib[MIB_RX_64];
stats->rx_pkts_65_127 += mib[MIB_RX_65_127];
stats->rx_pkts_128_255 += mib[MIB_RX_128_255];
stats->rx_pkts_256_511 += mib[MIB_RX_256_511];
stats->rx_pkts_512_1023 += mib[MIB_RX_512_1023];
stats->rx_pkts_1024_max += mib[MIB_RX_1024_MAX];
stats->rx_jabbers += mib[MIB_RX_JABBER];
stats->rx_oversize_frames += mib[MIB_RX_OSIZE];
stats->rx_frag_frames += mib[MIB_RX_FRAG];
stats->rx_missed_frames += mib[MIB_RX_MISS];
stats->rx_crc_align_errs += mib[MIB_RX_CRCA];
stats->rx_runts += mib[MIB_RX_USIZE];
stats->rx_crc_errs += mib[MIB_RX_CRC];
stats->rx_align_errs += mib[MIB_RX_ALIGN];
stats->rx_symbol_errs += mib[MIB_RX_SYM];
stats->rx_pause_frames += mib[MIB_RX_PAUSE];
stats->rx_control_frames += mib[MIB_RX_NPAUSE];
/* Update counters in ifnet. */
if_inc_counter(ifp, IFCOUNTER_OPACKETS, (u_long)mib[MIB_TX_GOOD_P]);
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (u_long)mib[MIB_TX_TCOLS]);
if_inc_counter(ifp, IFCOUNTER_OERRORS, (u_long)mib[MIB_TX_URUNS] +
(u_long)mib[MIB_TX_ECOLS] +
(u_long)mib[MIB_TX_DEFERED] +
(u_long)mib[MIB_TX_CLOST]);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, (u_long)mib[MIB_RX_GOOD_P]);
if_inc_counter(ifp, IFCOUNTER_IERRORS, mib[MIB_RX_JABBER] +
mib[MIB_RX_MISS] +
mib[MIB_RX_CRCA] +
mib[MIB_RX_USIZE] +
mib[MIB_RX_CRC] +
mib[MIB_RX_ALIGN] +
mib[MIB_RX_SYM]);
}
static void
bfe_txeof(struct bfe_softc *sc)
{
struct bfe_tx_data *r;
struct ifnet *ifp;
int i, chipidx;
BFE_LOCK_ASSERT(sc);
ifp = sc->bfe_ifp;
chipidx = CSR_READ_4(sc, BFE_DMATX_STAT) & BFE_STAT_CDMASK;
chipidx /= sizeof(struct bfe_desc);
i = sc->bfe_tx_cons;
if (i == chipidx)
return;
bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Go through the mbufs and free those that have been transmitted */
for (; i != chipidx; BFE_INC(i, BFE_TX_LIST_CNT)) {
r = &sc->bfe_tx_ring[i];
sc->bfe_tx_cnt--;
if (r->bfe_mbuf == NULL)
continue;
bus_dmamap_sync(sc->bfe_txmbuf_tag, r->bfe_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bfe_txmbuf_tag, r->bfe_map);
m_freem(r->bfe_mbuf);
r->bfe_mbuf = NULL;
}
if (i != sc->bfe_tx_cons) {
/* we freed up some mbufs */
sc->bfe_tx_cons = i;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
if (sc->bfe_tx_cnt == 0)
sc->bfe_watchdog_timer = 0;
}
/* Pass a received packet up the stack */
static void
bfe_rxeof(struct bfe_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
struct bfe_rxheader *rxheader;
struct bfe_rx_data *r;
int cons, prog;
u_int32_t status, current, len, flags;
BFE_LOCK_ASSERT(sc);
cons = sc->bfe_rx_cons;
status = CSR_READ_4(sc, BFE_DMARX_STAT);
current = (status & BFE_STAT_CDMASK) / sizeof(struct bfe_desc);
ifp = sc->bfe_ifp;
bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; current != cons; prog++,
BFE_INC(cons, BFE_RX_LIST_CNT)) {
r = &sc->bfe_rx_ring[cons];
m = r->bfe_mbuf;
/*
* Rx status should be read from mbuf such that we can't
* delay bus_dmamap_sync(9). This hardware limiation
* results in inefficent mbuf usage as bfe(4) couldn't
* reuse mapped buffer from errored frame.
*/
if (bfe_list_newbuf(sc, cons) != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
bfe_discard_buf(sc, cons);
continue;
}
rxheader = mtod(m, struct bfe_rxheader*);
len = le16toh(rxheader->len);
flags = le16toh(rxheader->flags);
/* Remove CRC bytes. */
len -= ETHER_CRC_LEN;
/* flag an error and try again */
if ((len > ETHER_MAX_LEN+32) || (flags & BFE_RX_FLAG_ERRORS)) {
m_freem(m);
continue;
}
/* Make sure to skip header bytes written by hardware. */
m_adj(m, BFE_RX_OFFSET);
m->m_len = m->m_pkthdr.len = len;
m->m_pkthdr.rcvif = ifp;
BFE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
BFE_LOCK(sc);
}
if (prog > 0) {
sc->bfe_rx_cons = cons;
bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static void
bfe_intr(void *xsc)
{
struct bfe_softc *sc = xsc;
struct ifnet *ifp;
u_int32_t istat;
ifp = sc->bfe_ifp;
BFE_LOCK(sc);
istat = CSR_READ_4(sc, BFE_ISTAT);
/*
* Defer unsolicited interrupts - This is necessary because setting the
* chips interrupt mask register to 0 doesn't actually stop the
* interrupts
*/
istat &= BFE_IMASK_DEF;
CSR_WRITE_4(sc, BFE_ISTAT, istat);
CSR_READ_4(sc, BFE_ISTAT);
/* not expecting this interrupt, disregard it */
if (istat == 0 || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
BFE_UNLOCK(sc);
return;
}
/* A packet was received */
if (istat & BFE_ISTAT_RX)
bfe_rxeof(sc);
/* A packet was sent */
if (istat & BFE_ISTAT_TX)
bfe_txeof(sc);
if (istat & BFE_ISTAT_ERRORS) {
if (istat & BFE_ISTAT_DSCE) {
device_printf(sc->bfe_dev, "Descriptor Error\n");
bfe_stop(sc);
BFE_UNLOCK(sc);
return;
}
if (istat & BFE_ISTAT_DPE) {
device_printf(sc->bfe_dev,
"Descriptor Protocol Error\n");
bfe_stop(sc);
BFE_UNLOCK(sc);
return;
}
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bfe_init_locked(sc);
}
/* We have packets pending, fire them out */
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bfe_start_locked(ifp);
BFE_UNLOCK(sc);
}
static int
bfe_encap(struct bfe_softc *sc, struct mbuf **m_head)
{
struct bfe_desc *d;
struct bfe_tx_data *r, *r1;
struct mbuf *m;
bus_dmamap_t map;
bus_dma_segment_t txsegs[BFE_MAXTXSEGS];
uint32_t cur, si;
int error, i, nsegs;
BFE_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
si = cur = sc->bfe_tx_prod;
r = &sc->bfe_tx_ring[cur];
error = bus_dmamap_load_mbuf_sg(sc->bfe_txmbuf_tag, r->bfe_map, *m_head,
txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, BFE_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->bfe_txmbuf_tag, r->bfe_map,
*m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
if (sc->bfe_tx_cnt + nsegs > BFE_TX_LIST_CNT - 1) {
bus_dmamap_unload(sc->bfe_txmbuf_tag, r->bfe_map);
return (ENOBUFS);
}
for (i = 0; i < nsegs; i++) {
d = &sc->bfe_tx_list[cur];
d->bfe_ctrl = htole32(txsegs[i].ds_len & BFE_DESC_LEN);
d->bfe_ctrl |= htole32(BFE_DESC_IOC);
if (cur == BFE_TX_LIST_CNT - 1)
/*
* Tell the chip to wrap to the start of
* the descriptor list.
*/
d->bfe_ctrl |= htole32(BFE_DESC_EOT);
/* The chip needs all addresses to be added to BFE_PCI_DMA. */
d->bfe_addr = htole32(BFE_ADDR_LO(txsegs[i].ds_addr) +
BFE_PCI_DMA);
BFE_INC(cur, BFE_TX_LIST_CNT);
}
/* Update producer index. */
sc->bfe_tx_prod = cur;
/* Set EOF on the last descriptor. */
cur = (cur + BFE_TX_LIST_CNT - 1) % BFE_TX_LIST_CNT;
d = &sc->bfe_tx_list[cur];
d->bfe_ctrl |= htole32(BFE_DESC_EOF);
/* Lastly set SOF on the first descriptor to avoid races. */
d = &sc->bfe_tx_list[si];
d->bfe_ctrl |= htole32(BFE_DESC_SOF);
r1 = &sc->bfe_tx_ring[cur];
map = r->bfe_map;
r->bfe_map = r1->bfe_map;
r1->bfe_map = map;
r1->bfe_mbuf = *m_head;
sc->bfe_tx_cnt += nsegs;
bus_dmamap_sync(sc->bfe_txmbuf_tag, map, BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Set up to transmit a packet.
*/
static void
bfe_start(struct ifnet *ifp)
{
BFE_LOCK((struct bfe_softc *)ifp->if_softc);
bfe_start_locked(ifp);
BFE_UNLOCK((struct bfe_softc *)ifp->if_softc);
}
/*
* Set up to transmit a packet. The softc is already locked.
*/
static void
bfe_start_locked(struct ifnet *ifp)
{
struct bfe_softc *sc;
struct mbuf *m_head;
int queued;
sc = ifp->if_softc;
BFE_LOCK_ASSERT(sc);
/*
* Not much point trying to send if the link is down
* or we have nothing to send.
*/
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->bfe_flags & BFE_FLAG_LINK) == 0)
return;
for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->bfe_tx_cnt < BFE_TX_LIST_CNT - 1;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the tx ring. If we dont have
* enough room, let the chip drain the ring.
*/
if (bfe_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
queued++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (queued) {
bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Transmit - twice due to apparent hardware bug */
CSR_WRITE_4(sc, BFE_DMATX_PTR,
sc->bfe_tx_prod * sizeof(struct bfe_desc));
/*
* XXX It seems the following write is not necessary
* to kick Tx command. What might be required would be
* a way flushing PCI posted write. Reading the register
* back ensures the flush operation. In addition,
* hardware will execute PCI posted write in the long
* run and watchdog timer for the kick command was set
* to 5 seconds. Therefore I think the second write
* access is not necessary or could be replaced with
* read operation.
*/
CSR_WRITE_4(sc, BFE_DMATX_PTR,
sc->bfe_tx_prod * sizeof(struct bfe_desc));
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->bfe_watchdog_timer = 5;
}
}
static void
bfe_init(void *xsc)
{
BFE_LOCK((struct bfe_softc *)xsc);
bfe_init_locked(xsc);
BFE_UNLOCK((struct bfe_softc *)xsc);
}
static void
bfe_init_locked(void *xsc)
{
struct bfe_softc *sc = (struct bfe_softc*)xsc;
struct ifnet *ifp = sc->bfe_ifp;
struct mii_data *mii;
BFE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->bfe_miibus);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
bfe_stop(sc);
bfe_chip_reset(sc);
if (bfe_list_rx_init(sc) == ENOBUFS) {
device_printf(sc->bfe_dev,
"%s: Not enough memory for list buffers\n", __func__);
bfe_stop(sc);
return;
}
bfe_list_tx_init(sc);
bfe_set_rx_mode(sc);
/* Enable the chip and core */
BFE_OR(sc, BFE_ENET_CTRL, BFE_ENET_ENABLE);
/* Enable interrupts */
CSR_WRITE_4(sc, BFE_IMASK, BFE_IMASK_DEF);
/* Clear link state and change media. */
sc->bfe_flags &= ~BFE_FLAG_LINK;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->bfe_stat_co, hz, bfe_tick, sc);
}
/*
* Set media options.
*/
static int
bfe_ifmedia_upd(struct ifnet *ifp)
{
struct bfe_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
BFE_LOCK(sc);
mii = device_get_softc(sc->bfe_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
BFE_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
bfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bfe_softc *sc = ifp->if_softc;
struct mii_data *mii;
BFE_LOCK(sc);
mii = device_get_softc(sc->bfe_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
BFE_UNLOCK(sc);
}
static int
bfe_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct bfe_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
switch (command) {
case SIOCSIFFLAGS:
BFE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
bfe_set_rx_mode(sc);
else if ((sc->bfe_flags & BFE_FLAG_DETACH) == 0)
bfe_init_locked(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
bfe_stop(sc);
BFE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
BFE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
bfe_set_rx_mode(sc);
BFE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->bfe_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
bfe_watchdog(struct bfe_softc *sc)
{
struct ifnet *ifp;
BFE_LOCK_ASSERT(sc);
if (sc->bfe_watchdog_timer == 0 || --sc->bfe_watchdog_timer)
return;
ifp = sc->bfe_ifp;
device_printf(sc->bfe_dev, "watchdog timeout -- resetting\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bfe_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bfe_start_locked(ifp);
}
static void
bfe_tick(void *xsc)
{
struct bfe_softc *sc = xsc;
struct mii_data *mii;
BFE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->bfe_miibus);
mii_tick(mii);
bfe_stats_update(sc);
bfe_watchdog(sc);
callout_reset(&sc->bfe_stat_co, hz, bfe_tick, sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
bfe_stop(struct bfe_softc *sc)
{
struct ifnet *ifp;
BFE_LOCK_ASSERT(sc);
ifp = sc->bfe_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->bfe_flags &= ~BFE_FLAG_LINK;
callout_stop(&sc->bfe_stat_co);
sc->bfe_watchdog_timer = 0;
bfe_chip_halt(sc);
bfe_tx_ring_free(sc);
bfe_rx_ring_free(sc);
}
static int
sysctl_bfe_stats(SYSCTL_HANDLER_ARGS)
{
struct bfe_softc *sc;
struct bfe_hw_stats *stats;
int error, result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (result != 1)
return (error);
sc = (struct bfe_softc *)arg1;
stats = &sc->bfe_stats;
printf("%s statistics:\n", device_get_nameunit(sc->bfe_dev));
printf("Transmit good octets : %ju\n",
(uintmax_t)stats->tx_good_octets);
printf("Transmit good frames : %ju\n",
(uintmax_t)stats->tx_good_frames);
printf("Transmit octets : %ju\n",
(uintmax_t)stats->tx_octets);
printf("Transmit frames : %ju\n",
(uintmax_t)stats->tx_frames);
printf("Transmit broadcast frames : %ju\n",
(uintmax_t)stats->tx_bcast_frames);
printf("Transmit multicast frames : %ju\n",
(uintmax_t)stats->tx_mcast_frames);
printf("Transmit frames 64 bytes : %ju\n",
(uint64_t)stats->tx_pkts_64);
printf("Transmit frames 65 to 127 bytes : %ju\n",
(uint64_t)stats->tx_pkts_65_127);
printf("Transmit frames 128 to 255 bytes : %ju\n",
(uint64_t)stats->tx_pkts_128_255);
printf("Transmit frames 256 to 511 bytes : %ju\n",
(uint64_t)stats->tx_pkts_256_511);
printf("Transmit frames 512 to 1023 bytes : %ju\n",
(uint64_t)stats->tx_pkts_512_1023);
printf("Transmit frames 1024 to max bytes : %ju\n",
(uint64_t)stats->tx_pkts_1024_max);
printf("Transmit jabber errors : %u\n", stats->tx_jabbers);
printf("Transmit oversized frames : %ju\n",
(uint64_t)stats->tx_oversize_frames);
printf("Transmit fragmented frames : %ju\n",
(uint64_t)stats->tx_frag_frames);
printf("Transmit underruns : %u\n", stats->tx_colls);
printf("Transmit total collisions : %u\n", stats->tx_single_colls);
printf("Transmit single collisions : %u\n", stats->tx_single_colls);
printf("Transmit multiple collisions : %u\n", stats->tx_multi_colls);
printf("Transmit excess collisions : %u\n", stats->tx_excess_colls);
printf("Transmit late collisions : %u\n", stats->tx_late_colls);
printf("Transmit deferrals : %u\n", stats->tx_deferrals);
printf("Transmit carrier losts : %u\n", stats->tx_carrier_losts);
printf("Transmit pause frames : %u\n", stats->tx_pause_frames);
printf("Receive good octets : %ju\n",
(uintmax_t)stats->rx_good_octets);
printf("Receive good frames : %ju\n",
(uintmax_t)stats->rx_good_frames);
printf("Receive octets : %ju\n",
(uintmax_t)stats->rx_octets);
printf("Receive frames : %ju\n",
(uintmax_t)stats->rx_frames);
printf("Receive broadcast frames : %ju\n",
(uintmax_t)stats->rx_bcast_frames);
printf("Receive multicast frames : %ju\n",
(uintmax_t)stats->rx_mcast_frames);
printf("Receive frames 64 bytes : %ju\n",
(uint64_t)stats->rx_pkts_64);
printf("Receive frames 65 to 127 bytes : %ju\n",
(uint64_t)stats->rx_pkts_65_127);
printf("Receive frames 128 to 255 bytes : %ju\n",
(uint64_t)stats->rx_pkts_128_255);
printf("Receive frames 256 to 511 bytes : %ju\n",
(uint64_t)stats->rx_pkts_256_511);
printf("Receive frames 512 to 1023 bytes : %ju\n",
(uint64_t)stats->rx_pkts_512_1023);
printf("Receive frames 1024 to max bytes : %ju\n",
(uint64_t)stats->rx_pkts_1024_max);
printf("Receive jabber errors : %u\n", stats->rx_jabbers);
printf("Receive oversized frames : %ju\n",
(uint64_t)stats->rx_oversize_frames);
printf("Receive fragmented frames : %ju\n",
(uint64_t)stats->rx_frag_frames);
printf("Receive missed frames : %u\n", stats->rx_missed_frames);
printf("Receive CRC align errors : %u\n", stats->rx_crc_align_errs);
printf("Receive undersized frames : %u\n", stats->rx_runts);
printf("Receive CRC errors : %u\n", stats->rx_crc_errs);
printf("Receive align errors : %u\n", stats->rx_align_errs);
printf("Receive symbol errors : %u\n", stats->rx_symbol_errs);
printf("Receive pause frames : %u\n", stats->rx_pause_frames);
printf("Receive control frames : %u\n", stats->rx_control_frames);
return (error);
}