freebsd-skq/sys/netinet/in_pcb.c
rwatson 4b81ce6dd2 Push acquisition of the accept mutex out of sofree() into the caller
(sorele()/sotryfree()):

- This permits the caller to acquire the accept mutex before the socket
  mutex, avoiding sofree() having to drop the socket mutex and re-order,
  which could lead to races permitting more than one thread to enter
  sofree() after a socket is ready to be free'd.

- This also covers clearing of the so_pcb weak socket reference from
  the protocol to the socket, preventing races in clearing and
  evaluation of the reference such that sofree() might be called more
  than once on the same socket.

This appears to close a race I was able to easily trigger by repeatedly
opening and resetting TCP connections to a host, in which the
tcp_close() code called as a result of the RST raced with the close()
of the accepted socket in the user process resulting in simultaneous
attempts to de-allocate the same socket.  The new locking increases
the overhead for operations that may potentially free the socket, so we
will want to revise the synchronization strategy here as we normalize
the reference counting model for sockets.  The use of the accept mutex
in freeing of sockets that are not listen sockets is primarily
motivated by the potential need to remove the socket from the
incomplete connection queue on its parent (listen) socket, so cleaning
up the reference model here may allow us to substantially weaken the
synchronization requirements.

RELENG_5_3 candidate.

MFC after:	3 days
Reviewed by:	dwhite
Discussed with:	gnn, dwhite, green
Reported by:	Marc UBM Bocklet <ubm at u-boot-man dot de>
Reported by:	Vlad <marchenko at gmail dot com>
2004-10-18 22:19:43 +00:00

1184 lines
30 KiB
C

/*
* Copyright (c) 1982, 1986, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
* $FreeBSD$
*/
#include "opt_ipsec.h"
#include "opt_inet6.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/proc.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/tcp_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#endif /* INET6 */
#ifdef IPSEC
#include <netinet6/ipsec.h>
#include <netkey/key.h>
#endif /* IPSEC */
#ifdef FAST_IPSEC
#if defined(IPSEC) || defined(IPSEC_ESP)
#error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
#endif
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif /* FAST_IPSEC */
/*
* These configure the range of local port addresses assigned to
* "unspecified" outgoing connections/packets/whatever.
*/
int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */
int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */
int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */
int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */
/*
* Reserved ports accessible only to root. There are significant
* security considerations that must be accounted for when changing these,
* but the security benefits can be great. Please be careful.
*/
int ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */
int ipport_reservedlow = 0;
/* Shall we allocate ephemeral ports in random order? */
int ipport_randomized = 1;
#define RANGECHK(var, min, max) \
if ((var) < (min)) { (var) = (min); } \
else if ((var) > (max)) { (var) = (max); }
static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
{
int error;
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
if (error == 0) {
RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
}
return (error);
}
#undef RANGECHK
SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
&ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
&ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
&ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
&ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
&ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
&ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
CTLFLAG_RW, &ipport_randomized, 0, "");
/*
* in_pcb.c: manage the Protocol Control Blocks.
*
* NOTE: It is assumed that most of these functions will be called at
* splnet(). XXX - There are, unfortunately, a few exceptions to this
* rule that should be fixed.
*/
/*
* Allocate a PCB and associate it with the socket.
*/
int
in_pcballoc(so, pcbinfo, type)
struct socket *so;
struct inpcbinfo *pcbinfo;
const char *type;
{
register struct inpcb *inp;
int error;
INP_INFO_WLOCK_ASSERT(pcbinfo);
error = 0;
inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT | M_ZERO);
if (inp == NULL)
return (ENOBUFS);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
inp->inp_pcbinfo = pcbinfo;
inp->inp_socket = so;
#ifdef MAC
error = mac_init_inpcb(inp, M_NOWAIT);
if (error != 0)
goto out;
SOCK_LOCK(so);
mac_create_inpcb_from_socket(so, inp);
SOCK_UNLOCK(so);
#endif
#if defined(IPSEC) || defined(FAST_IPSEC)
#ifdef FAST_IPSEC
error = ipsec_init_policy(so, &inp->inp_sp);
#else
error = ipsec_init_pcbpolicy(so, &inp->inp_sp);
#endif
if (error != 0)
goto out;
#endif /*IPSEC*/
#if defined(INET6)
if (INP_SOCKAF(so) == AF_INET6) {
inp->inp_vflag |= INP_IPV6PROTO;
if (ip6_v6only)
inp->inp_flags |= IN6P_IPV6_V6ONLY;
}
#endif
LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
pcbinfo->ipi_count++;
so->so_pcb = (caddr_t)inp;
INP_LOCK_INIT(inp, "inp", type);
#ifdef INET6
if (ip6_auto_flowlabel)
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
#endif
#if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC)
out:
if (error != 0)
uma_zfree(pcbinfo->ipi_zone, inp);
#endif
return (error);
}
int
in_pcbbind(inp, nam, cred)
register struct inpcb *inp;
struct sockaddr *nam;
struct ucred *cred;
{
int anonport, error;
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
return (EINVAL);
anonport = inp->inp_lport == 0 && (nam == NULL ||
((struct sockaddr_in *)nam)->sin_port == 0);
error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
&inp->inp_lport, cred);
if (error)
return (error);
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
/*
* Set up a bind operation on a PCB, performing port allocation
* as required, but do not actually modify the PCB. Callers can
* either complete the bind by setting inp_laddr/inp_lport and
* calling in_pcbinshash(), or they can just use the resulting
* port and address to authorise the sending of a once-off packet.
*
* On error, the values of *laddrp and *lportp are not changed.
*/
int
in_pcbbind_setup(inp, nam, laddrp, lportp, cred)
struct inpcb *inp;
struct sockaddr *nam;
in_addr_t *laddrp;
u_short *lportp;
struct ucred *cred;
{
struct socket *so = inp->inp_socket;
unsigned short *lastport;
struct sockaddr_in *sin;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct in_addr laddr;
u_short lport = 0;
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
int error, prison = 0;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
if (nam != NULL && laddr.s_addr != INADDR_ANY)
return (EINVAL);
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
wild = 1;
if (nam) {
sin = (struct sockaddr_in *)nam;
if (nam->sa_len != sizeof (*sin))
return (EINVAL);
#ifdef notdef
/*
* We should check the family, but old programs
* incorrectly fail to initialize it.
*/
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
#endif
if (sin->sin_addr.s_addr != INADDR_ANY)
if (prison_ip(cred, 0, &sin->sin_addr.s_addr))
return(EINVAL);
if (sin->sin_port != *lportp) {
/* Don't allow the port to change. */
if (*lportp != 0)
return (EINVAL);
lport = sin->sin_port;
}
/* NB: lport is left as 0 if the port isn't being changed. */
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if (so->so_options & SO_REUSEADDR)
reuseport = SO_REUSEADDR|SO_REUSEPORT;
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
sin->sin_port = 0; /* yech... */
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
return (EADDRNOTAVAIL);
}
laddr = sin->sin_addr;
if (lport) {
struct inpcb *t;
/* GROSS */
if (ntohs(lport) <= ipport_reservedhigh &&
ntohs(lport) >= ipport_reservedlow &&
suser_cred(cred, SUSER_ALLOWJAIL))
return (EACCES);
if (jailed(cred))
prison = 1;
if (so->so_cred->cr_uid != 0 &&
!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
t = in_pcblookup_local(inp->inp_pcbinfo,
sin->sin_addr, lport,
prison ? 0 : INPLOOKUP_WILDCARD);
/*
* XXX
* This entire block sorely needs a rewrite.
*/
if (t &&
((t->inp_vflag & INP_TIMEWAIT) == 0) &&
(so->so_type != SOCK_STREAM ||
ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
(t->inp_socket->so_options &
SO_REUSEPORT) == 0) &&
(so->so_cred->cr_uid !=
t->inp_socket->so_cred->cr_uid))
return (EADDRINUSE);
}
if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))
return (EADDRNOTAVAIL);
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
lport, prison ? 0 : wild);
if (t && (t->inp_vflag & INP_TIMEWAIT)) {
if ((reuseport & intotw(t)->tw_so_options) == 0)
return (EADDRINUSE);
} else
if (t &&
(reuseport & t->inp_socket->so_options) == 0) {
#if defined(INET6)
if (ntohl(sin->sin_addr.s_addr) !=
INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) !=
INADDR_ANY ||
INP_SOCKAF(so) ==
INP_SOCKAF(t->inp_socket))
#endif /* defined(INET6) */
return (EADDRINUSE);
}
}
}
if (*lportp != 0)
lport = *lportp;
if (lport == 0) {
u_short first, last;
int count;
if (laddr.s_addr != INADDR_ANY)
if (prison_ip(cred, 0, &laddr.s_addr))
return (EINVAL);
if (inp->inp_flags & INP_HIGHPORT) {
first = ipport_hifirstauto; /* sysctl */
last = ipport_hilastauto;
lastport = &pcbinfo->lasthi;
} else if (inp->inp_flags & INP_LOWPORT) {
if ((error = suser_cred(cred, SUSER_ALLOWJAIL)) != 0)
return error;
first = ipport_lowfirstauto; /* 1023 */
last = ipport_lowlastauto; /* 600 */
lastport = &pcbinfo->lastlow;
} else {
first = ipport_firstauto; /* sysctl */
last = ipport_lastauto;
lastport = &pcbinfo->lastport;
}
/*
* Simple check to ensure all ports are not used up causing
* a deadlock here.
*
* We split the two cases (up and down) so that the direction
* is not being tested on each round of the loop.
*/
if (first > last) {
/*
* counting down
*/
if (ipport_randomized)
*lastport = first -
(arc4random() % (first - last));
count = first - last;
do {
if (count-- < 0) /* completely used? */
return (EADDRNOTAVAIL);
--*lastport;
if (*lastport > first || *lastport < last)
*lastport = first;
lport = htons(*lastport);
} while (in_pcblookup_local(pcbinfo, laddr, lport,
wild));
} else {
/*
* counting up
*/
if (ipport_randomized)
*lastport = first +
(arc4random() % (last - first));
count = last - first;
do {
if (count-- < 0) /* completely used? */
return (EADDRNOTAVAIL);
++*lastport;
if (*lastport < first || *lastport > last)
*lastport = first;
lport = htons(*lastport);
} while (in_pcblookup_local(pcbinfo, laddr, lport,
wild));
}
}
if (prison_ip(cred, 0, &laddr.s_addr))
return (EINVAL);
*laddrp = laddr.s_addr;
*lportp = lport;
return (0);
}
/*
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in_pcbconnect(inp, nam, cred)
register struct inpcb *inp;
struct sockaddr *nam;
struct ucred *cred;
{
u_short lport, fport;
in_addr_t laddr, faddr;
int anonport, error;
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
lport = inp->inp_lport;
laddr = inp->inp_laddr.s_addr;
anonport = (lport == 0);
error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
NULL, cred);
if (error)
return (error);
/* Do the initial binding of the local address if required. */
if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
}
/* Commit the remaining changes. */
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
inp->inp_faddr.s_addr = faddr;
inp->inp_fport = fport;
in_pcbrehash(inp);
#ifdef IPSEC
if (inp->inp_socket->so_type == SOCK_STREAM)
ipsec_pcbconn(inp->inp_sp);
#endif
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
/*
* Set up for a connect from a socket to the specified address.
* On entry, *laddrp and *lportp should contain the current local
* address and port for the PCB; these are updated to the values
* that should be placed in inp_laddr and inp_lport to complete
* the connect.
*
* On success, *faddrp and *fportp will be set to the remote address
* and port. These are not updated in the error case.
*
* If the operation fails because the connection already exists,
* *oinpp will be set to the PCB of that connection so that the
* caller can decide to override it. In all other cases, *oinpp
* is set to NULL.
*/
int
in_pcbconnect_setup(inp, nam, laddrp, lportp, faddrp, fportp, oinpp, cred)
register struct inpcb *inp;
struct sockaddr *nam;
in_addr_t *laddrp;
u_short *lportp;
in_addr_t *faddrp;
u_short *fportp;
struct inpcb **oinpp;
struct ucred *cred;
{
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
struct in_ifaddr *ia;
struct sockaddr_in sa;
struct ucred *socred;
struct inpcb *oinp;
struct in_addr laddr, faddr;
u_short lport, fport;
int error;
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
if (oinpp != NULL)
*oinpp = NULL;
if (nam->sa_len != sizeof (*sin))
return (EINVAL);
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
if (sin->sin_port == 0)
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
lport = *lportp;
faddr = sin->sin_addr;
fport = sin->sin_port;
socred = inp->inp_socket->so_cred;
if (laddr.s_addr == INADDR_ANY && jailed(socred)) {
bzero(&sa, sizeof(sa));
sa.sin_addr.s_addr = htonl(prison_getip(socred));
sa.sin_len = sizeof(sa);
sa.sin_family = AF_INET;
error = in_pcbbind_setup(inp, (struct sockaddr *)&sa,
&laddr.s_addr, &lport, cred);
if (error)
return (error);
}
if (!TAILQ_EMPTY(&in_ifaddrhead)) {
/*
* If the destination address is INADDR_ANY,
* use the primary local address.
* If the supplied address is INADDR_BROADCAST,
* and the primary interface supports broadcast,
* choose the broadcast address for that interface.
*/
if (faddr.s_addr == INADDR_ANY)
faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
(TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
IFF_BROADCAST))
faddr = satosin(&TAILQ_FIRST(
&in_ifaddrhead)->ia_broadaddr)->sin_addr;
}
if (laddr.s_addr == INADDR_ANY) {
struct route sro;
bzero(&sro, sizeof(sro));
ia = (struct in_ifaddr *)0;
/*
* If route is known our src addr is taken from the i/f,
* else punt.
*/
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) {
/* Find out route to destination */
sro.ro_dst.sa_family = AF_INET;
sro.ro_dst.sa_len = sizeof(struct sockaddr_in);
((struct sockaddr_in *)&sro.ro_dst)->sin_addr = faddr;
rtalloc_ign(&sro, RTF_CLONING);
}
/*
* If we found a route, use the address
* corresponding to the outgoing interface
* unless it is the loopback (in case a route
* to our address on another net goes to loopback).
*/
if (sro.ro_rt && !(sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK))
ia = ifatoia(sro.ro_rt->rt_ifa);
if (sro.ro_rt)
RTFREE(sro.ro_rt);
if (ia == 0) {
bzero(&sa, sizeof(sa));
sa.sin_addr = faddr;
sa.sin_len = sizeof(sa);
sa.sin_family = AF_INET;
ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa)));
if (ia == 0)
ia = ifatoia(ifa_ifwithnet(sintosa(&sa)));
if (ia == 0)
return (ENETUNREACH);
}
/*
* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, use the
* address of that interface as our source address.
*/
if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
inp->inp_moptions != NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;
imo = inp->inp_moptions;
if (imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
if (ia->ia_ifp == ifp)
break;
if (ia == 0)
return (EADDRNOTAVAIL);
}
}
laddr = ia->ia_addr.sin_addr;
}
oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
0, NULL);
if (oinp != NULL) {
if (oinpp != NULL)
*oinpp = oinp;
return (EADDRINUSE);
}
if (lport == 0) {
error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
cred);
if (error)
return (error);
}
*laddrp = laddr.s_addr;
*lportp = lport;
*faddrp = faddr.s_addr;
*fportp = fport;
return (0);
}
void
in_pcbdisconnect(inp)
struct inpcb *inp;
{
INP_LOCK_ASSERT(inp);
inp->inp_faddr.s_addr = INADDR_ANY;
inp->inp_fport = 0;
in_pcbrehash(inp);
#ifdef IPSEC
ipsec_pcbdisconn(inp->inp_sp);
#endif
if (inp->inp_socket->so_state & SS_NOFDREF)
in_pcbdetach(inp);
}
void
in_pcbdetach(inp)
struct inpcb *inp;
{
struct socket *so = inp->inp_socket;
struct inpcbinfo *ipi = inp->inp_pcbinfo;
INP_LOCK_ASSERT(inp);
#if defined(IPSEC) || defined(FAST_IPSEC)
ipsec4_delete_pcbpolicy(inp);
#endif /*IPSEC*/
inp->inp_gencnt = ++ipi->ipi_gencnt;
in_pcbremlists(inp);
if (so) {
ACCEPT_LOCK();
SOCK_LOCK(so);
so->so_pcb = NULL;
sotryfree(so);
}
if (inp->inp_options)
(void)m_free(inp->inp_options);
ip_freemoptions(inp->inp_moptions);
inp->inp_vflag = 0;
INP_LOCK_DESTROY(inp);
#ifdef MAC
mac_destroy_inpcb(inp);
#endif
uma_zfree(ipi->ipi_zone, inp);
}
struct sockaddr *
in_sockaddr(port, addr_p)
in_port_t port;
struct in_addr *addr_p;
{
struct sockaddr_in *sin;
MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
M_WAITOK | M_ZERO);
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = *addr_p;
sin->sin_port = port;
return (struct sockaddr *)sin;
}
/*
* The wrapper function will pass down the pcbinfo for this function to lock.
* The socket must have a valid
* (i.e., non-nil) PCB, but it should be impossible to get an invalid one
* except through a kernel programming error, so it is acceptable to panic
* (or in this case trap) if the PCB is invalid. (Actually, we don't trap
* because there actually /is/ a programming error somewhere... XXX)
*/
int
in_setsockaddr(so, nam, pcbinfo)
struct socket *so;
struct sockaddr **nam;
struct inpcbinfo *pcbinfo;
{
int s;
register struct inpcb *inp;
struct in_addr addr;
in_port_t port;
s = splnet();
INP_INFO_RLOCK(pcbinfo);
inp = sotoinpcb(so);
if (!inp) {
INP_INFO_RUNLOCK(pcbinfo);
splx(s);
return ECONNRESET;
}
INP_LOCK(inp);
port = inp->inp_lport;
addr = inp->inp_laddr;
INP_UNLOCK(inp);
INP_INFO_RUNLOCK(pcbinfo);
splx(s);
*nam = in_sockaddr(port, &addr);
return 0;
}
/*
* The wrapper function will pass down the pcbinfo for this function to lock.
*/
int
in_setpeeraddr(so, nam, pcbinfo)
struct socket *so;
struct sockaddr **nam;
struct inpcbinfo *pcbinfo;
{
int s;
register struct inpcb *inp;
struct in_addr addr;
in_port_t port;
s = splnet();
INP_INFO_RLOCK(pcbinfo);
inp = sotoinpcb(so);
if (!inp) {
INP_INFO_RUNLOCK(pcbinfo);
splx(s);
return ECONNRESET;
}
INP_LOCK(inp);
port = inp->inp_fport;
addr = inp->inp_faddr;
INP_UNLOCK(inp);
INP_INFO_RUNLOCK(pcbinfo);
splx(s);
*nam = in_sockaddr(port, &addr);
return 0;
}
void
in_pcbnotifyall(pcbinfo, faddr, errno, notify)
struct inpcbinfo *pcbinfo;
struct in_addr faddr;
int errno;
struct inpcb *(*notify)(struct inpcb *, int);
{
struct inpcb *inp, *ninp;
struct inpcbhead *head;
int s;
s = splnet();
INP_INFO_WLOCK(pcbinfo);
head = pcbinfo->listhead;
for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
INP_LOCK(inp);
ninp = LIST_NEXT(inp, inp_list);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0) {
INP_UNLOCK(inp);
continue;
}
#endif
if (inp->inp_faddr.s_addr != faddr.s_addr ||
inp->inp_socket == NULL) {
INP_UNLOCK(inp);
continue;
}
if ((*notify)(inp, errno))
INP_UNLOCK(inp);
}
INP_INFO_WUNLOCK(pcbinfo);
splx(s);
}
void
in_pcbpurgeif0(pcbinfo, ifp)
struct inpcbinfo *pcbinfo;
struct ifnet *ifp;
{
struct inpcb *inp;
struct ip_moptions *imo;
int i, gap;
/* why no splnet here? XXX */
INP_INFO_RLOCK(pcbinfo);
LIST_FOREACH(inp, pcbinfo->listhead, inp_list) {
INP_LOCK(inp);
imo = inp->inp_moptions;
if ((inp->inp_vflag & INP_IPV4) &&
imo != NULL) {
/*
* Unselect the outgoing interface if it is being
* detached.
*/
if (imo->imo_multicast_ifp == ifp)
imo->imo_multicast_ifp = NULL;
/*
* Drop multicast group membership if we joined
* through the interface being detached.
*/
for (i = 0, gap = 0; i < imo->imo_num_memberships;
i++) {
if (imo->imo_membership[i]->inm_ifp == ifp) {
in_delmulti(imo->imo_membership[i]);
gap++;
} else if (gap != 0)
imo->imo_membership[i - gap] =
imo->imo_membership[i];
}
imo->imo_num_memberships -= gap;
}
INP_UNLOCK(inp);
}
INP_INFO_RUNLOCK(pcbinfo);
}
/*
* Lookup a PCB based on the local address and port.
*/
struct inpcb *
in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay)
struct inpcbinfo *pcbinfo;
struct in_addr laddr;
u_int lport_arg;
int wild_okay;
{
register struct inpcb *inp;
int matchwild = 3, wildcard;
u_short lport = lport_arg;
INP_INFO_WLOCK_ASSERT(pcbinfo);
if (!wild_okay) {
struct inpcbhead *head;
/*
* Look for an unconnected (wildcard foreign addr) PCB that
* matches the local address and port we're looking for.
*/
head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_lport == lport) {
/*
* Found.
*/
return (inp);
}
}
/*
* Not found.
*/
return (NULL);
} else {
struct inpcbporthead *porthash;
struct inpcbport *phd;
struct inpcb *match = NULL;
/*
* Best fit PCB lookup.
*
* First see if this local port is in use by looking on the
* port hash list.
*/
retrylookup:
porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
pcbinfo->porthashmask)];
LIST_FOREACH(phd, porthash, phd_hash) {
if (phd->phd_port == lport)
break;
}
if (phd != NULL) {
/*
* Port is in use by one or more PCBs. Look for best
* fit.
*/
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
wildcard = 0;
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
/*
* Clean out old time_wait sockets if they
* are clogging up needed local ports.
*/
if ((inp->inp_vflag & INP_TIMEWAIT) != 0) {
if (tcp_twrecycleable((struct tcptw *)inp->inp_ppcb)) {
INP_LOCK(inp);
tcp_twclose((struct tcptw *)inp->inp_ppcb, 0);
match = NULL;
goto retrylookup;
}
}
if (inp->inp_faddr.s_addr != INADDR_ANY)
wildcard++;
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (laddr.s_addr == INADDR_ANY)
wildcard++;
else if (inp->inp_laddr.s_addr != laddr.s_addr)
continue;
} else {
if (laddr.s_addr != INADDR_ANY)
wildcard++;
}
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild == 0) {
break;
}
}
}
}
return (match);
}
}
/*
* Lookup PCB in hash list.
*/
struct inpcb *
in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard,
ifp)
struct inpcbinfo *pcbinfo;
struct in_addr faddr, laddr;
u_int fport_arg, lport_arg;
int wildcard;
struct ifnet *ifp;
{
struct inpcbhead *head;
register struct inpcb *inp;
u_short fport = fport_arg, lport = lport_arg;
INP_INFO_RLOCK_ASSERT(pcbinfo);
/*
* First look for an exact match.
*/
head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == faddr.s_addr &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_fport == fport &&
inp->inp_lport == lport) {
/*
* Found.
*/
return (inp);
}
}
if (wildcard) {
struct inpcb *local_wild = NULL;
#if defined(INET6)
struct inpcb *local_wild_mapped = NULL;
#endif /* defined(INET6) */
head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_lport == lport) {
if (ifp && ifp->if_type == IFT_FAITH &&
(inp->inp_flags & INP_FAITH) == 0)
continue;
if (inp->inp_laddr.s_addr == laddr.s_addr)
return (inp);
else if (inp->inp_laddr.s_addr == INADDR_ANY) {
#if defined(INET6)
if (INP_CHECK_SOCKAF(inp->inp_socket,
AF_INET6))
local_wild_mapped = inp;
else
#endif /* defined(INET6) */
local_wild = inp;
}
}
}
#if defined(INET6)
if (local_wild == NULL)
return (local_wild_mapped);
#endif /* defined(INET6) */
return (local_wild);
}
/*
* Not found.
*/
return (NULL);
}
/*
* Insert PCB onto various hash lists.
*/
int
in_pcbinshash(inp)
struct inpcb *inp;
{
struct inpcbhead *pcbhash;
struct inpcbporthead *pcbporthash;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbport *phd;
u_int32_t hashkey_faddr;
INP_INFO_WLOCK_ASSERT(pcbinfo);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
else
#endif /* INET6 */
hashkey_faddr = inp->inp_faddr.s_addr;
pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport,
pcbinfo->porthashmask)];
/*
* Go through port list and look for a head for this lport.
*/
LIST_FOREACH(phd, pcbporthash, phd_hash) {
if (phd->phd_port == inp->inp_lport)
break;
}
/*
* If none exists, malloc one and tack it on.
*/
if (phd == NULL) {
MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
if (phd == NULL) {
return (ENOBUFS); /* XXX */
}
phd->phd_port = inp->inp_lport;
LIST_INIT(&phd->phd_pcblist);
LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
}
inp->inp_phd = phd;
LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
return (0);
}
/*
* Move PCB to the proper hash bucket when { faddr, fport } have been
* changed. NOTE: This does not handle the case of the lport changing (the
* hashed port list would have to be updated as well), so the lport must
* not change after in_pcbinshash() has been called.
*/
void
in_pcbrehash(inp)
struct inpcb *inp;
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbhead *head;
u_int32_t hashkey_faddr;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
else
#endif /* INET6 */
hashkey_faddr = inp->inp_faddr.s_addr;
head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
LIST_REMOVE(inp, inp_hash);
LIST_INSERT_HEAD(head, inp, inp_hash);
}
/*
* Remove PCB from various lists.
*/
void
in_pcbremlists(inp)
struct inpcb *inp;
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
if (inp->inp_lport) {
struct inpcbport *phd = inp->inp_phd;
LIST_REMOVE(inp, inp_hash);
LIST_REMOVE(inp, inp_portlist);
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
LIST_REMOVE(phd, phd_hash);
free(phd, M_PCB);
}
}
LIST_REMOVE(inp, inp_list);
pcbinfo->ipi_count--;
}
/*
* A set label operation has occurred at the socket layer, propagate the
* label change into the in_pcb for the socket.
*/
void
in_pcbsosetlabel(so)
struct socket *so;
{
#ifdef MAC
struct inpcb *inp;
inp = (struct inpcb *)so->so_pcb;
INP_LOCK(inp);
SOCK_LOCK(so);
mac_inpcb_sosetlabel(so, inp);
SOCK_UNLOCK(so);
INP_UNLOCK(inp);
#endif
}