freebsd-skq/sys/contrib/octeon-sdk/cvmx-flash.c
jmallett cdfefa0ba0 Merge Cavium Octeon SDK 2.0 Simple Executive; this brings some fixes and new
facilities as well as support for the Octeon 2 family of SoCs.

XXX Note that with our antediluvian assembler, we can't support some Octeon 2
    instructions and fall back to using the old ones instead.
2010-11-28 08:18:16 +00:00

675 lines
22 KiB
C

/***********************license start***************
* Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* @file
*
* This file provides bootbus flash operations
*
* <hr>$Revision: 49448 $<hr>
*
*
*/
#include "cvmx-config.h"
#include "cvmx.h"
#include "cvmx-sysinfo.h"
#include "cvmx-spinlock.h"
#include "cvmx-flash.h"
#define MAX_NUM_FLASH_CHIPS 8 /* Maximum number of flash chips */
#define MAX_NUM_REGIONS 8 /* Maximum number of block regions per chip */
#define DEBUG 1
#define CFI_CMDSET_NONE 0
#define CFI_CMDSET_INTEL_EXTENDED 1
#define CFI_CMDSET_AMD_STANDARD 2
#define CFI_CMDSET_INTEL_STANDARD 3
#define CFI_CMDSET_AMD_EXTENDED 4
#define CFI_CMDSET_MITSU_STANDARD 256
#define CFI_CMDSET_MITSU_EXTENDED 257
#define CFI_CMDSET_SST 258
typedef struct
{
void * base_ptr; /**< Memory pointer to start of flash */
int is_16bit; /**< Chip is 16bits wide in 8bit mode */
uint16_t vendor; /**< Vendor ID of Chip */
int size; /**< Size of the chip in bytes */
uint64_t erase_timeout; /**< Erase timeout in cycles */
uint64_t write_timeout; /**< Write timeout in cycles */
int num_regions; /**< Number of block regions */
cvmx_flash_region_t region[MAX_NUM_REGIONS];
} cvmx_flash_t;
static CVMX_SHARED cvmx_flash_t flash_info[MAX_NUM_FLASH_CHIPS];
static CVMX_SHARED cvmx_spinlock_t flash_lock = CVMX_SPINLOCK_UNLOCKED_INITIALIZER;
/**
* @INTERNAL
* Read a byte from flash
*
* @param chip_id Chip to read from
* @param offset Offset into the chip
* @return Value read
*/
static uint8_t __cvmx_flash_read8(int chip_id, int offset)
{
return *(volatile uint8_t *)(flash_info[chip_id].base_ptr + offset);
}
/**
* @INTERNAL
* Read a byte from flash (for commands)
*
* @param chip_id Chip to read from
* @param offset Offset into the chip
* @return Value read
*/
static uint8_t __cvmx_flash_read_cmd(int chip_id, int offset)
{
if (flash_info[chip_id].is_16bit)
offset<<=1;
return __cvmx_flash_read8(chip_id, offset);
}
/**
* @INTERNAL
* Read 16bits from flash (for commands)
*
* @param chip_id Chip to read from
* @param offset Offset into the chip
* @return Value read
*/
static uint16_t __cvmx_flash_read_cmd16(int chip_id, int offset)
{
uint16_t v = __cvmx_flash_read_cmd(chip_id, offset);
v |= __cvmx_flash_read_cmd(chip_id, offset + 1)<<8;
return v;
}
/**
* @INTERNAL
* Write a byte to flash
*
* @param chip_id Chip to write to
* @param offset Offset into the chip
* @param data Value to write
*/
static void __cvmx_flash_write8(int chip_id, int offset, uint8_t data)
{
volatile uint8_t *flash_ptr = (volatile uint8_t *)flash_info[chip_id].base_ptr;
flash_ptr[offset] = data;
}
/**
* @INTERNAL
* Write a byte to flash (for commands)
*
* @param chip_id Chip to write to
* @param offset Offset into the chip
* @param data Value to write
*/
static void __cvmx_flash_write_cmd(int chip_id, int offset, uint8_t data)
{
volatile uint8_t *flash_ptr = (volatile uint8_t *)flash_info[chip_id].base_ptr;
flash_ptr[offset<<flash_info[chip_id].is_16bit] = data;
}
/**
* @INTERNAL
* Query a address and see if a CFI flash chip is there.
*
* @param chip_id Chip ID data to fill in if the chip is there
* @param base_ptr Memory pointer to the start address to query
* @return Zero on success, Negative on failure
*/
static int __cvmx_flash_queury_cfi(int chip_id, void *base_ptr)
{
int region;
cvmx_flash_t *flash = flash_info + chip_id;
/* Set the minimum needed for the read and write primitives to work */
flash->base_ptr = base_ptr;
flash->is_16bit = 1; /* FIXME: Currently assumes the chip is 16bits */
/* Put flash in CFI query mode */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
__cvmx_flash_write_cmd(chip_id, 0x55, 0x98);
/* Make sure we get the QRY response we should */
if ((__cvmx_flash_read_cmd(chip_id, 0x10) != 'Q') ||
(__cvmx_flash_read_cmd(chip_id, 0x11) != 'R') ||
(__cvmx_flash_read_cmd(chip_id, 0x12) != 'Y'))
{
flash->base_ptr = NULL;
return -1;
}
/* Read the 16bit vendor ID */
flash->vendor = __cvmx_flash_read_cmd16(chip_id, 0x13);
/* Read the write timeout. The timeout is microseconds(us) is 2^0x1f
typically. The worst case is this value time 2^0x23 */
flash->write_timeout = 1ull << (__cvmx_flash_read_cmd(chip_id, 0x1f) +
__cvmx_flash_read_cmd(chip_id, 0x23));
/* Read the erase timeout. The timeout is milliseconds(ms) is 2^0x21
typically. The worst case is this value time 2^0x25 */
flash->erase_timeout = 1ull << (__cvmx_flash_read_cmd(chip_id, 0x21) +
__cvmx_flash_read_cmd(chip_id, 0x25));
/* Get the flash size. This is 2^0x27 */
flash->size = 1<<__cvmx_flash_read_cmd(chip_id, 0x27);
/* Get the number of different sized block regions from 0x2c */
flash->num_regions = __cvmx_flash_read_cmd(chip_id, 0x2c);
int start_offset = 0;
/* Loop through all regions get information about each */
for (region=0; region<flash->num_regions; region++)
{
cvmx_flash_region_t *rgn_ptr = flash->region + region;
rgn_ptr->start_offset = start_offset;
/* The number of blocks in each region is a 16 bit little endian
endian field. It is encoded at 0x2d + region*4 as (blocks-1) */
uint16_t blocks = __cvmx_flash_read_cmd16(chip_id, 0x2d + region*4);
rgn_ptr->num_blocks = 1u + blocks;
/* The size of each block is a 16 bit little endian endian field. It
is encoded at 0x2d + region*4 + 2 as (size/256). Zero is a special
case representing 128 */
uint16_t size = __cvmx_flash_read_cmd16(chip_id, 0x2d + region*4 + 2);
if (size == 0)
rgn_ptr->block_size = 128;
else
rgn_ptr->block_size = 256u * size;
start_offset += rgn_ptr->block_size * rgn_ptr->num_blocks;
}
/* Take the chip out of CFI query mode */
switch (flash_info[chip_id].vendor)
{
case CFI_CMDSET_AMD_STANDARD:
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0);
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff);
break;
}
/* Convert the timeouts to cycles */
flash->write_timeout *= cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000000;
flash->erase_timeout *= cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000;
#if DEBUG
/* Print the information about the chip */
cvmx_dprintf("cvmx-flash: Base pointer: %p\n"
" Vendor: 0x%04x\n"
" Size: %d bytes\n"
" Num regions: %d\n"
" Erase timeout: %llu cycles\n"
" Write timeout: %llu cycles\n",
flash->base_ptr,
(unsigned int)flash->vendor,
flash->size,
flash->num_regions,
(unsigned long long)flash->erase_timeout,
(unsigned long long)flash->write_timeout);
for (region=0; region<flash->num_regions; region++)
{
cvmx_dprintf(" Region %d: offset 0x%x, %d blocks, %d bytes/block\n",
region,
flash->region[region].start_offset,
flash->region[region].num_blocks,
flash->region[region].block_size);
}
#endif
return 0;
}
/**
* Initialize the flash access library
*/
void cvmx_flash_initialize(void)
{
int boot_region;
int chip_id = 0;
memset(flash_info, 0, sizeof(flash_info));
/* Loop through each boot bus chip select region */
for (boot_region=0; boot_region<MAX_NUM_FLASH_CHIPS; boot_region++)
{
cvmx_mio_boot_reg_cfgx_t region_cfg;
region_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFG0 + boot_region*8);
/* Only try chip select regions that are enabled. This assumes the
bootloader already setup the flash */
if (region_cfg.s.en)
{
/* Convert the hardware address to a pointer. Note that the bootbus,
unlike memory, isn't 1:1 mapped in the simple exec */
void *base_ptr = cvmx_phys_to_ptr((region_cfg.s.base<<16) | 0xffffffff80000000ull);
if (__cvmx_flash_queury_cfi(chip_id, base_ptr) == 0)
{
/* Valid CFI flash chip found */
chip_id++;
}
}
}
if (chip_id == 0)
cvmx_dprintf("cvmx-flash: No CFI chips found\n");
}
/**
* Return a pointer to the flash chip
*
* @param chip_id Chip ID to return
* @return NULL if the chip doesn't exist
*/
void *cvmx_flash_get_base(int chip_id)
{
return flash_info[chip_id].base_ptr;
}
/**
* Return the number of erasable regions on the chip
*
* @param chip_id Chip to return info for
* @return Number of regions
*/
int cvmx_flash_get_num_regions(int chip_id)
{
return flash_info[chip_id].num_regions;
}
/**
* Return information about a flash chips region
*
* @param chip_id Chip to get info for
* @param region Region to get info for
* @return Region information
*/
const cvmx_flash_region_t *cvmx_flash_get_region_info(int chip_id, int region)
{
return flash_info[chip_id].region + region;
}
/**
* Erase a block on the flash chip
*
* @param chip_id Chip to erase a block on
* @param region Region to erase a block in
* @param block Block number to erase
* @return Zero on success. Negative on failure
*/
int cvmx_flash_erase_block(int chip_id, int region, int block)
{
cvmx_spinlock_lock(&flash_lock);
#if DEBUG
cvmx_dprintf("cvmx-flash: Erasing chip %d, region %d, block %d\n",
chip_id, region, block);
#endif
int offset = flash_info[chip_id].region[region].start_offset +
block * flash_info[chip_id].region[region].block_size;
switch (flash_info[chip_id].vendor)
{
case CFI_CMDSET_AMD_STANDARD:
{
/* Send the erase sector command sequence */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
__cvmx_flash_write_cmd(chip_id, 0x555, 0xaa);
__cvmx_flash_write_cmd(chip_id, 0x2aa, 0x55);
__cvmx_flash_write_cmd(chip_id, 0x555, 0x80);
__cvmx_flash_write_cmd(chip_id, 0x555, 0xaa);
__cvmx_flash_write_cmd(chip_id, 0x2aa, 0x55);
__cvmx_flash_write8(chip_id, offset, 0x30);
/* Loop checking status */
uint8_t status = __cvmx_flash_read8(chip_id, offset);
uint64_t start_cycle = cvmx_get_cycle();
while (1)
{
/* Read the status and xor it with the old status so we can
find toggling bits */
uint8_t old_status = status;
status = __cvmx_flash_read8(chip_id, offset);
uint8_t toggle = status ^ old_status;
/* Check if the erase in progress bit is toggling */
if (toggle & (1<<6))
{
/* Check hardware timeout */
if (status & (1<<5))
{
/* Chip has signalled a timeout. Reread the status */
old_status = __cvmx_flash_read8(chip_id, offset);
status = __cvmx_flash_read8(chip_id, offset);
toggle = status ^ old_status;
/* Check if the erase in progress bit is toggling */
if (toggle & (1<<6))
{
cvmx_dprintf("cvmx-flash: Hardware timeout erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
else
break; /* Not toggling, erase complete */
}
}
else
break; /* Not toggling, erase complete */
if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].erase_timeout)
{
cvmx_dprintf("cvmx-flash: Timeout erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
}
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
cvmx_spinlock_unlock(&flash_lock);
return 0;
}
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
{
/* Send the erase sector command sequence */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */
__cvmx_flash_write8(chip_id, offset, 0x20);
__cvmx_flash_write8(chip_id, offset, 0xd0);
/* Loop checking status */
uint8_t status = __cvmx_flash_read8(chip_id, offset);
uint64_t start_cycle = cvmx_get_cycle();
while ((status & 0x80) == 0)
{
if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].erase_timeout)
{
cvmx_dprintf("cvmx-flash: Timeout erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
status = __cvmx_flash_read8(chip_id, offset);
}
/* Check the final status */
if (status & 0x7f)
{
cvmx_dprintf("cvmx-flash: Hardware failure erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */
cvmx_spinlock_unlock(&flash_lock);
return 0;
}
}
cvmx_dprintf("cvmx-flash: Unsupported flash vendor\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
/**
* Write a block on the flash chip
*
* @param chip_id Chip to write a block on
* @param region Region to write a block in
* @param block Block number to write
* @param data Data to write
* @return Zero on success. Negative on failure
*/
int cvmx_flash_write_block(int chip_id, int region, int block, const void *data)
{
cvmx_spinlock_lock(&flash_lock);
#if DEBUG
cvmx_dprintf("cvmx-flash: Writing chip %d, region %d, block %d\n",
chip_id, region, block);
#endif
int offset = flash_info[chip_id].region[region].start_offset +
block * flash_info[chip_id].region[region].block_size;
int len = flash_info[chip_id].region[region].block_size;
const uint8_t *ptr = (const uint8_t *)data;
switch (flash_info[chip_id].vendor)
{
case CFI_CMDSET_AMD_STANDARD:
{
/* Loop through one byte at a time */
while (len--)
{
/* Send the program sequence */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
__cvmx_flash_write_cmd(chip_id, 0x555, 0xaa);
__cvmx_flash_write_cmd(chip_id, 0x2aa, 0x55);
__cvmx_flash_write_cmd(chip_id, 0x555, 0xa0);
__cvmx_flash_write8(chip_id, offset, *ptr);
/* Loop polling for status */
uint64_t start_cycle = cvmx_get_cycle();
while (1)
{
uint8_t status = __cvmx_flash_read8(chip_id, offset);
if (((status ^ *ptr) & (1<<7)) == 0)
break; /* Data matches, this byte is done */
else if (status & (1<<5))
{
/* Hardware timeout, recheck status */
status = __cvmx_flash_read8(chip_id, offset);
if (((status ^ *ptr) & (1<<7)) == 0)
break; /* Data matches, this byte is done */
else
{
cvmx_dprintf("cvmx-flash: Hardware write timeout\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
}
if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].write_timeout)
{
cvmx_dprintf("cvmx-flash: Timeout writing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
}
/* Increment to the next byte */
ptr++;
offset++;
}
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
cvmx_spinlock_unlock(&flash_lock);
return 0;
}
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
{
cvmx_dprintf("%s:%d len=%d\n", __FUNCTION__, __LINE__, len);
/* Loop through one byte at a time */
while (len--)
{
/* Send the program sequence */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */
__cvmx_flash_write8(chip_id, offset, 0x40);
__cvmx_flash_write8(chip_id, offset, *ptr);
/* Loop polling for status */
uint8_t status = __cvmx_flash_read8(chip_id, offset);
uint64_t start_cycle = cvmx_get_cycle();
while ((status & 0x80) == 0)
{
if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].write_timeout)
{
cvmx_dprintf("cvmx-flash: Timeout writing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
status = __cvmx_flash_read8(chip_id, offset);
}
/* Check the final status */
if (status & 0x7f)
{
cvmx_dprintf("cvmx-flash: Hardware failure erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
/* Increment to the next byte */
ptr++;
offset++;
}
cvmx_dprintf("%s:%d\n", __FUNCTION__, __LINE__);
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */
cvmx_spinlock_unlock(&flash_lock);
return 0;
}
}
cvmx_dprintf("cvmx-flash: Unsupported flash vendor\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
/**
* Erase and write data to a flash
*
* @param address Memory address to write to
* @param data Data to write
* @param len Length of the data
* @return Zero on success. Negative on failure
*/
int cvmx_flash_write(void *address, const void *data, int len)
{
int chip_id;
/* Find which chip controls this address. Don't allow the write to span
multiple chips */
for (chip_id=0; chip_id<MAX_NUM_FLASH_CHIPS; chip_id++)
{
if ((flash_info[chip_id].base_ptr <= address) &&
(flash_info[chip_id].base_ptr + flash_info[chip_id].size >= address + len))
break;
}
if (chip_id == MAX_NUM_FLASH_CHIPS)
{
cvmx_dprintf("cvmx-flash: Unable to find chip that contains address %p\n", address);
return -1;
}
cvmx_flash_t *flash = flash_info + chip_id;
/* Determine which block region we need to start writing to */
void *region_base = flash->base_ptr;
int region = 0;
while (region_base + flash->region[region].num_blocks * flash->region[region].block_size <= address)
{
region++;
region_base = flash->base_ptr + flash->region[region].start_offset;
}
/* Determine which block in the region to start at */
int block = (address - region_base) / flash->region[region].block_size;
/* Require all writes to start on block boundries */
if (address != region_base + block*flash->region[region].block_size)
{
cvmx_dprintf("cvmx-flash: Write address not aligned on a block boundry\n");
return -1;
}
/* Loop until we're out of data */
while (len > 0)
{
/* Erase the current block */
if (cvmx_flash_erase_block(chip_id, region, block))
return -1;
/* Write the new data */
if (cvmx_flash_write_block(chip_id, region, block, data))
return -1;
/* Increment to the next block */
data += flash->region[region].block_size;
len -= flash->region[region].block_size;
block++;
if (block >= flash->region[region].num_blocks)
{
block = 0;
region++;
}
}
return 0;
}