434 lines
15 KiB
C++
434 lines
15 KiB
C++
//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BasicBlock class for the IR library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "SymbolTableListTraitsImpl.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
ValueSymbolTable *BasicBlock::getValueSymbolTable() {
|
|
if (Function *F = getParent())
|
|
return &F->getValueSymbolTable();
|
|
return nullptr;
|
|
}
|
|
|
|
LLVMContext &BasicBlock::getContext() const {
|
|
return getType()->getContext();
|
|
}
|
|
|
|
// Explicit instantiation of SymbolTableListTraits since some of the methods
|
|
// are not in the public header file...
|
|
template class llvm::SymbolTableListTraits<Instruction>;
|
|
|
|
BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
|
|
BasicBlock *InsertBefore)
|
|
: Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
|
|
|
|
if (NewParent)
|
|
insertInto(NewParent, InsertBefore);
|
|
else
|
|
assert(!InsertBefore &&
|
|
"Cannot insert block before another block with no function!");
|
|
|
|
setName(Name);
|
|
}
|
|
|
|
void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
|
|
assert(NewParent && "Expected a parent");
|
|
assert(!Parent && "Already has a parent");
|
|
|
|
if (InsertBefore)
|
|
NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
|
|
else
|
|
NewParent->getBasicBlockList().push_back(this);
|
|
}
|
|
|
|
BasicBlock::~BasicBlock() {
|
|
// If the address of the block is taken and it is being deleted (e.g. because
|
|
// it is dead), this means that there is either a dangling constant expr
|
|
// hanging off the block, or an undefined use of the block (source code
|
|
// expecting the address of a label to keep the block alive even though there
|
|
// is no indirect branch). Handle these cases by zapping the BlockAddress
|
|
// nodes. There are no other possible uses at this point.
|
|
if (hasAddressTaken()) {
|
|
assert(!use_empty() && "There should be at least one blockaddress!");
|
|
Constant *Replacement =
|
|
ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
|
|
while (!use_empty()) {
|
|
BlockAddress *BA = cast<BlockAddress>(user_back());
|
|
BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
|
|
BA->getType()));
|
|
BA->destroyConstant();
|
|
}
|
|
}
|
|
|
|
assert(getParent() == nullptr && "BasicBlock still linked into the program!");
|
|
dropAllReferences();
|
|
InstList.clear();
|
|
}
|
|
|
|
void BasicBlock::setParent(Function *parent) {
|
|
// Set Parent=parent, updating instruction symtab entries as appropriate.
|
|
InstList.setSymTabObject(&Parent, parent);
|
|
}
|
|
|
|
void BasicBlock::removeFromParent() {
|
|
getParent()->getBasicBlockList().remove(getIterator());
|
|
}
|
|
|
|
iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
|
|
return getParent()->getBasicBlockList().erase(getIterator());
|
|
}
|
|
|
|
/// Unlink this basic block from its current function and
|
|
/// insert it into the function that MovePos lives in, right before MovePos.
|
|
void BasicBlock::moveBefore(BasicBlock *MovePos) {
|
|
MovePos->getParent()->getBasicBlockList().splice(
|
|
MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
|
|
}
|
|
|
|
/// Unlink this basic block from its current function and
|
|
/// insert it into the function that MovePos lives in, right after MovePos.
|
|
void BasicBlock::moveAfter(BasicBlock *MovePos) {
|
|
MovePos->getParent()->getBasicBlockList().splice(
|
|
++MovePos->getIterator(), getParent()->getBasicBlockList(),
|
|
getIterator());
|
|
}
|
|
|
|
const Module *BasicBlock::getModule() const {
|
|
return getParent()->getParent();
|
|
}
|
|
|
|
Module *BasicBlock::getModule() {
|
|
return getParent()->getParent();
|
|
}
|
|
|
|
TerminatorInst *BasicBlock::getTerminator() {
|
|
if (InstList.empty()) return nullptr;
|
|
return dyn_cast<TerminatorInst>(&InstList.back());
|
|
}
|
|
|
|
const TerminatorInst *BasicBlock::getTerminator() const {
|
|
if (InstList.empty()) return nullptr;
|
|
return dyn_cast<TerminatorInst>(&InstList.back());
|
|
}
|
|
|
|
CallInst *BasicBlock::getTerminatingMustTailCall() {
|
|
if (InstList.empty())
|
|
return nullptr;
|
|
ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
|
|
if (!RI || RI == &InstList.front())
|
|
return nullptr;
|
|
|
|
Instruction *Prev = RI->getPrevNode();
|
|
if (!Prev)
|
|
return nullptr;
|
|
|
|
if (Value *RV = RI->getReturnValue()) {
|
|
if (RV != Prev)
|
|
return nullptr;
|
|
|
|
// Look through the optional bitcast.
|
|
if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
|
|
RV = BI->getOperand(0);
|
|
Prev = BI->getPrevNode();
|
|
if (!Prev || RV != Prev)
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (auto *CI = dyn_cast<CallInst>(Prev)) {
|
|
if (CI->isMustTailCall())
|
|
return CI;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction* BasicBlock::getFirstNonPHI() {
|
|
for (Instruction &I : *this)
|
|
if (!isa<PHINode>(I))
|
|
return &I;
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction* BasicBlock::getFirstNonPHIOrDbg() {
|
|
for (Instruction &I : *this)
|
|
if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
|
|
return &I;
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
|
|
for (Instruction &I : *this) {
|
|
if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
|
|
continue;
|
|
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
|
|
II->getIntrinsicID() == Intrinsic::lifetime_end)
|
|
continue;
|
|
|
|
return &I;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
BasicBlock::iterator BasicBlock::getFirstInsertionPt() {
|
|
Instruction *FirstNonPHI = getFirstNonPHI();
|
|
if (!FirstNonPHI)
|
|
return end();
|
|
|
|
iterator InsertPt = FirstNonPHI->getIterator();
|
|
if (InsertPt->isEHPad()) ++InsertPt;
|
|
return InsertPt;
|
|
}
|
|
|
|
void BasicBlock::dropAllReferences() {
|
|
for(iterator I = begin(), E = end(); I != E; ++I)
|
|
I->dropAllReferences();
|
|
}
|
|
|
|
/// If this basic block has a single predecessor block,
|
|
/// return the block, otherwise return a null pointer.
|
|
BasicBlock *BasicBlock::getSinglePredecessor() {
|
|
pred_iterator PI = pred_begin(this), E = pred_end(this);
|
|
if (PI == E) return nullptr; // No preds.
|
|
BasicBlock *ThePred = *PI;
|
|
++PI;
|
|
return (PI == E) ? ThePred : nullptr /*multiple preds*/;
|
|
}
|
|
|
|
/// If this basic block has a unique predecessor block,
|
|
/// return the block, otherwise return a null pointer.
|
|
/// Note that unique predecessor doesn't mean single edge, there can be
|
|
/// multiple edges from the unique predecessor to this block (for example
|
|
/// a switch statement with multiple cases having the same destination).
|
|
BasicBlock *BasicBlock::getUniquePredecessor() {
|
|
pred_iterator PI = pred_begin(this), E = pred_end(this);
|
|
if (PI == E) return nullptr; // No preds.
|
|
BasicBlock *PredBB = *PI;
|
|
++PI;
|
|
for (;PI != E; ++PI) {
|
|
if (*PI != PredBB)
|
|
return nullptr;
|
|
// The same predecessor appears multiple times in the predecessor list.
|
|
// This is OK.
|
|
}
|
|
return PredBB;
|
|
}
|
|
|
|
BasicBlock *BasicBlock::getSingleSuccessor() {
|
|
succ_iterator SI = succ_begin(this), E = succ_end(this);
|
|
if (SI == E) return nullptr; // no successors
|
|
BasicBlock *TheSucc = *SI;
|
|
++SI;
|
|
return (SI == E) ? TheSucc : nullptr /* multiple successors */;
|
|
}
|
|
|
|
BasicBlock *BasicBlock::getUniqueSuccessor() {
|
|
succ_iterator SI = succ_begin(this), E = succ_end(this);
|
|
if (SI == E) return nullptr; // No successors
|
|
BasicBlock *SuccBB = *SI;
|
|
++SI;
|
|
for (;SI != E; ++SI) {
|
|
if (*SI != SuccBB)
|
|
return nullptr;
|
|
// The same successor appears multiple times in the successor list.
|
|
// This is OK.
|
|
}
|
|
return SuccBB;
|
|
}
|
|
|
|
/// This method is used to notify a BasicBlock that the
|
|
/// specified Predecessor of the block is no longer able to reach it. This is
|
|
/// actually not used to update the Predecessor list, but is actually used to
|
|
/// update the PHI nodes that reside in the block. Note that this should be
|
|
/// called while the predecessor still refers to this block.
|
|
///
|
|
void BasicBlock::removePredecessor(BasicBlock *Pred,
|
|
bool DontDeleteUselessPHIs) {
|
|
assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
|
|
find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
|
|
"removePredecessor: BB is not a predecessor!");
|
|
|
|
if (InstList.empty()) return;
|
|
PHINode *APN = dyn_cast<PHINode>(&front());
|
|
if (!APN) return; // Quick exit.
|
|
|
|
// If there are exactly two predecessors, then we want to nuke the PHI nodes
|
|
// altogether. However, we cannot do this, if this in this case:
|
|
//
|
|
// Loop:
|
|
// %x = phi [X, Loop]
|
|
// %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
|
|
// br Loop ;; %x2 does not dominate all uses
|
|
//
|
|
// This is because the PHI node input is actually taken from the predecessor
|
|
// basic block. The only case this can happen is with a self loop, so we
|
|
// check for this case explicitly now.
|
|
//
|
|
unsigned max_idx = APN->getNumIncomingValues();
|
|
assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
|
|
if (max_idx == 2) {
|
|
BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
|
|
|
|
// Disable PHI elimination!
|
|
if (this == Other) max_idx = 3;
|
|
}
|
|
|
|
// <= Two predecessors BEFORE I remove one?
|
|
if (max_idx <= 2 && !DontDeleteUselessPHIs) {
|
|
// Yup, loop through and nuke the PHI nodes
|
|
while (PHINode *PN = dyn_cast<PHINode>(&front())) {
|
|
// Remove the predecessor first.
|
|
PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
|
|
|
|
// If the PHI _HAD_ two uses, replace PHI node with its now *single* value
|
|
if (max_idx == 2) {
|
|
if (PN->getIncomingValue(0) != PN)
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
else
|
|
// We are left with an infinite loop with no entries: kill the PHI.
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
getInstList().pop_front(); // Remove the PHI node
|
|
}
|
|
|
|
// If the PHI node already only had one entry, it got deleted by
|
|
// removeIncomingValue.
|
|
}
|
|
} else {
|
|
// Okay, now we know that we need to remove predecessor #pred_idx from all
|
|
// PHI nodes. Iterate over each PHI node fixing them up
|
|
PHINode *PN;
|
|
for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
|
|
++II;
|
|
PN->removeIncomingValue(Pred, false);
|
|
// If all incoming values to the Phi are the same, we can replace the Phi
|
|
// with that value.
|
|
Value* PNV = nullptr;
|
|
if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
|
|
if (PNV != PN) {
|
|
PN->replaceAllUsesWith(PNV);
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BasicBlock::canSplitPredecessors() const {
|
|
const Instruction *FirstNonPHI = getFirstNonPHI();
|
|
if (isa<LandingPadInst>(FirstNonPHI))
|
|
return true;
|
|
// This is perhaps a little conservative because constructs like
|
|
// CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors
|
|
// cannot handle such things just yet.
|
|
if (FirstNonPHI->isEHPad())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// This splits a basic block into two at the specified
|
|
/// instruction. Note that all instructions BEFORE the specified iterator stay
|
|
/// as part of the original basic block, an unconditional branch is added to
|
|
/// the new BB, and the rest of the instructions in the BB are moved to the new
|
|
/// BB, including the old terminator. This invalidates the iterator.
|
|
///
|
|
/// Note that this only works on well formed basic blocks (must have a
|
|
/// terminator), and 'I' must not be the end of instruction list (which would
|
|
/// cause a degenerate basic block to be formed, having a terminator inside of
|
|
/// the basic block).
|
|
///
|
|
BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
|
|
assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
|
|
assert(I != InstList.end() &&
|
|
"Trying to get me to create degenerate basic block!");
|
|
|
|
BasicBlock *InsertBefore = std::next(Function::iterator(this))
|
|
.getNodePtrUnchecked();
|
|
BasicBlock *New = BasicBlock::Create(getContext(), BBName,
|
|
getParent(), InsertBefore);
|
|
|
|
// Save DebugLoc of split point before invalidating iterator.
|
|
DebugLoc Loc = I->getDebugLoc();
|
|
// Move all of the specified instructions from the original basic block into
|
|
// the new basic block.
|
|
New->getInstList().splice(New->end(), this->getInstList(), I, end());
|
|
|
|
// Add a branch instruction to the newly formed basic block.
|
|
BranchInst *BI = BranchInst::Create(New, this);
|
|
BI->setDebugLoc(Loc);
|
|
|
|
// Now we must loop through all of the successors of the New block (which
|
|
// _were_ the successors of the 'this' block), and update any PHI nodes in
|
|
// successors. If there were PHI nodes in the successors, then they need to
|
|
// know that incoming branches will be from New, not from Old.
|
|
//
|
|
for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
|
|
// Loop over any phi nodes in the basic block, updating the BB field of
|
|
// incoming values...
|
|
BasicBlock *Successor = *I;
|
|
PHINode *PN;
|
|
for (BasicBlock::iterator II = Successor->begin();
|
|
(PN = dyn_cast<PHINode>(II)); ++II) {
|
|
int IDX = PN->getBasicBlockIndex(this);
|
|
while (IDX != -1) {
|
|
PN->setIncomingBlock((unsigned)IDX, New);
|
|
IDX = PN->getBasicBlockIndex(this);
|
|
}
|
|
}
|
|
}
|
|
return New;
|
|
}
|
|
|
|
void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
|
|
TerminatorInst *TI = getTerminator();
|
|
if (!TI)
|
|
// Cope with being called on a BasicBlock that doesn't have a terminator
|
|
// yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
|
|
return;
|
|
for (BasicBlock *Succ : TI->successors()) {
|
|
// N.B. Succ might not be a complete BasicBlock, so don't assume
|
|
// that it ends with a non-phi instruction.
|
|
for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
|
|
PHINode *PN = dyn_cast<PHINode>(II);
|
|
if (!PN)
|
|
break;
|
|
int i;
|
|
while ((i = PN->getBasicBlockIndex(this)) >= 0)
|
|
PN->setIncomingBlock(i, New);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return true if this basic block is a landing pad. I.e., it's
|
|
/// the destination of the 'unwind' edge of an invoke instruction.
|
|
bool BasicBlock::isLandingPad() const {
|
|
return isa<LandingPadInst>(getFirstNonPHI());
|
|
}
|
|
|
|
/// Return the landingpad instruction associated with the landing pad.
|
|
LandingPadInst *BasicBlock::getLandingPadInst() {
|
|
return dyn_cast<LandingPadInst>(getFirstNonPHI());
|
|
}
|
|
const LandingPadInst *BasicBlock::getLandingPadInst() const {
|
|
return dyn_cast<LandingPadInst>(getFirstNonPHI());
|
|
}
|