freebsd-skq/sys/dev/sound/pcm/feeder_mixer.c
Ariff Abdullah 90da2b2859 Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
	[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .

Summary of changes includes:

1 Volume Per-Channel (vpc).  Provides private / standalone volume control
  unique per-stream pcm channel without touching master volume / pcm.
  Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
  backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
  instead of /dev/mixer.  Special "bypass" mode is enabled through
  /dev/mixer which will automatically detect if the adjustment is made
  through /dev/mixer and forward its request to this private volume
  controller.  Changes to this volume object will not interfere with
  other channels.

  Requirements:
    - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
      require specific application modifications (preferred).
    - No modifications required for using bypass mode, so applications
      like mplayer or xmms should work out of the box.

  Kernel hints:
    - hint.pcm.%d.vpc (0 = disable vpc).

  Kernel sysctls:
    - hw.snd.vpc_mixer_bypass (default: 1).  Enable or disable /dev/mixer
      bypass mode.
    - hw.snd.vpc_autoreset (default: 1).  By default, closing/opening
      /dev/dsp will reset the volume back to 0 db gain/attenuation.
      Setting this to 0 will preserve its settings across device
      closing/opening.
    - hw.snd.vpc_reset (default: 0).  Panic/reset button to reset all
      volume settings back to 0 db.
    - hw.snd.vpc_0db (default: 45).  0 db relative to linear mixer value.

2 High quality fixed-point Bandlimited SINC sampling rate converter,
  based on Julius O'Smith's Digital Audio Resampling -
  http://ccrma.stanford.edu/~jos/resample/.  It includes a filter design
  script written in awk (the clumsiest joke I've ever written)
    - 100% 32bit fixed-point, 64bit accumulator.
    - Possibly among the fastest (if not fastest) of its kind.
    - Resampling quality is tunable, either runtime or during kernel
      compilation (FEEDER_RATE_PRESETS).
    - Quality can be further customized during kernel compilation by
      defining FEEDER_RATE_PRESETS in /etc/make.conf.

  Kernel sysctls:
    - hw.snd.feeder_rate_quality.
      0 - Zero-order Hold (ZOH).  Fastest, bad quality.
      1 - Linear Interpolation (LINEAR).  Slightly slower than ZOH,
          better quality but still does not eliminate aliasing.
      2 - (and above) - Sinc Interpolation(SINC).  Best quality.  SINC
          quality always start from 2 and above.

  Rough quality comparisons:
    - http://people.freebsd.org/~ariff/z_comparison/

3 Bit-perfect mode.  Bypasses all feeder/dsp effects.  Pure sound will be
  directly fed into the hardware.

4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
  be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.

5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
  vchans in order to make digital format pass through.  It also makes
  vchans more dynamic by choosing a better format/rate among all the
  concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
  becomes sort of optional.

6 Exclusive Stream, with special open() mode O_EXCL.  This will "mute"
  other concurrent vchan streams and only allow a single channel with
  O_EXCL set to keep producing sound.

Other Changes:
    * most feeder_* stuffs are compilable in userland. Let's not
      speculate whether we should go all out for it (save that for
      FreeBSD 16.0-RELEASE).
    * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
    * pull out channel mixing logic out of vchan.c and create its own
      feeder_mixer for world justice.
    * various refactoring here and there, for good or bad.
    * activation of few more OSSv4 ioctls() (see [1] above).
    * opt_snd.h for possible compile time configuration:
      (mostly for debugging purposes, don't try these at home)
        SND_DEBUG
        SND_DIAGNOSTIC
        SND_FEEDER_MULTIFORMAT
        SND_FEEDER_FULL_MULTIFORMAT
        SND_FEEDER_RATE_HP
        SND_PCM_64
        SND_OLDSTEREO

Manual page updates are on the way.

Tested by:	joel, Olivier SMEDTS <olivier at gid0 d org>, too many
          	unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00

403 lines
10 KiB
C

/*-
* Copyright (c) 2008-2009 Ariff Abdullah <ariff@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef _KERNEL
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_snd.h"
#endif
#include <dev/sound/pcm/sound.h>
#include <dev/sound/pcm/pcm.h>
#include <dev/sound/pcm/vchan.h>
#include "feeder_if.h"
#define SND_USE_FXDIV
#include "snd_fxdiv_gen.h"
SND_DECLARE_FILE("$FreeBSD$");
#endif
#undef SND_FEEDER_MULTIFORMAT
#define SND_FEEDER_MULTIFORMAT 1
typedef void (*feed_mixer_t)(uint8_t *, uint8_t *, uint32_t);
#define FEEDMIXER_DECLARE(SIGN, BIT, ENDIAN) \
static void \
feed_mixer_##SIGN##BIT##ENDIAN(uint8_t *src, uint8_t *dst, \
uint32_t count) \
{ \
intpcm##BIT##_t z; \
intpcm_t x, y; \
\
src += count; \
dst += count; \
\
do { \
src -= PCM_##BIT##_BPS; \
dst -= PCM_##BIT##_BPS; \
count -= PCM_##BIT##_BPS; \
x = PCM_READ_##SIGN##BIT##_##ENDIAN(src); \
y = PCM_READ_##SIGN##BIT##_##ENDIAN(dst); \
z = INTPCM##BIT##_T(x) + y; \
x = PCM_CLAMP_##SIGN##BIT(z); \
_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \
} while (count != 0); \
}
#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
FEEDMIXER_DECLARE(S, 16, LE)
FEEDMIXER_DECLARE(S, 32, LE)
#endif
#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
FEEDMIXER_DECLARE(S, 16, BE)
FEEDMIXER_DECLARE(S, 32, BE)
#endif
#ifdef SND_FEEDER_MULTIFORMAT
FEEDMIXER_DECLARE(S, 8, NE)
FEEDMIXER_DECLARE(S, 24, LE)
FEEDMIXER_DECLARE(S, 24, BE)
FEEDMIXER_DECLARE(U, 8, NE)
FEEDMIXER_DECLARE(U, 16, LE)
FEEDMIXER_DECLARE(U, 24, LE)
FEEDMIXER_DECLARE(U, 32, LE)
FEEDMIXER_DECLARE(U, 16, BE)
FEEDMIXER_DECLARE(U, 24, BE)
FEEDMIXER_DECLARE(U, 32, BE)
#endif
struct feed_mixer_info {
uint32_t format;
int bps;
feed_mixer_t mix;
};
#define FEEDMIXER_ENTRY(SIGN, BIT, ENDIAN) \
{ \
AFMT_##SIGN##BIT##_##ENDIAN, PCM_##BIT##_BPS, \
feed_mixer_##SIGN##BIT##ENDIAN \
}
static struct feed_mixer_info feed_mixer_info_tab[] = {
FEEDMIXER_ENTRY(S, 8, NE),
#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
FEEDMIXER_ENTRY(S, 16, LE),
FEEDMIXER_ENTRY(S, 32, LE),
#endif
#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
FEEDMIXER_ENTRY(S, 16, BE),
FEEDMIXER_ENTRY(S, 32, BE),
#endif
#ifdef SND_FEEDER_MULTIFORMAT
FEEDMIXER_ENTRY(S, 24, LE),
FEEDMIXER_ENTRY(S, 24, BE),
FEEDMIXER_ENTRY(U, 8, NE),
FEEDMIXER_ENTRY(U, 16, LE),
FEEDMIXER_ENTRY(U, 24, LE),
FEEDMIXER_ENTRY(U, 32, LE),
FEEDMIXER_ENTRY(U, 16, BE),
FEEDMIXER_ENTRY(U, 24, BE),
FEEDMIXER_ENTRY(U, 32, BE),
#endif
{ AFMT_AC3, PCM_16_BPS, NULL },
{ AFMT_MU_LAW, PCM_8_BPS, feed_mixer_U8NE }, /* dummy */
{ AFMT_A_LAW, PCM_8_BPS, feed_mixer_U8NE } /* dummy */
};
#define FEEDMIXER_TAB_SIZE ((int32_t) \
(sizeof(feed_mixer_info_tab) / \
sizeof(feed_mixer_info_tab[0])))
#define FEEDMIXER_DATA(i, c) ((void *) \
((uintptr_t)((((i) & 0x1f) << 5) | \
((c) & 0x1f))))
#define FEEDMIXER_INFOIDX(d) ((uint32_t)((uintptr_t)(d) >> 5) & 0x1f)
#define FEEDMIXER_CHANNELS(d) ((uint32_t)((uintptr_t)(d)) & 0x1f)
static int
feed_mixer_init(struct pcm_feeder *f)
{
int i;
if (f->desc->in != f->desc->out)
return (EINVAL);
for (i = 0; i < FEEDMIXER_TAB_SIZE; i++) {
if (AFMT_ENCODING(f->desc->in) ==
feed_mixer_info_tab[i].format) {
f->data =
FEEDMIXER_DATA(i, AFMT_CHANNEL(f->desc->in));
return (0);
}
}
return (EINVAL);
}
static int
feed_mixer_set(struct pcm_feeder *f, int what, int value)
{
switch (what) {
case FEEDMIXER_CHANNELS:
if (value < SND_CHN_MIN || value > SND_CHN_MAX)
return (EINVAL);
f->data = FEEDMIXER_DATA(FEEDMIXER_INFOIDX(f->data), value);
break;
default:
return (EINVAL);
break;
}
return (0);
}
static __inline int
feed_mixer_rec(struct pcm_channel *c)
{
struct pcm_channel *ch;
struct snd_dbuf *b, *bs;
uint32_t cnt, maxfeed;
int rdy;
/*
* Reset ready and moving pointer. We're not using bufsoft
* anywhere since its sole purpose is to become the primary
* distributor for the recorded buffer and also as an interrupt
* threshold progress indicator.
*/
b = c->bufsoft;
b->rp = 0;
b->rl = 0;
cnt = sndbuf_getsize(b);
maxfeed = SND_FXROUND(SND_FXDIV_MAX, sndbuf_getalign(b));
do {
cnt = FEEDER_FEED(c->feeder->source, c, b->tmpbuf,
min(cnt, maxfeed), c->bufhard);
if (cnt != 0) {
sndbuf_acquire(b, b->tmpbuf, cnt);
cnt = sndbuf_getfree(b);
}
} while (cnt != 0);
/* Not enough data */
if (b->rl < sndbuf_getalign(b)) {
b->rl = 0;
return (0);
}
/*
* Keep track of ready and moving pointer since we will use
* bufsoft over and over again, pretending nothing has happened.
*/
rdy = b->rl;
CHN_FOREACH(ch, c, children.busy) {
CHN_LOCK(ch);
if (CHN_STOPPED(ch) || (ch->flags & CHN_F_DIRTY)) {
CHN_UNLOCK(ch);
continue;
}
#ifdef SND_DEBUG
if ((c->flags & CHN_F_DIRTY) && VCHAN_SYNC_REQUIRED(ch)) {
if (vchan_sync(ch) != 0) {
CHN_UNLOCK(ch);
continue;
}
}
#endif
bs = ch->bufsoft;
if (ch->flags & CHN_F_MMAP)
sndbuf_dispose(bs, NULL, sndbuf_getready(bs));
cnt = sndbuf_getfree(bs);
if (cnt < sndbuf_getalign(bs)) {
CHN_UNLOCK(ch);
continue;
}
maxfeed = SND_FXROUND(SND_FXDIV_MAX, sndbuf_getalign(bs));
do {
cnt = FEEDER_FEED(ch->feeder, ch, bs->tmpbuf,
min(cnt, maxfeed), b);
if (cnt != 0) {
sndbuf_acquire(bs, bs->tmpbuf, cnt);
cnt = sndbuf_getfree(bs);
}
} while (cnt != 0);
/*
* Not entirely flushed out...
*/
if (b->rl != 0)
ch->xruns++;
CHN_UNLOCK(ch);
/*
* Rewind buffer position for next virtual channel.
*/
b->rp = 0;
b->rl = rdy;
}
/*
* Set ready pointer to indicate that our children are ready
* to be woken up, also as an interrupt threshold progress
* indicator.
*/
b->rl = 1;
c->flags &= ~CHN_F_DIRTY;
/*
* Return 0 to bail out early from sndbuf_feed() loop.
* No need to increase feedcount counter since part of this
* feeder chains already include feed_root().
*/
return (0);
}
static int
feed_mixer_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
uint32_t count, void *source)
{
struct feed_mixer_info *info;
struct snd_dbuf *src = source;
struct pcm_channel *ch;
uint32_t cnt, mcnt, rcnt, sz;
int passthrough;
uint8_t *tmp;
if (c->direction == PCMDIR_REC)
return (feed_mixer_rec(c));
sz = sndbuf_getsize(src);
if (sz < count)
count = sz;
info = &feed_mixer_info_tab[FEEDMIXER_INFOIDX(f->data)];
sz = info->bps * FEEDMIXER_CHANNELS(f->data);
count = SND_FXROUND(count, sz);
if (count < sz)
return (0);
/*
* We are going to use our source as a temporary buffer since it's
* got no other purpose. We obtain our data by traversing the channel
* list of children and calling mixer function to mix count bytes from
* each into our destination buffer, b.
*/
tmp = sndbuf_getbuf(src);
rcnt = 0;
mcnt = 0;
passthrough = 0; /* 'passthrough' / 'exclusive' marker */
CHN_FOREACH(ch, c, children.busy) {
CHN_LOCK(ch);
if (CHN_STOPPED(ch) || (ch->flags & CHN_F_DIRTY)) {
CHN_UNLOCK(ch);
continue;
}
#ifdef SND_DEBUG
if ((c->flags & CHN_F_DIRTY) && VCHAN_SYNC_REQUIRED(ch)) {
if (vchan_sync(ch) != 0) {
CHN_UNLOCK(ch);
continue;
}
}
#endif
if ((ch->flags & CHN_F_MMAP) && !(ch->flags & CHN_F_CLOSING))
sndbuf_acquire(ch->bufsoft, NULL,
sndbuf_getfree(ch->bufsoft));
if (info->mix == NULL) {
/*
* Passthrough. Dump the first digital/passthrough
* channel into destination buffer, and the rest into
* nothingness (mute effect).
*/
if (passthrough == 0 &&
(ch->format & AFMT_PASSTHROUGH)) {
rcnt = SND_FXROUND(FEEDER_FEED(ch->feeder, ch,
b, count, ch->bufsoft), sz);
passthrough = 1;
} else
FEEDER_FEED(ch->feeder, ch, tmp, count,
ch->bufsoft);
} else if (c->flags & CHN_F_EXCLUSIVE) {
/*
* Exclusive. Dump the first 'exclusive' channel into
* destination buffer, and the rest into nothingness
* (mute effect).
*/
if (passthrough == 0 && (ch->flags & CHN_F_EXCLUSIVE)) {
rcnt = SND_FXROUND(FEEDER_FEED(ch->feeder, ch,
b, count, ch->bufsoft), sz);
passthrough = 1;
} else
FEEDER_FEED(ch->feeder, ch, tmp, count,
ch->bufsoft);
} else {
if (rcnt == 0) {
rcnt = SND_FXROUND(FEEDER_FEED(ch->feeder, ch,
b, count, ch->bufsoft), sz);
mcnt = count - rcnt;
} else {
cnt = SND_FXROUND(FEEDER_FEED(ch->feeder, ch,
tmp, count, ch->bufsoft), sz);
if (cnt != 0) {
if (mcnt != 0) {
memset(b + rcnt,
sndbuf_zerodata(
f->desc->out), mcnt);
mcnt = 0;
}
info->mix(tmp, b, cnt);
if (cnt > rcnt)
rcnt = cnt;
}
}
}
CHN_UNLOCK(ch);
}
if (++c->feedcount == 0)
c->feedcount = 2;
c->flags &= ~CHN_F_DIRTY;
return (rcnt);
}
static struct pcm_feederdesc feeder_mixer_desc[] = {
{ FEEDER_MIXER, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0 }
};
static kobj_method_t feeder_mixer_methods[] = {
KOBJMETHOD(feeder_init, feed_mixer_init),
KOBJMETHOD(feeder_set, feed_mixer_set),
KOBJMETHOD(feeder_feed, feed_mixer_feed),
KOBJMETHOD_END
};
FEEDER_DECLARE(feeder_mixer, NULL);