1f41d295fb
- De-vnet hash sizes and hash masks. - Fix multiple issues related to arguments passed to SYSCTL macros. Sponsored by: Mellanox Technologies
4897 lines
143 KiB
C
4897 lines
143 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2012, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
/*
|
|
* Uncomment the following extensions for better performance in a VM,
|
|
* especially if you have support in the hypervisor.
|
|
* See http://info.iet.unipi.it/~luigi/netmap/
|
|
*/
|
|
// #define BATCH_DISPATCH
|
|
// #define NIC_SEND_COMBINING
|
|
// #define NIC_PARAVIRT /* enable virtio-like synchronization */
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#include <machine/in_cksum.h>
|
|
#include <dev/led/led.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include "e1000_api.h"
|
|
#include "if_lem.h"
|
|
|
|
/*********************************************************************
|
|
* Legacy Em Driver version:
|
|
*********************************************************************/
|
|
char lem_driver_version[] = "1.0.6";
|
|
|
|
/*********************************************************************
|
|
* PCI Device ID Table
|
|
*
|
|
* Used by probe to select devices to load on
|
|
* Last field stores an index into e1000_strings
|
|
* Last entry must be all 0s
|
|
*
|
|
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
|
|
*********************************************************************/
|
|
|
|
static em_vendor_info_t lem_vendor_info_array[] =
|
|
{
|
|
/* Intel(R) PRO/1000 Network Connection */
|
|
{ 0x8086, E1000_DEV_ID_82540EM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82540EM_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82540EP, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82540EP_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82540EP_LP, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82541EI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541ER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541ER_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541GI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541GI_LF, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82541GI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82542, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82543GC_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82543GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82544EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82544EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82544GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82544GC_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82545EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82545EM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82545GM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82545GM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82545GM_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82546EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_PCIE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
|
|
{ 0x8086, E1000_DEV_ID_82547EI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82547EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82547GI, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
/* required last entry */
|
|
{ 0, 0, 0, 0, 0}
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Table of branding strings for all supported NICs.
|
|
*********************************************************************/
|
|
|
|
static char *lem_strings[] = {
|
|
"Intel(R) PRO/1000 Legacy Network Connection"
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Function prototypes
|
|
*********************************************************************/
|
|
static int lem_probe(device_t);
|
|
static int lem_attach(device_t);
|
|
static int lem_detach(device_t);
|
|
static int lem_shutdown(device_t);
|
|
static int lem_suspend(device_t);
|
|
static int lem_resume(device_t);
|
|
static void lem_start(struct ifnet *);
|
|
static void lem_start_locked(struct ifnet *ifp);
|
|
static int lem_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void lem_init(void *);
|
|
static void lem_init_locked(struct adapter *);
|
|
static void lem_stop(void *);
|
|
static void lem_media_status(struct ifnet *, struct ifmediareq *);
|
|
static int lem_media_change(struct ifnet *);
|
|
static void lem_identify_hardware(struct adapter *);
|
|
static int lem_allocate_pci_resources(struct adapter *);
|
|
static int lem_allocate_irq(struct adapter *adapter);
|
|
static void lem_free_pci_resources(struct adapter *);
|
|
static void lem_local_timer(void *);
|
|
static int lem_hardware_init(struct adapter *);
|
|
static int lem_setup_interface(device_t, struct adapter *);
|
|
static void lem_setup_transmit_structures(struct adapter *);
|
|
static void lem_initialize_transmit_unit(struct adapter *);
|
|
static int lem_setup_receive_structures(struct adapter *);
|
|
static void lem_initialize_receive_unit(struct adapter *);
|
|
static void lem_enable_intr(struct adapter *);
|
|
static void lem_disable_intr(struct adapter *);
|
|
static void lem_free_transmit_structures(struct adapter *);
|
|
static void lem_free_receive_structures(struct adapter *);
|
|
static void lem_update_stats_counters(struct adapter *);
|
|
static void lem_add_hw_stats(struct adapter *adapter);
|
|
static void lem_txeof(struct adapter *);
|
|
static void lem_tx_purge(struct adapter *);
|
|
static int lem_allocate_receive_structures(struct adapter *);
|
|
static int lem_allocate_transmit_structures(struct adapter *);
|
|
static bool lem_rxeof(struct adapter *, int, int *);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static int lem_fixup_rx(struct adapter *);
|
|
#endif
|
|
static void lem_receive_checksum(struct adapter *, struct e1000_rx_desc *,
|
|
struct mbuf *);
|
|
static void lem_transmit_checksum_setup(struct adapter *, struct mbuf *,
|
|
u32 *, u32 *);
|
|
static void lem_set_promisc(struct adapter *);
|
|
static void lem_disable_promisc(struct adapter *);
|
|
static void lem_set_multi(struct adapter *);
|
|
static void lem_update_link_status(struct adapter *);
|
|
static int lem_get_buf(struct adapter *, int);
|
|
static void lem_register_vlan(void *, struct ifnet *, u16);
|
|
static void lem_unregister_vlan(void *, struct ifnet *, u16);
|
|
static void lem_setup_vlan_hw_support(struct adapter *);
|
|
static int lem_xmit(struct adapter *, struct mbuf **);
|
|
static void lem_smartspeed(struct adapter *);
|
|
static int lem_82547_fifo_workaround(struct adapter *, int);
|
|
static void lem_82547_update_fifo_head(struct adapter *, int);
|
|
static int lem_82547_tx_fifo_reset(struct adapter *);
|
|
static void lem_82547_move_tail(void *);
|
|
static int lem_dma_malloc(struct adapter *, bus_size_t,
|
|
struct em_dma_alloc *, int);
|
|
static void lem_dma_free(struct adapter *, struct em_dma_alloc *);
|
|
static int lem_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
|
|
static void lem_print_nvm_info(struct adapter *);
|
|
static int lem_is_valid_ether_addr(u8 *);
|
|
static u32 lem_fill_descriptors (bus_addr_t address, u32 length,
|
|
PDESC_ARRAY desc_array);
|
|
static int lem_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
|
|
static void lem_add_int_delay_sysctl(struct adapter *, const char *,
|
|
const char *, struct em_int_delay_info *, int, int);
|
|
static void lem_set_flow_cntrl(struct adapter *, const char *,
|
|
const char *, int *, int);
|
|
/* Management and WOL Support */
|
|
static void lem_init_manageability(struct adapter *);
|
|
static void lem_release_manageability(struct adapter *);
|
|
static void lem_get_hw_control(struct adapter *);
|
|
static void lem_release_hw_control(struct adapter *);
|
|
static void lem_get_wakeup(device_t);
|
|
static void lem_enable_wakeup(device_t);
|
|
static int lem_enable_phy_wakeup(struct adapter *);
|
|
static void lem_led_func(void *, int);
|
|
|
|
static void lem_intr(void *);
|
|
static int lem_irq_fast(void *);
|
|
static void lem_handle_rxtx(void *context, int pending);
|
|
static void lem_handle_link(void *context, int pending);
|
|
static void lem_add_rx_process_limit(struct adapter *, const char *,
|
|
const char *, int *, int);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static poll_handler_t lem_poll;
|
|
#endif /* POLLING */
|
|
|
|
/*********************************************************************
|
|
* FreeBSD Device Interface Entry Points
|
|
*********************************************************************/
|
|
|
|
static device_method_t lem_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, lem_probe),
|
|
DEVMETHOD(device_attach, lem_attach),
|
|
DEVMETHOD(device_detach, lem_detach),
|
|
DEVMETHOD(device_shutdown, lem_shutdown),
|
|
DEVMETHOD(device_suspend, lem_suspend),
|
|
DEVMETHOD(device_resume, lem_resume),
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t lem_driver = {
|
|
"em", lem_methods, sizeof(struct adapter),
|
|
};
|
|
|
|
extern devclass_t em_devclass;
|
|
DRIVER_MODULE(lem, pci, lem_driver, em_devclass, 0, 0);
|
|
MODULE_DEPEND(lem, pci, 1, 1, 1);
|
|
MODULE_DEPEND(lem, ether, 1, 1, 1);
|
|
|
|
/*********************************************************************
|
|
* Tunable default values.
|
|
*********************************************************************/
|
|
|
|
#define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
|
|
#define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
|
|
|
|
#define MAX_INTS_PER_SEC 8000
|
|
#define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256))
|
|
|
|
static int lem_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
|
|
static int lem_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
|
|
static int lem_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
|
|
static int lem_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
|
|
/*
|
|
* increase lem_rxd and lem_txd to at least 2048 in netmap mode
|
|
* for better performance.
|
|
*/
|
|
static int lem_rxd = EM_DEFAULT_RXD;
|
|
static int lem_txd = EM_DEFAULT_TXD;
|
|
static int lem_smart_pwr_down = FALSE;
|
|
|
|
/* Controls whether promiscuous also shows bad packets */
|
|
static int lem_debug_sbp = FALSE;
|
|
|
|
TUNABLE_INT("hw.em.tx_int_delay", &lem_tx_int_delay_dflt);
|
|
TUNABLE_INT("hw.em.rx_int_delay", &lem_rx_int_delay_dflt);
|
|
TUNABLE_INT("hw.em.tx_abs_int_delay", &lem_tx_abs_int_delay_dflt);
|
|
TUNABLE_INT("hw.em.rx_abs_int_delay", &lem_rx_abs_int_delay_dflt);
|
|
TUNABLE_INT("hw.em.rxd", &lem_rxd);
|
|
TUNABLE_INT("hw.em.txd", &lem_txd);
|
|
TUNABLE_INT("hw.em.smart_pwr_down", &lem_smart_pwr_down);
|
|
TUNABLE_INT("hw.em.sbp", &lem_debug_sbp);
|
|
|
|
/* Interrupt style - default to fast */
|
|
static int lem_use_legacy_irq = 0;
|
|
TUNABLE_INT("hw.em.use_legacy_irq", &lem_use_legacy_irq);
|
|
|
|
/* How many packets rxeof tries to clean at a time */
|
|
static int lem_rx_process_limit = 100;
|
|
TUNABLE_INT("hw.em.rx_process_limit", &lem_rx_process_limit);
|
|
|
|
/* Flow control setting - default to FULL */
|
|
static int lem_fc_setting = e1000_fc_full;
|
|
TUNABLE_INT("hw.em.fc_setting", &lem_fc_setting);
|
|
|
|
/* Global used in WOL setup with multiport cards */
|
|
static int global_quad_port_a = 0;
|
|
|
|
#ifdef DEV_NETMAP /* see ixgbe.c for details */
|
|
#include <dev/netmap/if_lem_netmap.h>
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/*********************************************************************
|
|
* Device identification routine
|
|
*
|
|
* em_probe determines if the driver should be loaded on
|
|
* adapter based on PCI vendor/device id of the adapter.
|
|
*
|
|
* return BUS_PROBE_DEFAULT on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
lem_probe(device_t dev)
|
|
{
|
|
char adapter_name[60];
|
|
u16 pci_vendor_id = 0;
|
|
u16 pci_device_id = 0;
|
|
u16 pci_subvendor_id = 0;
|
|
u16 pci_subdevice_id = 0;
|
|
em_vendor_info_t *ent;
|
|
|
|
INIT_DEBUGOUT("em_probe: begin");
|
|
|
|
pci_vendor_id = pci_get_vendor(dev);
|
|
if (pci_vendor_id != EM_VENDOR_ID)
|
|
return (ENXIO);
|
|
|
|
pci_device_id = pci_get_device(dev);
|
|
pci_subvendor_id = pci_get_subvendor(dev);
|
|
pci_subdevice_id = pci_get_subdevice(dev);
|
|
|
|
ent = lem_vendor_info_array;
|
|
while (ent->vendor_id != 0) {
|
|
if ((pci_vendor_id == ent->vendor_id) &&
|
|
(pci_device_id == ent->device_id) &&
|
|
|
|
((pci_subvendor_id == ent->subvendor_id) ||
|
|
(ent->subvendor_id == PCI_ANY_ID)) &&
|
|
|
|
((pci_subdevice_id == ent->subdevice_id) ||
|
|
(ent->subdevice_id == PCI_ANY_ID))) {
|
|
sprintf(adapter_name, "%s %s",
|
|
lem_strings[ent->index],
|
|
lem_driver_version);
|
|
device_set_desc_copy(dev, adapter_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
ent++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device initialization routine
|
|
*
|
|
* The attach entry point is called when the driver is being loaded.
|
|
* This routine identifies the type of hardware, allocates all resources
|
|
* and initializes the hardware.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
lem_attach(device_t dev)
|
|
{
|
|
struct adapter *adapter;
|
|
int tsize, rsize;
|
|
int error = 0;
|
|
|
|
INIT_DEBUGOUT("lem_attach: begin");
|
|
|
|
adapter = device_get_softc(dev);
|
|
adapter->dev = adapter->osdep.dev = dev;
|
|
EM_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
|
|
EM_TX_LOCK_INIT(adapter, device_get_nameunit(dev));
|
|
EM_RX_LOCK_INIT(adapter, device_get_nameunit(dev));
|
|
|
|
/* SYSCTL stuff */
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
|
|
lem_sysctl_nvm_info, "I", "NVM Information");
|
|
|
|
callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
|
|
callout_init_mtx(&adapter->tx_fifo_timer, &adapter->tx_mtx, 0);
|
|
|
|
/* Determine hardware and mac info */
|
|
lem_identify_hardware(adapter);
|
|
|
|
/* Setup PCI resources */
|
|
if (lem_allocate_pci_resources(adapter)) {
|
|
device_printf(dev, "Allocation of PCI resources failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
/* Do Shared Code initialization */
|
|
if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
|
|
device_printf(dev, "Setup of Shared code failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
e1000_get_bus_info(&adapter->hw);
|
|
|
|
/* Set up some sysctls for the tunable interrupt delays */
|
|
lem_add_int_delay_sysctl(adapter, "rx_int_delay",
|
|
"receive interrupt delay in usecs", &adapter->rx_int_delay,
|
|
E1000_REGISTER(&adapter->hw, E1000_RDTR), lem_rx_int_delay_dflt);
|
|
lem_add_int_delay_sysctl(adapter, "tx_int_delay",
|
|
"transmit interrupt delay in usecs", &adapter->tx_int_delay,
|
|
E1000_REGISTER(&adapter->hw, E1000_TIDV), lem_tx_int_delay_dflt);
|
|
if (adapter->hw.mac.type >= e1000_82540) {
|
|
lem_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
|
|
"receive interrupt delay limit in usecs",
|
|
&adapter->rx_abs_int_delay,
|
|
E1000_REGISTER(&adapter->hw, E1000_RADV),
|
|
lem_rx_abs_int_delay_dflt);
|
|
lem_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
|
|
"transmit interrupt delay limit in usecs",
|
|
&adapter->tx_abs_int_delay,
|
|
E1000_REGISTER(&adapter->hw, E1000_TADV),
|
|
lem_tx_abs_int_delay_dflt);
|
|
lem_add_int_delay_sysctl(adapter, "itr",
|
|
"interrupt delay limit in usecs/4",
|
|
&adapter->tx_itr,
|
|
E1000_REGISTER(&adapter->hw, E1000_ITR),
|
|
DEFAULT_ITR);
|
|
}
|
|
|
|
/* Sysctls for limiting the amount of work done in the taskqueue */
|
|
lem_add_rx_process_limit(adapter, "rx_processing_limit",
|
|
"max number of rx packets to process", &adapter->rx_process_limit,
|
|
lem_rx_process_limit);
|
|
|
|
#ifdef NIC_SEND_COMBINING
|
|
/* Sysctls to control mitigation */
|
|
lem_add_rx_process_limit(adapter, "sc_enable",
|
|
"driver TDT mitigation", &adapter->sc_enable, 0);
|
|
#endif /* NIC_SEND_COMBINING */
|
|
#ifdef BATCH_DISPATCH
|
|
lem_add_rx_process_limit(adapter, "batch_enable",
|
|
"driver rx batch", &adapter->batch_enable, 0);
|
|
#endif /* BATCH_DISPATCH */
|
|
#ifdef NIC_PARAVIRT
|
|
lem_add_rx_process_limit(adapter, "rx_retries",
|
|
"driver rx retries", &adapter->rx_retries, 0);
|
|
#endif /* NIC_PARAVIRT */
|
|
|
|
/* Sysctl for setting the interface flow control */
|
|
lem_set_flow_cntrl(adapter, "flow_control",
|
|
"flow control setting",
|
|
&adapter->fc_setting, lem_fc_setting);
|
|
|
|
/*
|
|
* Validate number of transmit and receive descriptors. It
|
|
* must not exceed hardware maximum, and must be multiple
|
|
* of E1000_DBA_ALIGN.
|
|
*/
|
|
if (((lem_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 ||
|
|
(adapter->hw.mac.type >= e1000_82544 && lem_txd > EM_MAX_TXD) ||
|
|
(adapter->hw.mac.type < e1000_82544 && lem_txd > EM_MAX_TXD_82543) ||
|
|
(lem_txd < EM_MIN_TXD)) {
|
|
device_printf(dev, "Using %d TX descriptors instead of %d!\n",
|
|
EM_DEFAULT_TXD, lem_txd);
|
|
adapter->num_tx_desc = EM_DEFAULT_TXD;
|
|
} else
|
|
adapter->num_tx_desc = lem_txd;
|
|
if (((lem_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 ||
|
|
(adapter->hw.mac.type >= e1000_82544 && lem_rxd > EM_MAX_RXD) ||
|
|
(adapter->hw.mac.type < e1000_82544 && lem_rxd > EM_MAX_RXD_82543) ||
|
|
(lem_rxd < EM_MIN_RXD)) {
|
|
device_printf(dev, "Using %d RX descriptors instead of %d!\n",
|
|
EM_DEFAULT_RXD, lem_rxd);
|
|
adapter->num_rx_desc = EM_DEFAULT_RXD;
|
|
} else
|
|
adapter->num_rx_desc = lem_rxd;
|
|
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_wait_to_complete = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
adapter->rx_buffer_len = 2048;
|
|
|
|
e1000_init_script_state_82541(&adapter->hw, TRUE);
|
|
e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
|
|
|
|
/* Copper options */
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
|
|
adapter->hw.phy.mdix = AUTO_ALL_MODES;
|
|
adapter->hw.phy.disable_polarity_correction = FALSE;
|
|
adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
|
|
}
|
|
|
|
/*
|
|
* Set the frame limits assuming
|
|
* standard ethernet sized frames.
|
|
*/
|
|
adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
|
|
adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
|
|
|
|
/*
|
|
* This controls when hardware reports transmit completion
|
|
* status.
|
|
*/
|
|
adapter->hw.mac.report_tx_early = 1;
|
|
|
|
#ifdef NIC_PARAVIRT
|
|
device_printf(dev, "driver supports paravirt, subdev 0x%x\n",
|
|
adapter->hw.subsystem_device_id);
|
|
if (adapter->hw.subsystem_device_id == E1000_PARA_SUBDEV) {
|
|
uint64_t bus_addr;
|
|
|
|
device_printf(dev, "paravirt support on dev %p\n", adapter);
|
|
tsize = 4096; // XXX one page for the csb
|
|
if (lem_dma_malloc(adapter, tsize, &adapter->csb_mem, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev, "Unable to allocate csb memory\n");
|
|
error = ENOMEM;
|
|
goto err_csb;
|
|
}
|
|
/* Setup the Base of the CSB */
|
|
adapter->csb = (struct paravirt_csb *)adapter->csb_mem.dma_vaddr;
|
|
/* force the first kick */
|
|
adapter->csb->host_need_txkick = 1; /* txring empty */
|
|
adapter->csb->guest_need_rxkick = 1; /* no rx packets */
|
|
bus_addr = adapter->csb_mem.dma_paddr;
|
|
lem_add_rx_process_limit(adapter, "csb_on",
|
|
"enable paravirt.", &adapter->csb->guest_csb_on, 0);
|
|
lem_add_rx_process_limit(adapter, "txc_lim",
|
|
"txc_lim", &adapter->csb->host_txcycles_lim, 1);
|
|
|
|
/* some stats */
|
|
#define PA_SC(name, var, val) \
|
|
lem_add_rx_process_limit(adapter, name, name, var, val)
|
|
PA_SC("host_need_txkick",&adapter->csb->host_need_txkick, 1);
|
|
PA_SC("host_rxkick_at",&adapter->csb->host_rxkick_at, ~0);
|
|
PA_SC("guest_need_txkick",&adapter->csb->guest_need_txkick, 0);
|
|
PA_SC("guest_need_rxkick",&adapter->csb->guest_need_rxkick, 1);
|
|
PA_SC("tdt_reg_count",&adapter->tdt_reg_count, 0);
|
|
PA_SC("tdt_csb_count",&adapter->tdt_csb_count, 0);
|
|
PA_SC("tdt_int_count",&adapter->tdt_int_count, 0);
|
|
PA_SC("guest_need_kick_count",&adapter->guest_need_kick_count, 0);
|
|
/* tell the host where the block is */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CSBAH,
|
|
(u32)(bus_addr >> 32));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CSBAL,
|
|
(u32)bus_addr);
|
|
}
|
|
#endif /* NIC_PARAVIRT */
|
|
|
|
tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
|
|
EM_DBA_ALIGN);
|
|
|
|
/* Allocate Transmit Descriptor ring */
|
|
if (lem_dma_malloc(adapter, tsize, &adapter->txdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev, "Unable to allocate tx_desc memory\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
adapter->tx_desc_base =
|
|
(struct e1000_tx_desc *)adapter->txdma.dma_vaddr;
|
|
|
|
rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
|
|
EM_DBA_ALIGN);
|
|
|
|
/* Allocate Receive Descriptor ring */
|
|
if (lem_dma_malloc(adapter, rsize, &adapter->rxdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev, "Unable to allocate rx_desc memory\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
adapter->rx_desc_base =
|
|
(struct e1000_rx_desc *)adapter->rxdma.dma_vaddr;
|
|
|
|
/* Allocate multicast array memory. */
|
|
adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
|
|
MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
|
|
if (adapter->mta == NULL) {
|
|
device_printf(dev, "Can not allocate multicast setup array\n");
|
|
error = ENOMEM;
|
|
goto err_hw_init;
|
|
}
|
|
|
|
/*
|
|
** Start from a known state, this is
|
|
** important in reading the nvm and
|
|
** mac from that.
|
|
*/
|
|
e1000_reset_hw(&adapter->hw);
|
|
|
|
/* Make sure we have a good EEPROM before we read from it */
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
|
|
/*
|
|
** Some PCI-E parts fail the first check due to
|
|
** the link being in sleep state, call it again,
|
|
** if it fails a second time its a real issue.
|
|
*/
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
|
|
device_printf(dev,
|
|
"The EEPROM Checksum Is Not Valid\n");
|
|
error = EIO;
|
|
goto err_hw_init;
|
|
}
|
|
}
|
|
|
|
/* Copy the permanent MAC address out of the EEPROM */
|
|
if (e1000_read_mac_addr(&adapter->hw) < 0) {
|
|
device_printf(dev, "EEPROM read error while reading MAC"
|
|
" address\n");
|
|
error = EIO;
|
|
goto err_hw_init;
|
|
}
|
|
|
|
if (!lem_is_valid_ether_addr(adapter->hw.mac.addr)) {
|
|
device_printf(dev, "Invalid MAC address\n");
|
|
error = EIO;
|
|
goto err_hw_init;
|
|
}
|
|
|
|
/* Initialize the hardware */
|
|
if (lem_hardware_init(adapter)) {
|
|
device_printf(dev, "Unable to initialize the hardware\n");
|
|
error = EIO;
|
|
goto err_hw_init;
|
|
}
|
|
|
|
/* Allocate transmit descriptors and buffers */
|
|
if (lem_allocate_transmit_structures(adapter)) {
|
|
device_printf(dev, "Could not setup transmit structures\n");
|
|
error = ENOMEM;
|
|
goto err_tx_struct;
|
|
}
|
|
|
|
/* Allocate receive descriptors and buffers */
|
|
if (lem_allocate_receive_structures(adapter)) {
|
|
device_printf(dev, "Could not setup receive structures\n");
|
|
error = ENOMEM;
|
|
goto err_rx_struct;
|
|
}
|
|
|
|
/*
|
|
** Do interrupt configuration
|
|
*/
|
|
error = lem_allocate_irq(adapter);
|
|
if (error)
|
|
goto err_rx_struct;
|
|
|
|
/*
|
|
* Get Wake-on-Lan and Management info for later use
|
|
*/
|
|
lem_get_wakeup(dev);
|
|
|
|
/* Setup OS specific network interface */
|
|
if (lem_setup_interface(dev, adapter) != 0)
|
|
goto err_rx_struct;
|
|
|
|
/* Initialize statistics */
|
|
lem_update_stats_counters(adapter);
|
|
|
|
adapter->hw.mac.get_link_status = 1;
|
|
lem_update_link_status(adapter);
|
|
|
|
/* Indicate SOL/IDER usage */
|
|
if (e1000_check_reset_block(&adapter->hw))
|
|
device_printf(dev,
|
|
"PHY reset is blocked due to SOL/IDER session.\n");
|
|
|
|
/* Do we need workaround for 82544 PCI-X adapter? */
|
|
if (adapter->hw.bus.type == e1000_bus_type_pcix &&
|
|
adapter->hw.mac.type == e1000_82544)
|
|
adapter->pcix_82544 = TRUE;
|
|
else
|
|
adapter->pcix_82544 = FALSE;
|
|
|
|
/* Register for VLAN events */
|
|
adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
|
|
lem_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
|
|
adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
|
|
lem_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
|
|
|
|
lem_add_hw_stats(adapter);
|
|
|
|
/* Non-AMT based hardware can now take control from firmware */
|
|
if (adapter->has_manage && !adapter->has_amt)
|
|
lem_get_hw_control(adapter);
|
|
|
|
/* Tell the stack that the interface is not active */
|
|
adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
adapter->led_dev = led_create(lem_led_func, adapter,
|
|
device_get_nameunit(dev));
|
|
|
|
#ifdef DEV_NETMAP
|
|
lem_netmap_attach(adapter);
|
|
#endif /* DEV_NETMAP */
|
|
INIT_DEBUGOUT("lem_attach: end");
|
|
|
|
return (0);
|
|
|
|
err_rx_struct:
|
|
lem_free_transmit_structures(adapter);
|
|
err_tx_struct:
|
|
err_hw_init:
|
|
lem_release_hw_control(adapter);
|
|
lem_dma_free(adapter, &adapter->rxdma);
|
|
err_rx_desc:
|
|
lem_dma_free(adapter, &adapter->txdma);
|
|
err_tx_desc:
|
|
#ifdef NIC_PARAVIRT
|
|
lem_dma_free(adapter, &adapter->csb_mem);
|
|
err_csb:
|
|
#endif /* NIC_PARAVIRT */
|
|
|
|
err_pci:
|
|
if (adapter->ifp != NULL)
|
|
if_free(adapter->ifp);
|
|
lem_free_pci_resources(adapter);
|
|
free(adapter->mta, M_DEVBUF);
|
|
EM_TX_LOCK_DESTROY(adapter);
|
|
EM_RX_LOCK_DESTROY(adapter);
|
|
EM_CORE_LOCK_DESTROY(adapter);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device removal routine
|
|
*
|
|
* The detach entry point is called when the driver is being removed.
|
|
* This routine stops the adapter and deallocates all the resources
|
|
* that were allocated for driver operation.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
lem_detach(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
INIT_DEBUGOUT("em_detach: begin");
|
|
|
|
/* Make sure VLANS are not using driver */
|
|
if (adapter->ifp->if_vlantrunk != NULL) {
|
|
device_printf(dev,"Vlan in use, detach first\n");
|
|
return (EBUSY);
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
if (adapter->led_dev != NULL)
|
|
led_destroy(adapter->led_dev);
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
EM_TX_LOCK(adapter);
|
|
adapter->in_detach = 1;
|
|
lem_stop(adapter);
|
|
e1000_phy_hw_reset(&adapter->hw);
|
|
|
|
lem_release_manageability(adapter);
|
|
|
|
EM_TX_UNLOCK(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
|
|
/* Unregister VLAN events */
|
|
if (adapter->vlan_attach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
|
|
if (adapter->vlan_detach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
|
|
|
|
ether_ifdetach(adapter->ifp);
|
|
callout_drain(&adapter->timer);
|
|
callout_drain(&adapter->tx_fifo_timer);
|
|
|
|
#ifdef DEV_NETMAP
|
|
netmap_detach(ifp);
|
|
#endif /* DEV_NETMAP */
|
|
lem_free_pci_resources(adapter);
|
|
bus_generic_detach(dev);
|
|
if_free(ifp);
|
|
|
|
lem_free_transmit_structures(adapter);
|
|
lem_free_receive_structures(adapter);
|
|
|
|
/* Free Transmit Descriptor ring */
|
|
if (adapter->tx_desc_base) {
|
|
lem_dma_free(adapter, &adapter->txdma);
|
|
adapter->tx_desc_base = NULL;
|
|
}
|
|
|
|
/* Free Receive Descriptor ring */
|
|
if (adapter->rx_desc_base) {
|
|
lem_dma_free(adapter, &adapter->rxdma);
|
|
adapter->rx_desc_base = NULL;
|
|
}
|
|
|
|
#ifdef NIC_PARAVIRT
|
|
if (adapter->csb) {
|
|
lem_dma_free(adapter, &adapter->csb_mem);
|
|
adapter->csb = NULL;
|
|
}
|
|
#endif /* NIC_PARAVIRT */
|
|
lem_release_hw_control(adapter);
|
|
free(adapter->mta, M_DEVBUF);
|
|
EM_TX_LOCK_DESTROY(adapter);
|
|
EM_RX_LOCK_DESTROY(adapter);
|
|
EM_CORE_LOCK_DESTROY(adapter);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Shutdown entry point
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
lem_shutdown(device_t dev)
|
|
{
|
|
return lem_suspend(dev);
|
|
}
|
|
|
|
/*
|
|
* Suspend/resume device methods.
|
|
*/
|
|
static int
|
|
lem_suspend(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
|
|
lem_release_manageability(adapter);
|
|
lem_release_hw_control(adapter);
|
|
lem_enable_wakeup(dev);
|
|
|
|
EM_CORE_UNLOCK(adapter);
|
|
|
|
return bus_generic_suspend(dev);
|
|
}
|
|
|
|
static int
|
|
lem_resume(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
lem_init_locked(adapter);
|
|
lem_init_manageability(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
lem_start(ifp);
|
|
|
|
return bus_generic_resume(dev);
|
|
}
|
|
|
|
|
|
static void
|
|
lem_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct mbuf *m_head;
|
|
|
|
EM_TX_LOCK_ASSERT(adapter);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
if (!adapter->link_active)
|
|
return;
|
|
|
|
/*
|
|
* Force a cleanup if number of TX descriptors
|
|
* available hits the threshold
|
|
*/
|
|
if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
|
|
lem_txeof(adapter);
|
|
/* Now do we at least have a minimal? */
|
|
if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) {
|
|
adapter->no_tx_desc_avail1++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
|
|
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Encapsulation can modify our pointer, and or make it
|
|
* NULL on failure. In that event, we can't requeue.
|
|
*/
|
|
if (lem_xmit(adapter, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
break;
|
|
}
|
|
|
|
/* Send a copy of the frame to the BPF listener */
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
|
|
/* Set timeout in case hardware has problems transmitting. */
|
|
adapter->watchdog_check = TRUE;
|
|
adapter->watchdog_time = ticks;
|
|
}
|
|
if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD)
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
#ifdef NIC_PARAVIRT
|
|
if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE && adapter->csb &&
|
|
adapter->csb->guest_csb_on &&
|
|
!(adapter->csb->guest_need_txkick & 1)) {
|
|
adapter->csb->guest_need_txkick = 1;
|
|
adapter->guest_need_kick_count++;
|
|
// XXX memory barrier
|
|
lem_txeof(adapter); // XXX possibly clear IFF_DRV_OACTIVE
|
|
}
|
|
#endif /* NIC_PARAVIRT */
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
lem_start(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
|
|
EM_TX_LOCK(adapter);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
lem_start_locked(ifp);
|
|
EM_TX_UNLOCK(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Ioctl entry point
|
|
*
|
|
* em_ioctl is called when the user wants to configure the
|
|
* interface.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static int
|
|
lem_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
#if defined(INET) || defined(INET6)
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
#endif
|
|
bool avoid_reset = FALSE;
|
|
int error = 0;
|
|
|
|
if (adapter->in_detach)
|
|
return (error);
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
#ifdef INET
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
avoid_reset = TRUE;
|
|
#endif
|
|
#ifdef INET6
|
|
if (ifa->ifa_addr->sa_family == AF_INET6)
|
|
avoid_reset = TRUE;
|
|
#endif
|
|
/*
|
|
** Calling init results in link renegotiation,
|
|
** so we avoid doing it when possible.
|
|
*/
|
|
if (avoid_reset) {
|
|
ifp->if_flags |= IFF_UP;
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
lem_init(adapter);
|
|
#ifdef INET
|
|
if (!(ifp->if_flags & IFF_NOARP))
|
|
arp_ifinit(ifp, ifa);
|
|
#endif
|
|
} else
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFMTU:
|
|
{
|
|
int max_frame_size;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82542:
|
|
max_frame_size = ETHER_MAX_LEN;
|
|
break;
|
|
default:
|
|
max_frame_size = MAX_JUMBO_FRAME_SIZE;
|
|
}
|
|
if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
|
|
ETHER_CRC_LEN) {
|
|
EM_CORE_UNLOCK(adapter);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
adapter->max_frame_size =
|
|
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
|
|
lem_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
break;
|
|
}
|
|
case SIOCSIFFLAGS:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd:\
|
|
SIOCSIFFLAGS (Set Interface Flags)");
|
|
EM_CORE_LOCK(adapter);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
if ((ifp->if_flags ^ adapter->if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI)) {
|
|
lem_disable_promisc(adapter);
|
|
lem_set_promisc(adapter);
|
|
}
|
|
} else
|
|
lem_init_locked(adapter);
|
|
} else
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
EM_TX_LOCK(adapter);
|
|
lem_stop(adapter);
|
|
EM_TX_UNLOCK(adapter);
|
|
}
|
|
adapter->if_flags = ifp->if_flags;
|
|
EM_CORE_UNLOCK(adapter);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
EM_CORE_LOCK(adapter);
|
|
lem_disable_intr(adapter);
|
|
lem_set_multi(adapter);
|
|
if (adapter->hw.mac.type == e1000_82542 &&
|
|
adapter->hw.revision_id == E1000_REVISION_2) {
|
|
lem_initialize_receive_unit(adapter);
|
|
}
|
|
#ifdef DEVICE_POLLING
|
|
if (!(ifp->if_capenable & IFCAP_POLLING))
|
|
#endif
|
|
lem_enable_intr(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
/* Check SOL/IDER usage */
|
|
EM_CORE_LOCK(adapter);
|
|
if (e1000_check_reset_block(&adapter->hw)) {
|
|
EM_CORE_UNLOCK(adapter);
|
|
device_printf(adapter->dev, "Media change is"
|
|
" blocked due to SOL/IDER session.\n");
|
|
break;
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
case SIOCGIFMEDIA:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: \
|
|
SIOCxIFMEDIA (Get/Set Interface Media)");
|
|
error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
{
|
|
int mask, reinit;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
|
|
reinit = 0;
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
error = ether_poll_register(lem_poll, ifp);
|
|
if (error)
|
|
return (error);
|
|
EM_CORE_LOCK(adapter);
|
|
lem_disable_intr(adapter);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
EM_CORE_UNLOCK(adapter);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupt even in error case */
|
|
EM_CORE_LOCK(adapter);
|
|
lem_enable_intr(adapter);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
}
|
|
#endif
|
|
if (mask & IFCAP_HWCSUM) {
|
|
ifp->if_capenable ^= IFCAP_HWCSUM;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_VLAN_HWTAGGING) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
reinit = 1;
|
|
}
|
|
if ((mask & IFCAP_WOL) &&
|
|
(ifp->if_capabilities & IFCAP_WOL) != 0) {
|
|
if (mask & IFCAP_WOL_MCAST)
|
|
ifp->if_capenable ^= IFCAP_WOL_MCAST;
|
|
if (mask & IFCAP_WOL_MAGIC)
|
|
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
|
|
}
|
|
if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
lem_init(adapter);
|
|
VLAN_CAPABILITIES(ifp);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Init entry point
|
|
*
|
|
* This routine is used in two ways. It is used by the stack as
|
|
* init entry point in network interface structure. It is also used
|
|
* by the driver as a hw/sw initialization routine to get to a
|
|
* consistent state.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static void
|
|
lem_init_locked(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
u32 pba;
|
|
|
|
INIT_DEBUGOUT("lem_init: begin");
|
|
|
|
EM_CORE_LOCK_ASSERT(adapter);
|
|
|
|
EM_TX_LOCK(adapter);
|
|
lem_stop(adapter);
|
|
EM_TX_UNLOCK(adapter);
|
|
|
|
/*
|
|
* Packet Buffer Allocation (PBA)
|
|
* Writing PBA sets the receive portion of the buffer
|
|
* the remainder is used for the transmit buffer.
|
|
*
|
|
* Devices before the 82547 had a Packet Buffer of 64K.
|
|
* Default allocation: PBA=48K for Rx, leaving 16K for Tx.
|
|
* After the 82547 the buffer was reduced to 40K.
|
|
* Default allocation: PBA=30K for Rx, leaving 10K for Tx.
|
|
* Note: default does not leave enough room for Jumbo Frame >10k.
|
|
*/
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82547:
|
|
case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
|
|
if (adapter->max_frame_size > 8192)
|
|
pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
|
|
else
|
|
pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
|
|
adapter->tx_fifo_head = 0;
|
|
adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
|
|
adapter->tx_fifo_size =
|
|
(E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
|
|
break;
|
|
default:
|
|
/* Devices before 82547 had a Packet Buffer of 64K. */
|
|
if (adapter->max_frame_size > 8192)
|
|
pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
|
|
else
|
|
pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
|
|
}
|
|
|
|
INIT_DEBUGOUT1("lem_init: pba=%dK",pba);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
|
|
|
|
/* Get the latest mac address, User can use a LAA */
|
|
bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
|
|
ETHER_ADDR_LEN);
|
|
|
|
/* Put the address into the Receive Address Array */
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
|
|
/* Initialize the hardware */
|
|
if (lem_hardware_init(adapter)) {
|
|
device_printf(dev, "Unable to initialize the hardware\n");
|
|
return;
|
|
}
|
|
lem_update_link_status(adapter);
|
|
|
|
/* Setup VLAN support, basic and offload if available */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
|
|
|
|
/* Set hardware offload abilities */
|
|
ifp->if_hwassist = 0;
|
|
if (adapter->hw.mac.type >= e1000_82543) {
|
|
if (ifp->if_capenable & IFCAP_TXCSUM)
|
|
ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
|
|
}
|
|
|
|
/* Configure for OS presence */
|
|
lem_init_manageability(adapter);
|
|
|
|
/* Prepare transmit descriptors and buffers */
|
|
lem_setup_transmit_structures(adapter);
|
|
lem_initialize_transmit_unit(adapter);
|
|
|
|
/* Setup Multicast table */
|
|
lem_set_multi(adapter);
|
|
|
|
/* Prepare receive descriptors and buffers */
|
|
if (lem_setup_receive_structures(adapter)) {
|
|
device_printf(dev, "Could not setup receive structures\n");
|
|
EM_TX_LOCK(adapter);
|
|
lem_stop(adapter);
|
|
EM_TX_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
lem_initialize_receive_unit(adapter);
|
|
|
|
/* Use real VLAN Filter support? */
|
|
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
|
|
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
|
|
/* Use real VLAN Filter support */
|
|
lem_setup_vlan_hw_support(adapter);
|
|
else {
|
|
u32 ctrl;
|
|
ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
|
|
ctrl |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
|
|
}
|
|
}
|
|
|
|
/* Don't lose promiscuous settings */
|
|
lem_set_promisc(adapter);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
callout_reset(&adapter->timer, hz, lem_local_timer, adapter);
|
|
e1000_clear_hw_cntrs_base_generic(&adapter->hw);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* Only enable interrupts if we are not polling, make sure
|
|
* they are off otherwise.
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
lem_disable_intr(adapter);
|
|
else
|
|
#endif /* DEVICE_POLLING */
|
|
lem_enable_intr(adapter);
|
|
|
|
/* AMT based hardware can now take control from firmware */
|
|
if (adapter->has_manage && adapter->has_amt)
|
|
lem_get_hw_control(adapter);
|
|
}
|
|
|
|
static void
|
|
lem_init(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
lem_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*********************************************************************
|
|
*
|
|
* Legacy polling routine
|
|
*
|
|
*********************************************************************/
|
|
static int
|
|
lem_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u32 reg_icr, rx_done = 0;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
EM_CORE_UNLOCK(adapter);
|
|
return (rx_done);
|
|
}
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
callout_stop(&adapter->timer);
|
|
adapter->hw.mac.get_link_status = 1;
|
|
lem_update_link_status(adapter);
|
|
callout_reset(&adapter->timer, hz,
|
|
lem_local_timer, adapter);
|
|
}
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
|
|
lem_rxeof(adapter, count, &rx_done);
|
|
|
|
EM_TX_LOCK(adapter);
|
|
lem_txeof(adapter);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
lem_start_locked(ifp);
|
|
EM_TX_UNLOCK(adapter);
|
|
return (rx_done);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Legacy Interrupt Service routine
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
lem_intr(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
u32 reg_icr;
|
|
|
|
|
|
if ((ifp->if_capenable & IFCAP_POLLING) ||
|
|
((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0))
|
|
return;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
if (reg_icr & E1000_ICR_RXO)
|
|
adapter->rx_overruns++;
|
|
|
|
if ((reg_icr == 0xffffffff) || (reg_icr == 0)) {
|
|
EM_CORE_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
callout_stop(&adapter->timer);
|
|
adapter->hw.mac.get_link_status = 1;
|
|
lem_update_link_status(adapter);
|
|
/* Deal with TX cruft when link lost */
|
|
lem_tx_purge(adapter);
|
|
callout_reset(&adapter->timer, hz,
|
|
lem_local_timer, adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
EM_CORE_UNLOCK(adapter);
|
|
lem_rxeof(adapter, -1, NULL);
|
|
|
|
EM_TX_LOCK(adapter);
|
|
lem_txeof(adapter);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
|
|
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
lem_start_locked(ifp);
|
|
EM_TX_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
lem_handle_link(void *context, int pending)
|
|
{
|
|
struct adapter *adapter = context;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
return;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
callout_stop(&adapter->timer);
|
|
lem_update_link_status(adapter);
|
|
/* Deal with TX cruft when link lost */
|
|
lem_tx_purge(adapter);
|
|
callout_reset(&adapter->timer, hz, lem_local_timer, adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
|
|
/* Combined RX/TX handler, used by Legacy and MSI */
|
|
static void
|
|
lem_handle_rxtx(void *context, int pending)
|
|
{
|
|
struct adapter *adapter = context;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
bool more = lem_rxeof(adapter, adapter->rx_process_limit, NULL);
|
|
EM_TX_LOCK(adapter);
|
|
lem_txeof(adapter);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
lem_start_locked(ifp);
|
|
EM_TX_UNLOCK(adapter);
|
|
if (more) {
|
|
taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
lem_enable_intr(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Fast Legacy/MSI Combined Interrupt Service routine
|
|
*
|
|
*********************************************************************/
|
|
static int
|
|
lem_irq_fast(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp;
|
|
u32 reg_icr;
|
|
|
|
ifp = adapter->ifp;
|
|
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
|
|
/* Hot eject? */
|
|
if (reg_icr == 0xffffffff)
|
|
return FILTER_STRAY;
|
|
|
|
/* Definitely not our interrupt. */
|
|
if (reg_icr == 0x0)
|
|
return FILTER_STRAY;
|
|
|
|
/*
|
|
* Mask interrupts until the taskqueue is finished running. This is
|
|
* cheap, just assume that it is needed. This also works around the
|
|
* MSI message reordering errata on certain systems.
|
|
*/
|
|
lem_disable_intr(adapter);
|
|
taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
|
|
|
|
/* Link status change */
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
adapter->hw.mac.get_link_status = 1;
|
|
taskqueue_enqueue(taskqueue_fast, &adapter->link_task);
|
|
}
|
|
|
|
if (reg_icr & E1000_ICR_RXO)
|
|
adapter->rx_overruns++;
|
|
return FILTER_HANDLED;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called whenever the user queries the status of
|
|
* the interface using ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u_char fiber_type = IFM_1000_SX;
|
|
|
|
INIT_DEBUGOUT("lem_media_status: begin");
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
lem_update_link_status(adapter);
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
if (!adapter->link_active) {
|
|
EM_CORE_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
|
|
if (adapter->hw.mac.type == e1000_82545)
|
|
fiber_type = IFM_1000_LX;
|
|
ifmr->ifm_active |= fiber_type | IFM_FDX;
|
|
} else {
|
|
switch (adapter->link_speed) {
|
|
case 10:
|
|
ifmr->ifm_active |= IFM_10_T;
|
|
break;
|
|
case 100:
|
|
ifmr->ifm_active |= IFM_100_TX;
|
|
break;
|
|
case 1000:
|
|
ifmr->ifm_active |= IFM_1000_T;
|
|
break;
|
|
}
|
|
if (adapter->link_duplex == FULL_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called when the user changes speed/duplex using
|
|
* media/mediopt option with ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
lem_media_change(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct ifmedia *ifm = &adapter->media;
|
|
|
|
INIT_DEBUGOUT("lem_media_change: begin");
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return (EINVAL);
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
switch (IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
break;
|
|
case IFM_1000_LX:
|
|
case IFM_1000_SX:
|
|
case IFM_1000_T:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
|
|
break;
|
|
case IFM_100_TX:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
|
|
break;
|
|
case IFM_10_T:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
|
|
break;
|
|
default:
|
|
device_printf(adapter->dev, "Unsupported media type\n");
|
|
}
|
|
|
|
lem_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine maps the mbufs to tx descriptors.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static int
|
|
lem_xmit(struct adapter *adapter, struct mbuf **m_headp)
|
|
{
|
|
bus_dma_segment_t segs[EM_MAX_SCATTER];
|
|
bus_dmamap_t map;
|
|
struct em_buffer *tx_buffer, *tx_buffer_mapped;
|
|
struct e1000_tx_desc *ctxd = NULL;
|
|
struct mbuf *m_head;
|
|
u32 txd_upper, txd_lower, txd_used, txd_saved;
|
|
int error, nsegs, i, j, first, last = 0;
|
|
|
|
m_head = *m_headp;
|
|
txd_upper = txd_lower = txd_used = txd_saved = 0;
|
|
|
|
/*
|
|
** When doing checksum offload, it is critical to
|
|
** make sure the first mbuf has more than header,
|
|
** because that routine expects data to be present.
|
|
*/
|
|
if ((m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) &&
|
|
(m_head->m_len < ETHER_HDR_LEN + sizeof(struct ip))) {
|
|
m_head = m_pullup(m_head, ETHER_HDR_LEN + sizeof(struct ip));
|
|
*m_headp = m_head;
|
|
if (m_head == NULL)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/*
|
|
* Map the packet for DMA
|
|
*
|
|
* Capture the first descriptor index,
|
|
* this descriptor will have the index
|
|
* of the EOP which is the only one that
|
|
* now gets a DONE bit writeback.
|
|
*/
|
|
first = adapter->next_avail_tx_desc;
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
tx_buffer_mapped = tx_buffer;
|
|
map = tx_buffer->map;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
/*
|
|
* There are two types of errors we can (try) to handle:
|
|
* - EFBIG means the mbuf chain was too long and bus_dma ran
|
|
* out of segments. Defragment the mbuf chain and try again.
|
|
* - ENOMEM means bus_dma could not obtain enough bounce buffers
|
|
* at this point in time. Defer sending and try again later.
|
|
* All other errors, in particular EINVAL, are fatal and prevent the
|
|
* mbuf chain from ever going through. Drop it and report error.
|
|
*/
|
|
if (error == EFBIG) {
|
|
struct mbuf *m;
|
|
|
|
m = m_defrag(*m_headp, M_NOWAIT);
|
|
if (m == NULL) {
|
|
adapter->mbuf_alloc_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m;
|
|
|
|
/* Try it again */
|
|
error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error) {
|
|
adapter->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0) {
|
|
adapter->no_tx_dma_setup++;
|
|
return (error);
|
|
}
|
|
|
|
if (nsegs > (adapter->num_tx_desc_avail - 2)) {
|
|
adapter->no_tx_desc_avail2++;
|
|
bus_dmamap_unload(adapter->txtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
m_head = *m_headp;
|
|
|
|
/* Do hardware assists */
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)
|
|
lem_transmit_checksum_setup(adapter, m_head,
|
|
&txd_upper, &txd_lower);
|
|
|
|
i = adapter->next_avail_tx_desc;
|
|
if (adapter->pcix_82544)
|
|
txd_saved = i;
|
|
|
|
/* Set up our transmit descriptors */
|
|
for (j = 0; j < nsegs; j++) {
|
|
bus_size_t seg_len;
|
|
bus_addr_t seg_addr;
|
|
/* If adapter is 82544 and on PCIX bus */
|
|
if(adapter->pcix_82544) {
|
|
DESC_ARRAY desc_array;
|
|
u32 array_elements, counter;
|
|
/*
|
|
* Check the Address and Length combination and
|
|
* split the data accordingly
|
|
*/
|
|
array_elements = lem_fill_descriptors(segs[j].ds_addr,
|
|
segs[j].ds_len, &desc_array);
|
|
for (counter = 0; counter < array_elements; counter++) {
|
|
if (txd_used == adapter->num_tx_desc_avail) {
|
|
adapter->next_avail_tx_desc = txd_saved;
|
|
adapter->no_tx_desc_avail2++;
|
|
bus_dmamap_unload(adapter->txtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
tx_buffer = &adapter->tx_buffer_area[i];
|
|
ctxd = &adapter->tx_desc_base[i];
|
|
ctxd->buffer_addr = htole64(
|
|
desc_array.descriptor[counter].address);
|
|
ctxd->lower.data = htole32(
|
|
(adapter->txd_cmd | txd_lower | (u16)
|
|
desc_array.descriptor[counter].length));
|
|
ctxd->upper.data =
|
|
htole32((txd_upper));
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
txd_used++;
|
|
}
|
|
} else {
|
|
tx_buffer = &adapter->tx_buffer_area[i];
|
|
ctxd = &adapter->tx_desc_base[i];
|
|
seg_addr = segs[j].ds_addr;
|
|
seg_len = segs[j].ds_len;
|
|
ctxd->buffer_addr = htole64(seg_addr);
|
|
ctxd->lower.data = htole32(
|
|
adapter->txd_cmd | txd_lower | seg_len);
|
|
ctxd->upper.data =
|
|
htole32(txd_upper);
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
}
|
|
}
|
|
|
|
adapter->next_avail_tx_desc = i;
|
|
|
|
if (adapter->pcix_82544)
|
|
adapter->num_tx_desc_avail -= txd_used;
|
|
else
|
|
adapter->num_tx_desc_avail -= nsegs;
|
|
|
|
if (m_head->m_flags & M_VLANTAG) {
|
|
/* Set the vlan id. */
|
|
ctxd->upper.fields.special =
|
|
htole16(m_head->m_pkthdr.ether_vtag);
|
|
/* Tell hardware to add tag */
|
|
ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
|
|
}
|
|
|
|
tx_buffer->m_head = m_head;
|
|
tx_buffer_mapped->map = tx_buffer->map;
|
|
tx_buffer->map = map;
|
|
bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Last Descriptor of Packet
|
|
* needs End Of Packet (EOP)
|
|
* and Report Status (RS)
|
|
*/
|
|
ctxd->lower.data |=
|
|
htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
|
|
/*
|
|
* Keep track in the first buffer which
|
|
* descriptor will be written back
|
|
*/
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
tx_buffer->next_eop = last;
|
|
adapter->watchdog_time = ticks;
|
|
|
|
/*
|
|
* Advance the Transmit Descriptor Tail (TDT), this tells the E1000
|
|
* that this frame is available to transmit.
|
|
*/
|
|
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef NIC_PARAVIRT
|
|
if (adapter->csb) {
|
|
adapter->csb->guest_tdt = i;
|
|
/* XXX memory barrier ? */
|
|
if (adapter->csb->guest_csb_on &&
|
|
!(adapter->csb->host_need_txkick & 1)) {
|
|
/* XXX maybe useless
|
|
* clean the ring. maybe do it before ?
|
|
* maybe a little bit of histeresys ?
|
|
*/
|
|
if (adapter->num_tx_desc_avail <= 64) {// XXX
|
|
lem_txeof(adapter);
|
|
}
|
|
return (0);
|
|
}
|
|
}
|
|
#endif /* NIC_PARAVIRT */
|
|
|
|
#ifdef NIC_SEND_COMBINING
|
|
if (adapter->sc_enable) {
|
|
if (adapter->shadow_tdt & MIT_PENDING_INT) {
|
|
/* signal intr and data pending */
|
|
adapter->shadow_tdt = MIT_PENDING_TDT | (i & 0xffff);
|
|
return (0);
|
|
} else {
|
|
adapter->shadow_tdt = MIT_PENDING_INT;
|
|
}
|
|
}
|
|
#endif /* NIC_SEND_COMBINING */
|
|
|
|
if (adapter->hw.mac.type == e1000_82547 &&
|
|
adapter->link_duplex == HALF_DUPLEX)
|
|
lem_82547_move_tail(adapter);
|
|
else {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
|
|
if (adapter->hw.mac.type == e1000_82547)
|
|
lem_82547_update_fifo_head(adapter,
|
|
m_head->m_pkthdr.len);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* 82547 workaround to avoid controller hang in half-duplex environment.
|
|
* The workaround is to avoid queuing a large packet that would span
|
|
* the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
|
|
* in this case. We do that only when FIFO is quiescent.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_82547_move_tail(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct e1000_tx_desc *tx_desc;
|
|
u16 hw_tdt, sw_tdt, length = 0;
|
|
bool eop = 0;
|
|
|
|
EM_TX_LOCK_ASSERT(adapter);
|
|
|
|
hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
|
|
sw_tdt = adapter->next_avail_tx_desc;
|
|
|
|
while (hw_tdt != sw_tdt) {
|
|
tx_desc = &adapter->tx_desc_base[hw_tdt];
|
|
length += tx_desc->lower.flags.length;
|
|
eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
|
|
if (++hw_tdt == adapter->num_tx_desc)
|
|
hw_tdt = 0;
|
|
|
|
if (eop) {
|
|
if (lem_82547_fifo_workaround(adapter, length)) {
|
|
adapter->tx_fifo_wrk_cnt++;
|
|
callout_reset(&adapter->tx_fifo_timer, 1,
|
|
lem_82547_move_tail, adapter);
|
|
break;
|
|
}
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
|
|
lem_82547_update_fifo_head(adapter, length);
|
|
length = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
lem_82547_fifo_workaround(struct adapter *adapter, int len)
|
|
{
|
|
int fifo_space, fifo_pkt_len;
|
|
|
|
fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
|
|
|
|
if (adapter->link_duplex == HALF_DUPLEX) {
|
|
fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
|
|
|
|
if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
|
|
if (lem_82547_tx_fifo_reset(adapter))
|
|
return (0);
|
|
else
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
lem_82547_update_fifo_head(struct adapter *adapter, int len)
|
|
{
|
|
int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
|
|
|
|
/* tx_fifo_head is always 16 byte aligned */
|
|
adapter->tx_fifo_head += fifo_pkt_len;
|
|
if (adapter->tx_fifo_head >= adapter->tx_fifo_size) {
|
|
adapter->tx_fifo_head -= adapter->tx_fifo_size;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
lem_82547_tx_fifo_reset(struct adapter *adapter)
|
|
{
|
|
u32 tctl;
|
|
|
|
if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
|
|
E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
|
|
(E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
|
|
E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
|
|
(E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
|
|
E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
|
|
(E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
|
|
/* Disable TX unit */
|
|
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
|
|
tctl & ~E1000_TCTL_EN);
|
|
|
|
/* Reset FIFO pointers */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
|
|
adapter->tx_head_addr);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
|
|
adapter->tx_head_addr);
|
|
|
|
/* Re-enable TX unit */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
|
|
adapter->tx_fifo_head = 0;
|
|
adapter->tx_fifo_reset_cnt++;
|
|
|
|
return (TRUE);
|
|
}
|
|
else {
|
|
return (FALSE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
lem_set_promisc(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
u32 reg_rctl;
|
|
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
/* Turn this on if you want to see bad packets */
|
|
if (lem_debug_sbp)
|
|
reg_rctl |= E1000_RCTL_SBP;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
} else if (ifp->if_flags & IFF_ALLMULTI) {
|
|
reg_rctl |= E1000_RCTL_MPE;
|
|
reg_rctl &= ~E1000_RCTL_UPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
}
|
|
}
|
|
|
|
static void
|
|
lem_disable_promisc(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
u32 reg_rctl;
|
|
int mcnt = 0;
|
|
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl &= (~E1000_RCTL_UPE);
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
mcnt = MAX_NUM_MULTICAST_ADDRESSES;
|
|
else {
|
|
struct ifmultiaddr *ifma;
|
|
#if __FreeBSD_version < 800000
|
|
IF_ADDR_LOCK(ifp);
|
|
#else
|
|
if_maddr_rlock(ifp);
|
|
#endif
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
|
|
break;
|
|
mcnt++;
|
|
}
|
|
#if __FreeBSD_version < 800000
|
|
IF_ADDR_UNLOCK(ifp);
|
|
#else
|
|
if_maddr_runlock(ifp);
|
|
#endif
|
|
}
|
|
/* Don't disable if in MAX groups */
|
|
if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
|
|
reg_rctl &= (~E1000_RCTL_MPE);
|
|
reg_rctl &= (~E1000_RCTL_SBP);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Multicast Update
|
|
*
|
|
* This routine is called whenever multicast address list is updated.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
lem_set_multi(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct ifmultiaddr *ifma;
|
|
u32 reg_rctl = 0;
|
|
u8 *mta; /* Multicast array memory */
|
|
int mcnt = 0;
|
|
|
|
IOCTL_DEBUGOUT("lem_set_multi: begin");
|
|
|
|
mta = adapter->mta;
|
|
bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
|
|
|
|
if (adapter->hw.mac.type == e1000_82542 &&
|
|
adapter->hw.revision_id == E1000_REVISION_2) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
|
e1000_pci_clear_mwi(&adapter->hw);
|
|
reg_rctl |= E1000_RCTL_RST;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
msec_delay(5);
|
|
}
|
|
|
|
#if __FreeBSD_version < 800000
|
|
IF_ADDR_LOCK(ifp);
|
|
#else
|
|
if_maddr_rlock(ifp);
|
|
#endif
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
|
|
if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
|
|
break;
|
|
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
&mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
|
|
mcnt++;
|
|
}
|
|
#if __FreeBSD_version < 800000
|
|
IF_ADDR_UNLOCK(ifp);
|
|
#else
|
|
if_maddr_runlock(ifp);
|
|
#endif
|
|
if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
} else
|
|
e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
|
|
|
|
if (adapter->hw.mac.type == e1000_82542 &&
|
|
adapter->hw.revision_id == E1000_REVISION_2) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl &= ~E1000_RCTL_RST;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
msec_delay(5);
|
|
if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
|
e1000_pci_set_mwi(&adapter->hw);
|
|
}
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Timer routine
|
|
*
|
|
* This routine checks for link status and updates statistics.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
lem_local_timer(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
|
|
EM_CORE_LOCK_ASSERT(adapter);
|
|
|
|
lem_update_link_status(adapter);
|
|
lem_update_stats_counters(adapter);
|
|
|
|
lem_smartspeed(adapter);
|
|
|
|
#ifdef NIC_PARAVIRT
|
|
/* recover space if needed */
|
|
if (adapter->csb && adapter->csb->guest_csb_on &&
|
|
(adapter->watchdog_check == TRUE) &&
|
|
(ticks - adapter->watchdog_time > EM_WATCHDOG) &&
|
|
(adapter->num_tx_desc_avail != adapter->num_tx_desc) ) {
|
|
lem_txeof(adapter);
|
|
/*
|
|
* lem_txeof() normally (except when space in the queue
|
|
* runs low XXX) cleans watchdog_check so that
|
|
* we do not hung.
|
|
*/
|
|
}
|
|
#endif /* NIC_PARAVIRT */
|
|
/*
|
|
* We check the watchdog: the time since
|
|
* the last TX descriptor was cleaned.
|
|
* This implies a functional TX engine.
|
|
*/
|
|
if ((adapter->watchdog_check == TRUE) &&
|
|
(ticks - adapter->watchdog_time > EM_WATCHDOG))
|
|
goto hung;
|
|
|
|
callout_reset(&adapter->timer, hz, lem_local_timer, adapter);
|
|
return;
|
|
hung:
|
|
device_printf(adapter->dev, "Watchdog timeout -- resetting\n");
|
|
adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
adapter->watchdog_events++;
|
|
lem_init_locked(adapter);
|
|
}
|
|
|
|
static void
|
|
lem_update_link_status(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
u32 link_check = 0;
|
|
|
|
/* Get the cached link value or read phy for real */
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
if (hw->mac.get_link_status) {
|
|
/* Do the work to read phy */
|
|
e1000_check_for_link(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
if (link_check) /* ESB2 fix */
|
|
e1000_cfg_on_link_up(hw);
|
|
} else
|
|
link_check = TRUE;
|
|
break;
|
|
case e1000_media_type_fiber:
|
|
e1000_check_for_link(hw);
|
|
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
|
|
E1000_STATUS_LU);
|
|
break;
|
|
case e1000_media_type_internal_serdes:
|
|
e1000_check_for_link(hw);
|
|
link_check = adapter->hw.mac.serdes_has_link;
|
|
break;
|
|
default:
|
|
case e1000_media_type_unknown:
|
|
break;
|
|
}
|
|
|
|
/* Now check for a transition */
|
|
if (link_check && (adapter->link_active == 0)) {
|
|
e1000_get_speed_and_duplex(hw, &adapter->link_speed,
|
|
&adapter->link_duplex);
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is up %d Mbps %s\n",
|
|
adapter->link_speed,
|
|
((adapter->link_duplex == FULL_DUPLEX) ?
|
|
"Full Duplex" : "Half Duplex"));
|
|
adapter->link_active = 1;
|
|
adapter->smartspeed = 0;
|
|
ifp->if_baudrate = adapter->link_speed * 1000000;
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
} else if (!link_check && (adapter->link_active == 1)) {
|
|
ifp->if_baudrate = adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is Down\n");
|
|
adapter->link_active = 0;
|
|
/* Link down, disable watchdog */
|
|
adapter->watchdog_check = FALSE;
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine disables all traffic on the adapter by issuing a
|
|
* global reset on the MAC and deallocates TX/RX buffers.
|
|
*
|
|
* This routine should always be called with BOTH the CORE
|
|
* and TX locks.
|
|
**********************************************************************/
|
|
|
|
static void
|
|
lem_stop(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
EM_CORE_LOCK_ASSERT(adapter);
|
|
EM_TX_LOCK_ASSERT(adapter);
|
|
|
|
INIT_DEBUGOUT("lem_stop: begin");
|
|
|
|
lem_disable_intr(adapter);
|
|
callout_stop(&adapter->timer);
|
|
callout_stop(&adapter->tx_fifo_timer);
|
|
|
|
/* Tell the stack that the interface is no longer active */
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
e1000_reset_hw(&adapter->hw);
|
|
if (adapter->hw.mac.type >= e1000_82544)
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
|
|
|
|
e1000_led_off(&adapter->hw);
|
|
e1000_cleanup_led(&adapter->hw);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Determine hardware revision.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_identify_hardware(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
/* Make sure our PCI config space has the necessary stuff set */
|
|
pci_enable_busmaster(dev);
|
|
adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
|
|
/* Save off the information about this board */
|
|
adapter->hw.vendor_id = pci_get_vendor(dev);
|
|
adapter->hw.device_id = pci_get_device(dev);
|
|
adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
|
|
adapter->hw.subsystem_vendor_id =
|
|
pci_read_config(dev, PCIR_SUBVEND_0, 2);
|
|
adapter->hw.subsystem_device_id =
|
|
pci_read_config(dev, PCIR_SUBDEV_0, 2);
|
|
|
|
/* Do Shared Code Init and Setup */
|
|
if (e1000_set_mac_type(&adapter->hw)) {
|
|
device_printf(dev, "Setup init failure\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int
|
|
lem_allocate_pci_resources(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int val, rid, error = E1000_SUCCESS;
|
|
|
|
rid = PCIR_BAR(0);
|
|
adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&rid, RF_ACTIVE);
|
|
if (adapter->memory == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: memory\n");
|
|
return (ENXIO);
|
|
}
|
|
adapter->osdep.mem_bus_space_tag =
|
|
rman_get_bustag(adapter->memory);
|
|
adapter->osdep.mem_bus_space_handle =
|
|
rman_get_bushandle(adapter->memory);
|
|
adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
|
|
|
|
/* Only older adapters use IO mapping */
|
|
if (adapter->hw.mac.type > e1000_82543) {
|
|
/* Figure our where our IO BAR is ? */
|
|
for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
|
|
val = pci_read_config(dev, rid, 4);
|
|
if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
|
|
adapter->io_rid = rid;
|
|
break;
|
|
}
|
|
rid += 4;
|
|
/* check for 64bit BAR */
|
|
if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
|
|
rid += 4;
|
|
}
|
|
if (rid >= PCIR_CIS) {
|
|
device_printf(dev, "Unable to locate IO BAR\n");
|
|
return (ENXIO);
|
|
}
|
|
adapter->ioport = bus_alloc_resource_any(dev,
|
|
SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
|
|
if (adapter->ioport == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: "
|
|
"ioport\n");
|
|
return (ENXIO);
|
|
}
|
|
adapter->hw.io_base = 0;
|
|
adapter->osdep.io_bus_space_tag =
|
|
rman_get_bustag(adapter->ioport);
|
|
adapter->osdep.io_bus_space_handle =
|
|
rman_get_bushandle(adapter->ioport);
|
|
}
|
|
|
|
adapter->hw.back = &adapter->osdep;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup the Legacy or MSI Interrupt handler
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
lem_allocate_irq(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int error, rid = 0;
|
|
|
|
/* Manually turn off all interrupts */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
|
|
|
|
/* We allocate a single interrupt resource */
|
|
adapter->res[0] = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (adapter->res[0] == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: "
|
|
"interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Do Legacy setup? */
|
|
if (lem_use_legacy_irq) {
|
|
if ((error = bus_setup_intr(dev, adapter->res[0],
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL, lem_intr, adapter,
|
|
&adapter->tag[0])) != 0) {
|
|
device_printf(dev,
|
|
"Failed to register interrupt handler");
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Use a Fast interrupt and the associated
|
|
* deferred processing contexts.
|
|
*/
|
|
TASK_INIT(&adapter->rxtx_task, 0, lem_handle_rxtx, adapter);
|
|
TASK_INIT(&adapter->link_task, 0, lem_handle_link, adapter);
|
|
adapter->tq = taskqueue_create_fast("lem_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &adapter->tq);
|
|
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
|
|
device_get_nameunit(adapter->dev));
|
|
if ((error = bus_setup_intr(dev, adapter->res[0],
|
|
INTR_TYPE_NET, lem_irq_fast, NULL, adapter,
|
|
&adapter->tag[0])) != 0) {
|
|
device_printf(dev, "Failed to register fast interrupt "
|
|
"handler: %d\n", error);
|
|
taskqueue_free(adapter->tq);
|
|
adapter->tq = NULL;
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static void
|
|
lem_free_pci_resources(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
|
|
if (adapter->tag[0] != NULL) {
|
|
bus_teardown_intr(dev, adapter->res[0],
|
|
adapter->tag[0]);
|
|
adapter->tag[0] = NULL;
|
|
}
|
|
|
|
if (adapter->res[0] != NULL) {
|
|
bus_release_resource(dev, SYS_RES_IRQ,
|
|
0, adapter->res[0]);
|
|
}
|
|
|
|
if (adapter->memory != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(0), adapter->memory);
|
|
|
|
if (adapter->ioport != NULL)
|
|
bus_release_resource(dev, SYS_RES_IOPORT,
|
|
adapter->io_rid, adapter->ioport);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize the hardware to a configuration
|
|
* as specified by the adapter structure.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
lem_hardware_init(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
u16 rx_buffer_size;
|
|
|
|
INIT_DEBUGOUT("lem_hardware_init: begin");
|
|
|
|
/* Issue a global reset */
|
|
e1000_reset_hw(&adapter->hw);
|
|
|
|
/* When hardware is reset, fifo_head is also reset */
|
|
adapter->tx_fifo_head = 0;
|
|
|
|
/*
|
|
* These parameters control the automatic generation (Tx) and
|
|
* response (Rx) to Ethernet PAUSE frames.
|
|
* - High water mark should allow for at least two frames to be
|
|
* received after sending an XOFF.
|
|
* - Low water mark works best when it is very near the high water mark.
|
|
* This allows the receiver to restart by sending XON when it has
|
|
* drained a bit. Here we use an arbitary value of 1500 which will
|
|
* restart after one full frame is pulled from the buffer. There
|
|
* could be several smaller frames in the buffer and if so they will
|
|
* not trigger the XON until their total number reduces the buffer
|
|
* by 1500.
|
|
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
|
|
*/
|
|
rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_PBA) &
|
|
0xffff) << 10 );
|
|
|
|
adapter->hw.fc.high_water = rx_buffer_size -
|
|
roundup2(adapter->max_frame_size, 1024);
|
|
adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
|
|
|
|
adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
|
|
adapter->hw.fc.send_xon = TRUE;
|
|
|
|
/* Set Flow control, use the tunable location if sane */
|
|
if ((lem_fc_setting >= 0) && (lem_fc_setting < 4))
|
|
adapter->hw.fc.requested_mode = lem_fc_setting;
|
|
else
|
|
adapter->hw.fc.requested_mode = e1000_fc_none;
|
|
|
|
if (e1000_init_hw(&adapter->hw) < 0) {
|
|
device_printf(dev, "Hardware Initialization Failed\n");
|
|
return (EIO);
|
|
}
|
|
|
|
e1000_check_for_link(&adapter->hw);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup networking device structure and register an interface.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
lem_setup_interface(device_t dev, struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
INIT_DEBUGOUT("lem_setup_interface: begin");
|
|
|
|
ifp = adapter->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not allocate ifnet structure\n");
|
|
return (-1);
|
|
}
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_init = lem_init;
|
|
ifp->if_softc = adapter;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = lem_ioctl;
|
|
ifp->if_start = lem_start;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
ether_ifattach(ifp, adapter->hw.mac.addr);
|
|
|
|
ifp->if_capabilities = ifp->if_capenable = 0;
|
|
|
|
if (adapter->hw.mac.type >= e1000_82543) {
|
|
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
|
|
ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
|
|
}
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
|
|
ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
|
|
|
|
/*
|
|
** Dont turn this on by default, if vlans are
|
|
** created on another pseudo device (eg. lagg)
|
|
** then vlan events are not passed thru, breaking
|
|
** operation, but with HW FILTER off it works. If
|
|
** using vlans directly on the em driver you can
|
|
** enable this and get full hardware tag filtering.
|
|
*/
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
|
|
/* Enable only WOL MAGIC by default */
|
|
if (adapter->wol) {
|
|
ifp->if_capabilities |= IFCAP_WOL;
|
|
ifp->if_capenable |= IFCAP_WOL_MAGIC;
|
|
}
|
|
|
|
/*
|
|
* Specify the media types supported by this adapter and register
|
|
* callbacks to update media and link information
|
|
*/
|
|
ifmedia_init(&adapter->media, IFM_IMASK,
|
|
lem_media_change, lem_media_status);
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
|
|
u_char fiber_type = IFM_1000_SX; /* default type */
|
|
|
|
if (adapter->hw.mac.type == e1000_82545)
|
|
fiber_type = IFM_1000_LX;
|
|
ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
|
|
} else {
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
|
|
0, NULL);
|
|
if (adapter->hw.phy.type != e1000_phy_ife) {
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T, 0, NULL);
|
|
}
|
|
}
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Workaround for SmartSpeed on 82541 and 82547 controllers
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_smartspeed(struct adapter *adapter)
|
|
{
|
|
u16 phy_tmp;
|
|
|
|
if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
|
|
adapter->hw.mac.autoneg == 0 ||
|
|
(adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
|
|
return;
|
|
|
|
if (adapter->smartspeed == 0) {
|
|
/* If Master/Slave config fault is asserted twice,
|
|
* we assume back-to-back */
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
|
|
if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
|
|
return;
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
|
|
if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
|
|
e1000_read_phy_reg(&adapter->hw,
|
|
PHY_1000T_CTRL, &phy_tmp);
|
|
if(phy_tmp & CR_1000T_MS_ENABLE) {
|
|
phy_tmp &= ~CR_1000T_MS_ENABLE;
|
|
e1000_write_phy_reg(&adapter->hw,
|
|
PHY_1000T_CTRL, phy_tmp);
|
|
adapter->smartspeed++;
|
|
if(adapter->hw.mac.autoneg &&
|
|
!e1000_copper_link_autoneg(&adapter->hw) &&
|
|
!e1000_read_phy_reg(&adapter->hw,
|
|
PHY_CONTROL, &phy_tmp)) {
|
|
phy_tmp |= (MII_CR_AUTO_NEG_EN |
|
|
MII_CR_RESTART_AUTO_NEG);
|
|
e1000_write_phy_reg(&adapter->hw,
|
|
PHY_CONTROL, phy_tmp);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
|
|
/* If still no link, perhaps using 2/3 pair cable */
|
|
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
|
|
phy_tmp |= CR_1000T_MS_ENABLE;
|
|
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
|
|
if(adapter->hw.mac.autoneg &&
|
|
!e1000_copper_link_autoneg(&adapter->hw) &&
|
|
!e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
|
|
phy_tmp |= (MII_CR_AUTO_NEG_EN |
|
|
MII_CR_RESTART_AUTO_NEG);
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
|
|
}
|
|
}
|
|
/* Restart process after EM_SMARTSPEED_MAX iterations */
|
|
if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
|
|
adapter->smartspeed = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Manage DMA'able memory.
|
|
*/
|
|
static void
|
|
lem_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
if (error)
|
|
return;
|
|
*(bus_addr_t *) arg = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
lem_dma_malloc(struct adapter *adapter, bus_size_t size,
|
|
struct em_dma_alloc *dma, int mapflags)
|
|
{
|
|
int error;
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
|
|
EM_DBA_ALIGN, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
size, /* maxsize */
|
|
1, /* nsegments */
|
|
size, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&dma->dma_tag);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dma_tag_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamem_alloc(%ju) failed: %d\n",
|
|
__func__, (uintmax_t)size, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
dma->dma_paddr = 0;
|
|
error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
|
|
size, lem_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
|
|
if (error || dma->dma_paddr == 0) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamap_load failed: %d\n",
|
|
__func__, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail_3:
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
fail_2:
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
fail_0:
|
|
dma->dma_map = NULL;
|
|
dma->dma_tag = NULL;
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
lem_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
|
|
{
|
|
if (dma->dma_tag == NULL)
|
|
return;
|
|
if (dma->dma_map != NULL) {
|
|
bus_dmamap_sync(dma->dma_tag, dma->dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
dma->dma_map = NULL;
|
|
}
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
dma->dma_tag = NULL;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for tx_buffer structures. The tx_buffer stores all
|
|
* the information needed to transmit a packet on the wire.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
lem_allocate_transmit_structures(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct em_buffer *tx_buffer;
|
|
int error;
|
|
|
|
/*
|
|
* Create DMA tags for tx descriptors
|
|
*/
|
|
if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * EM_MAX_SCATTER, /* maxsize */
|
|
EM_MAX_SCATTER, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&adapter->txtag)) != 0) {
|
|
device_printf(dev, "Unable to allocate TX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) *
|
|
adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (adapter->tx_buffer_area == NULL) {
|
|
device_printf(dev, "Unable to allocate tx_buffer memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the descriptor buffer dma maps */
|
|
for (int i = 0; i < adapter->num_tx_desc; i++) {
|
|
tx_buffer = &adapter->tx_buffer_area[i];
|
|
error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
|
|
if (error != 0) {
|
|
device_printf(dev, "Unable to create TX DMA map\n");
|
|
goto fail;
|
|
}
|
|
tx_buffer->next_eop = -1;
|
|
}
|
|
|
|
return (0);
|
|
fail:
|
|
lem_free_transmit_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* (Re)Initialize transmit structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_setup_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct em_buffer *tx_buffer;
|
|
#ifdef DEV_NETMAP
|
|
/* we are already locked */
|
|
struct netmap_adapter *na = NA(adapter->ifp);
|
|
struct netmap_slot *slot = netmap_reset(na, NR_TX, 0, 0);
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/* Clear the old ring contents */
|
|
bzero(adapter->tx_desc_base,
|
|
(sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
|
|
|
|
/* Free any existing TX buffers */
|
|
for (int i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
|
|
tx_buffer = &adapter->tx_buffer_area[i];
|
|
bus_dmamap_sync(adapter->txtag, tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(adapter->txtag, tx_buffer->map);
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
#ifdef DEV_NETMAP
|
|
if (slot) {
|
|
/* the i-th NIC entry goes to slot si */
|
|
int si = netmap_idx_n2k(&na->tx_rings[0], i);
|
|
uint64_t paddr;
|
|
void *addr;
|
|
|
|
addr = PNMB(na, slot + si, &paddr);
|
|
adapter->tx_desc_base[i].buffer_addr = htole64(paddr);
|
|
/* reload the map for netmap mode */
|
|
netmap_load_map(na, adapter->txtag, tx_buffer->map, addr);
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
tx_buffer->next_eop = -1;
|
|
}
|
|
|
|
/* Reset state */
|
|
adapter->last_hw_offload = 0;
|
|
adapter->next_avail_tx_desc = 0;
|
|
adapter->next_tx_to_clean = 0;
|
|
adapter->num_tx_desc_avail = adapter->num_tx_desc;
|
|
|
|
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable transmit unit.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_initialize_transmit_unit(struct adapter *adapter)
|
|
{
|
|
u32 tctl, tipg = 0;
|
|
u64 bus_addr;
|
|
|
|
INIT_DEBUGOUT("lem_initialize_transmit_unit: begin");
|
|
/* Setup the Base and Length of the Tx Descriptor Ring */
|
|
bus_addr = adapter->txdma.dma_paddr;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
|
|
adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
|
|
(u32)(bus_addr >> 32));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
|
|
(u32)bus_addr);
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
|
|
|
|
HW_DEBUGOUT2("Base = %x, Length = %x\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_TDBAL(0)),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDLEN(0)));
|
|
|
|
/* Set the default values for the Tx Inter Packet Gap timer */
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82542:
|
|
tipg = DEFAULT_82542_TIPG_IPGT;
|
|
tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
|
|
tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
|
|
break;
|
|
default:
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type ==
|
|
e1000_media_type_internal_serdes))
|
|
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
|
|
else
|
|
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
|
|
tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
|
|
tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
|
|
}
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
|
|
if(adapter->hw.mac.type >= e1000_82540)
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TADV,
|
|
adapter->tx_abs_int_delay.value);
|
|
|
|
/* Program the Transmit Control Register */
|
|
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
|
|
|
|
/* This write will effectively turn on the transmit unit. */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
|
|
|
|
/* Setup Transmit Descriptor Base Settings */
|
|
adapter->txd_cmd = E1000_TXD_CMD_IFCS;
|
|
|
|
if (adapter->tx_int_delay.value > 0)
|
|
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free all transmit related data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_free_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct em_buffer *tx_buffer;
|
|
|
|
INIT_DEBUGOUT("free_transmit_structures: begin");
|
|
|
|
if (adapter->tx_buffer_area != NULL) {
|
|
for (int i = 0; i < adapter->num_tx_desc; i++) {
|
|
tx_buffer = &adapter->tx_buffer_area[i];
|
|
if (tx_buffer->m_head != NULL) {
|
|
bus_dmamap_sync(adapter->txtag, tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(adapter->txtag,
|
|
tx_buffer->map);
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
} else if (tx_buffer->map != NULL)
|
|
bus_dmamap_unload(adapter->txtag,
|
|
tx_buffer->map);
|
|
if (tx_buffer->map != NULL) {
|
|
bus_dmamap_destroy(adapter->txtag,
|
|
tx_buffer->map);
|
|
tx_buffer->map = NULL;
|
|
}
|
|
}
|
|
}
|
|
if (adapter->tx_buffer_area != NULL) {
|
|
free(adapter->tx_buffer_area, M_DEVBUF);
|
|
adapter->tx_buffer_area = NULL;
|
|
}
|
|
if (adapter->txtag != NULL) {
|
|
bus_dma_tag_destroy(adapter->txtag);
|
|
adapter->txtag = NULL;
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
if (adapter->br != NULL)
|
|
buf_ring_free(adapter->br, M_DEVBUF);
|
|
#endif
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* The offload context needs to be set when we transfer the first
|
|
* packet of a particular protocol (TCP/UDP). This routine has been
|
|
* enhanced to deal with inserted VLAN headers, and IPV6 (not complete)
|
|
*
|
|
* Added back the old method of keeping the current context type
|
|
* and not setting if unnecessary, as this is reported to be a
|
|
* big performance win. -jfv
|
|
**********************************************************************/
|
|
static void
|
|
lem_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp,
|
|
u32 *txd_upper, u32 *txd_lower)
|
|
{
|
|
struct e1000_context_desc *TXD = NULL;
|
|
struct em_buffer *tx_buffer;
|
|
struct ether_vlan_header *eh;
|
|
struct ip *ip = NULL;
|
|
struct ip6_hdr *ip6;
|
|
int curr_txd, ehdrlen;
|
|
u32 cmd, hdr_len, ip_hlen;
|
|
u16 etype;
|
|
u8 ipproto;
|
|
|
|
|
|
cmd = hdr_len = ipproto = 0;
|
|
*txd_upper = *txd_lower = 0;
|
|
curr_txd = adapter->next_avail_tx_desc;
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present,
|
|
* helpful for QinQ too.
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
etype = ntohs(eh->evl_proto);
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
} else {
|
|
etype = ntohs(eh->evl_encap_proto);
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
}
|
|
|
|
/*
|
|
* We only support TCP/UDP for IPv4 and IPv6 for the moment.
|
|
* TODO: Support SCTP too when it hits the tree.
|
|
*/
|
|
switch (etype) {
|
|
case ETHERTYPE_IP:
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
ip_hlen = ip->ip_hl << 2;
|
|
|
|
/* Setup of IP header checksum. */
|
|
if (mp->m_pkthdr.csum_flags & CSUM_IP) {
|
|
/*
|
|
* Start offset for header checksum calculation.
|
|
* End offset for header checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD = (struct e1000_context_desc *)
|
|
&adapter->tx_desc_base[curr_txd];
|
|
TXD->lower_setup.ip_fields.ipcss = ehdrlen;
|
|
TXD->lower_setup.ip_fields.ipcse =
|
|
htole16(ehdrlen + ip_hlen);
|
|
TXD->lower_setup.ip_fields.ipcso =
|
|
ehdrlen + offsetof(struct ip, ip_sum);
|
|
cmd |= E1000_TXD_CMD_IP;
|
|
*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
|
|
}
|
|
|
|
hdr_len = ehdrlen + ip_hlen;
|
|
ipproto = ip->ip_p;
|
|
|
|
break;
|
|
case ETHERTYPE_IPV6:
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
|
|
ip_hlen = sizeof(struct ip6_hdr); /* XXX: No header stacking. */
|
|
|
|
/* IPv6 doesn't have a header checksum. */
|
|
|
|
hdr_len = ehdrlen + ip_hlen;
|
|
ipproto = ip6->ip6_nxt;
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
|
|
switch (ipproto) {
|
|
case IPPROTO_TCP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
|
|
*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
|
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
/* no need for context if already set */
|
|
if (adapter->last_hw_offload == CSUM_TCP)
|
|
return;
|
|
adapter->last_hw_offload = CSUM_TCP;
|
|
/*
|
|
* Start offset for payload checksum calculation.
|
|
* End offset for payload checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD = (struct e1000_context_desc *)
|
|
&adapter->tx_desc_base[curr_txd];
|
|
TXD->upper_setup.tcp_fields.tucss = hdr_len;
|
|
TXD->upper_setup.tcp_fields.tucse = htole16(0);
|
|
TXD->upper_setup.tcp_fields.tucso =
|
|
hdr_len + offsetof(struct tcphdr, th_sum);
|
|
cmd |= E1000_TXD_CMD_TCP;
|
|
}
|
|
break;
|
|
case IPPROTO_UDP:
|
|
{
|
|
if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
|
|
*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
|
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
/* no need for context if already set */
|
|
if (adapter->last_hw_offload == CSUM_UDP)
|
|
return;
|
|
adapter->last_hw_offload = CSUM_UDP;
|
|
/*
|
|
* Start offset for header checksum calculation.
|
|
* End offset for header checksum calculation.
|
|
* Offset of place to put the checksum.
|
|
*/
|
|
TXD = (struct e1000_context_desc *)
|
|
&adapter->tx_desc_base[curr_txd];
|
|
TXD->upper_setup.tcp_fields.tucss = hdr_len;
|
|
TXD->upper_setup.tcp_fields.tucse = htole16(0);
|
|
TXD->upper_setup.tcp_fields.tucso =
|
|
hdr_len + offsetof(struct udphdr, uh_sum);
|
|
}
|
|
/* Fall Thru */
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (TXD == NULL)
|
|
return;
|
|
TXD->tcp_seg_setup.data = htole32(0);
|
|
TXD->cmd_and_length =
|
|
htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd);
|
|
tx_buffer = &adapter->tx_buffer_area[curr_txd];
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++curr_txd == adapter->num_tx_desc)
|
|
curr_txd = 0;
|
|
|
|
adapter->num_tx_desc_avail--;
|
|
adapter->next_avail_tx_desc = curr_txd;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Examine each tx_buffer in the used queue. If the hardware is done
|
|
* processing the packet then free associated resources. The
|
|
* tx_buffer is put back on the free queue.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_txeof(struct adapter *adapter)
|
|
{
|
|
int first, last, done, num_avail;
|
|
struct em_buffer *tx_buffer;
|
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
EM_TX_LOCK_ASSERT(adapter);
|
|
|
|
#ifdef DEV_NETMAP
|
|
if (netmap_tx_irq(ifp, 0))
|
|
return;
|
|
#endif /* DEV_NETMAP */
|
|
if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
|
|
return;
|
|
|
|
num_avail = adapter->num_tx_desc_avail;
|
|
first = adapter->next_tx_to_clean;
|
|
tx_desc = &adapter->tx_desc_base[first];
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
last = tx_buffer->next_eop;
|
|
eop_desc = &adapter->tx_desc_base[last];
|
|
|
|
/*
|
|
* What this does is get the index of the
|
|
* first descriptor AFTER the EOP of the
|
|
* first packet, that way we can do the
|
|
* simple comparison on the inner while loop.
|
|
*/
|
|
if (++last == adapter->num_tx_desc)
|
|
last = 0;
|
|
done = last;
|
|
|
|
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
|
|
/* We clean the range of the packet */
|
|
while (first != done) {
|
|
tx_desc->upper.data = 0;
|
|
tx_desc->lower.data = 0;
|
|
tx_desc->buffer_addr = 0;
|
|
++num_avail;
|
|
|
|
if (tx_buffer->m_head) {
|
|
ifp->if_opackets++;
|
|
bus_dmamap_sync(adapter->txtag,
|
|
tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(adapter->txtag,
|
|
tx_buffer->map);
|
|
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
}
|
|
tx_buffer->next_eop = -1;
|
|
adapter->watchdog_time = ticks;
|
|
|
|
if (++first == adapter->num_tx_desc)
|
|
first = 0;
|
|
|
|
tx_buffer = &adapter->tx_buffer_area[first];
|
|
tx_desc = &adapter->tx_desc_base[first];
|
|
}
|
|
/* See if we can continue to the next packet */
|
|
last = tx_buffer->next_eop;
|
|
if (last != -1) {
|
|
eop_desc = &adapter->tx_desc_base[last];
|
|
/* Get new done point */
|
|
if (++last == adapter->num_tx_desc) last = 0;
|
|
done = last;
|
|
} else
|
|
break;
|
|
}
|
|
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
adapter->next_tx_to_clean = first;
|
|
adapter->num_tx_desc_avail = num_avail;
|
|
|
|
#ifdef NIC_SEND_COMBINING
|
|
if ((adapter->shadow_tdt & MIT_PENDING_TDT) == MIT_PENDING_TDT) {
|
|
/* a tdt write is pending, do it */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT(0),
|
|
0xffff & adapter->shadow_tdt);
|
|
adapter->shadow_tdt = MIT_PENDING_INT;
|
|
} else {
|
|
adapter->shadow_tdt = 0; // disable
|
|
}
|
|
#endif /* NIC_SEND_COMBINING */
|
|
/*
|
|
* If we have enough room, clear IFF_DRV_OACTIVE to
|
|
* tell the stack that it is OK to send packets.
|
|
* If there are no pending descriptors, clear the watchdog.
|
|
*/
|
|
if (adapter->num_tx_desc_avail > EM_TX_CLEANUP_THRESHOLD) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
#ifdef NIC_PARAVIRT
|
|
if (adapter->csb) { // XXX also csb_on ?
|
|
adapter->csb->guest_need_txkick = 2; /* acked */
|
|
// XXX memory barrier
|
|
}
|
|
#endif /* NIC_PARAVIRT */
|
|
if (adapter->num_tx_desc_avail == adapter->num_tx_desc) {
|
|
adapter->watchdog_check = FALSE;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* When Link is lost sometimes there is work still in the TX ring
|
|
* which may result in a watchdog, rather than allow that we do an
|
|
* attempted cleanup and then reinit here. Note that this has been
|
|
* seens mostly with fiber adapters.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_tx_purge(struct adapter *adapter)
|
|
{
|
|
if ((!adapter->link_active) && (adapter->watchdog_check)) {
|
|
EM_TX_LOCK(adapter);
|
|
lem_txeof(adapter);
|
|
EM_TX_UNLOCK(adapter);
|
|
if (adapter->watchdog_check) /* Still outstanding? */
|
|
lem_init_locked(adapter);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Get a buffer from system mbuf buffer pool.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
lem_get_buf(struct adapter *adapter, int i)
|
|
{
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
struct em_buffer *rx_buffer;
|
|
int error, nsegs;
|
|
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL) {
|
|
adapter->mbuf_cluster_failed++;
|
|
return (ENOBUFS);
|
|
}
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
|
|
if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
/*
|
|
* Using memory from the mbuf cluster pool, invoke the
|
|
* bus_dma machinery to arrange the memory mapping.
|
|
*/
|
|
error = bus_dmamap_load_mbuf_sg(adapter->rxtag,
|
|
adapter->rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_free(m);
|
|
return (error);
|
|
}
|
|
|
|
/* If nsegs is wrong then the stack is corrupt. */
|
|
KASSERT(nsegs == 1, ("Too many segments returned!"));
|
|
|
|
rx_buffer = &adapter->rx_buffer_area[i];
|
|
if (rx_buffer->m_head != NULL)
|
|
bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
|
|
|
|
map = rx_buffer->map;
|
|
rx_buffer->map = adapter->rx_sparemap;
|
|
adapter->rx_sparemap = map;
|
|
bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
|
|
rx_buffer->m_head = m;
|
|
|
|
adapter->rx_desc_base[i].buffer_addr = htole64(segs[0].ds_addr);
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for rx_buffer structures. Since we use one
|
|
* rx_buffer per received packet, the maximum number of rx_buffer's
|
|
* that we'll need is equal to the number of receive descriptors
|
|
* that we've allocated.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
lem_allocate_receive_structures(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct em_buffer *rx_buffer;
|
|
int i, error;
|
|
|
|
adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) *
|
|
adapter->num_rx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (adapter->rx_buffer_area == NULL) {
|
|
device_printf(dev, "Unable to allocate rx_buffer memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&adapter->rxtag);
|
|
if (error) {
|
|
device_printf(dev, "%s: bus_dma_tag_create failed %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the spare map (used by getbuf) */
|
|
error = bus_dmamap_create(adapter->rxtag, 0, &adapter->rx_sparemap);
|
|
if (error) {
|
|
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
rx_buffer = adapter->rx_buffer_area;
|
|
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
|
|
error = bus_dmamap_create(adapter->rxtag, 0, &rx_buffer->map);
|
|
if (error) {
|
|
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
lem_free_receive_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* (Re)initialize receive structures.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
lem_setup_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct em_buffer *rx_buffer;
|
|
int i, error;
|
|
#ifdef DEV_NETMAP
|
|
/* we are already under lock */
|
|
struct netmap_adapter *na = NA(adapter->ifp);
|
|
struct netmap_slot *slot = netmap_reset(na, NR_RX, 0, 0);
|
|
#endif
|
|
|
|
/* Reset descriptor ring */
|
|
bzero(adapter->rx_desc_base,
|
|
(sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
|
|
|
|
/* Free current RX buffers. */
|
|
rx_buffer = adapter->rx_buffer_area;
|
|
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
|
|
if (rx_buffer->m_head != NULL) {
|
|
bus_dmamap_sync(adapter->rxtag, rx_buffer->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
|
|
m_freem(rx_buffer->m_head);
|
|
rx_buffer->m_head = NULL;
|
|
}
|
|
}
|
|
|
|
/* Allocate new ones. */
|
|
for (i = 0; i < adapter->num_rx_desc; i++) {
|
|
#ifdef DEV_NETMAP
|
|
if (slot) {
|
|
/* the i-th NIC entry goes to slot si */
|
|
int si = netmap_idx_n2k(&na->rx_rings[0], i);
|
|
uint64_t paddr;
|
|
void *addr;
|
|
|
|
addr = PNMB(na, slot + si, &paddr);
|
|
netmap_load_map(na, adapter->rxtag, rx_buffer->map, addr);
|
|
/* Update descriptor */
|
|
adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
|
|
continue;
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
error = lem_get_buf(adapter, i);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
/* Setup our descriptor pointers */
|
|
adapter->next_rx_desc_to_check = 0;
|
|
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable receive unit.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
lem_initialize_receive_unit(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
u64 bus_addr;
|
|
u32 rctl, rxcsum;
|
|
|
|
INIT_DEBUGOUT("lem_initialize_receive_unit: begin");
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the descriptor ring
|
|
*/
|
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
|
|
if (adapter->hw.mac.type >= e1000_82540) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RADV,
|
|
adapter->rx_abs_int_delay.value);
|
|
/*
|
|
* Set the interrupt throttling rate. Value is calculated
|
|
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
|
|
*/
|
|
E1000_WRITE_REG(&adapter->hw, E1000_ITR, DEFAULT_ITR);
|
|
}
|
|
|
|
/* Setup the Base and Length of the Rx Descriptor Ring */
|
|
bus_addr = adapter->rxdma.dma_paddr;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
|
|
adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
|
|
(u32)(bus_addr >> 32));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
|
|
(u32)bus_addr);
|
|
|
|
/* Setup the Receive Control Register */
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
|
|
E1000_RCTL_RDMTS_HALF |
|
|
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
/* Make sure VLAN Filters are off */
|
|
rctl &= ~E1000_RCTL_VFE;
|
|
|
|
if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
|
|
rctl |= E1000_RCTL_SBP;
|
|
else
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
|
|
switch (adapter->rx_buffer_len) {
|
|
default:
|
|
case 2048:
|
|
rctl |= E1000_RCTL_SZ_2048;
|
|
break;
|
|
case 4096:
|
|
rctl |= E1000_RCTL_SZ_4096 |
|
|
E1000_RCTL_BSEX | E1000_RCTL_LPE;
|
|
break;
|
|
case 8192:
|
|
rctl |= E1000_RCTL_SZ_8192 |
|
|
E1000_RCTL_BSEX | E1000_RCTL_LPE;
|
|
break;
|
|
case 16384:
|
|
rctl |= E1000_RCTL_SZ_16384 |
|
|
E1000_RCTL_BSEX | E1000_RCTL_LPE;
|
|
break;
|
|
}
|
|
|
|
if (ifp->if_mtu > ETHERMTU)
|
|
rctl |= E1000_RCTL_LPE;
|
|
else
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
|
|
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
|
|
if ((adapter->hw.mac.type >= e1000_82543) &&
|
|
(ifp->if_capenable & IFCAP_RXCSUM)) {
|
|
rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
|
|
rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
|
|
}
|
|
|
|
/* Enable Receives */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
|
|
|
|
/*
|
|
* Setup the HW Rx Head and
|
|
* Tail Descriptor Pointers
|
|
*/
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
|
|
rctl = adapter->num_rx_desc - 1; /* default RDT value */
|
|
#ifdef DEV_NETMAP
|
|
/* preserve buffers already made available to clients */
|
|
if (ifp->if_capenable & IFCAP_NETMAP)
|
|
rctl -= nm_kr_rxspace(&NA(adapter->ifp)->rx_rings[0]);
|
|
#endif /* DEV_NETMAP */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), rctl);
|
|
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free receive related data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_free_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct em_buffer *rx_buffer;
|
|
int i;
|
|
|
|
INIT_DEBUGOUT("free_receive_structures: begin");
|
|
|
|
if (adapter->rx_sparemap) {
|
|
bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
|
|
adapter->rx_sparemap = NULL;
|
|
}
|
|
|
|
/* Cleanup any existing buffers */
|
|
if (adapter->rx_buffer_area != NULL) {
|
|
rx_buffer = adapter->rx_buffer_area;
|
|
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
|
|
if (rx_buffer->m_head != NULL) {
|
|
bus_dmamap_sync(adapter->rxtag, rx_buffer->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(adapter->rxtag,
|
|
rx_buffer->map);
|
|
m_freem(rx_buffer->m_head);
|
|
rx_buffer->m_head = NULL;
|
|
} else if (rx_buffer->map != NULL)
|
|
bus_dmamap_unload(adapter->rxtag,
|
|
rx_buffer->map);
|
|
if (rx_buffer->map != NULL) {
|
|
bus_dmamap_destroy(adapter->rxtag,
|
|
rx_buffer->map);
|
|
rx_buffer->map = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (adapter->rx_buffer_area != NULL) {
|
|
free(adapter->rx_buffer_area, M_DEVBUF);
|
|
adapter->rx_buffer_area = NULL;
|
|
}
|
|
|
|
if (adapter->rxtag != NULL) {
|
|
bus_dma_tag_destroy(adapter->rxtag);
|
|
adapter->rxtag = NULL;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine executes in interrupt context. It replenishes
|
|
* the mbufs in the descriptor and sends data which has been
|
|
* dma'ed into host memory to upper layer.
|
|
*
|
|
* We loop at most count times if count is > 0, or until done if
|
|
* count < 0.
|
|
*
|
|
* For polling we also now return the number of cleaned packets
|
|
*********************************************************************/
|
|
static bool
|
|
lem_rxeof(struct adapter *adapter, int count, int *done)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct mbuf *mp;
|
|
u8 status = 0, accept_frame = 0, eop = 0;
|
|
u16 len, desc_len, prev_len_adj;
|
|
int i, rx_sent = 0;
|
|
struct e1000_rx_desc *current_desc;
|
|
|
|
#ifdef BATCH_DISPATCH
|
|
struct mbuf *mh = NULL, *mt = NULL;
|
|
#endif /* BATCH_DISPATCH */
|
|
#ifdef NIC_PARAVIRT
|
|
int retries = 0;
|
|
struct paravirt_csb* csb = adapter->csb;
|
|
int csb_mode = csb && csb->guest_csb_on;
|
|
|
|
//ND("clear guest_rxkick at %d", adapter->next_rx_desc_to_check);
|
|
if (csb_mode && csb->guest_need_rxkick)
|
|
csb->guest_need_rxkick = 0;
|
|
#endif /* NIC_PARAVIRT */
|
|
EM_RX_LOCK(adapter);
|
|
|
|
#ifdef BATCH_DISPATCH
|
|
batch_again:
|
|
#endif /* BATCH_DISPATCH */
|
|
i = adapter->next_rx_desc_to_check;
|
|
current_desc = &adapter->rx_desc_base[i];
|
|
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
#ifdef DEV_NETMAP
|
|
if (netmap_rx_irq(ifp, 0, &rx_sent)) {
|
|
EM_RX_UNLOCK(adapter);
|
|
return (FALSE);
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
|
|
#if 1 // XXX optimization ?
|
|
if (!((current_desc->status) & E1000_RXD_STAT_DD)) {
|
|
if (done != NULL)
|
|
*done = rx_sent;
|
|
EM_RX_UNLOCK(adapter);
|
|
return (FALSE);
|
|
}
|
|
#endif /* 0 */
|
|
|
|
while (count != 0 && ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
struct mbuf *m = NULL;
|
|
|
|
status = current_desc->status;
|
|
if ((status & E1000_RXD_STAT_DD) == 0) {
|
|
#ifdef NIC_PARAVIRT
|
|
if (csb_mode) {
|
|
/* buffer not ready yet. Retry a few times before giving up */
|
|
if (++retries <= adapter->rx_retries) {
|
|
continue;
|
|
}
|
|
if (csb->guest_need_rxkick == 0) {
|
|
// ND("set guest_rxkick at %d", adapter->next_rx_desc_to_check);
|
|
csb->guest_need_rxkick = 1;
|
|
// XXX memory barrier, status volatile ?
|
|
continue; /* double check */
|
|
}
|
|
}
|
|
/* no buffer ready, give up */
|
|
#endif /* NIC_PARAVIRT */
|
|
break;
|
|
}
|
|
#ifdef NIC_PARAVIRT
|
|
if (csb_mode) {
|
|
if (csb->guest_need_rxkick)
|
|
// ND("clear again guest_rxkick at %d", adapter->next_rx_desc_to_check);
|
|
csb->guest_need_rxkick = 0;
|
|
retries = 0;
|
|
}
|
|
#endif /* NIC_PARAVIRT */
|
|
|
|
mp = adapter->rx_buffer_area[i].m_head;
|
|
/*
|
|
* Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
|
|
* needs to access the last received byte in the mbuf.
|
|
*/
|
|
bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
accept_frame = 1;
|
|
prev_len_adj = 0;
|
|
desc_len = le16toh(current_desc->length);
|
|
if (status & E1000_RXD_STAT_EOP) {
|
|
count--;
|
|
eop = 1;
|
|
if (desc_len < ETHER_CRC_LEN) {
|
|
len = 0;
|
|
prev_len_adj = ETHER_CRC_LEN - desc_len;
|
|
} else
|
|
len = desc_len - ETHER_CRC_LEN;
|
|
} else {
|
|
eop = 0;
|
|
len = desc_len;
|
|
}
|
|
|
|
if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
|
|
u8 last_byte;
|
|
u32 pkt_len = desc_len;
|
|
|
|
if (adapter->fmp != NULL)
|
|
pkt_len += adapter->fmp->m_pkthdr.len;
|
|
|
|
last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
|
|
if (TBI_ACCEPT(&adapter->hw, status,
|
|
current_desc->errors, pkt_len, last_byte,
|
|
adapter->min_frame_size, adapter->max_frame_size)) {
|
|
e1000_tbi_adjust_stats_82543(&adapter->hw,
|
|
&adapter->stats, pkt_len,
|
|
adapter->hw.mac.addr,
|
|
adapter->max_frame_size);
|
|
if (len > 0)
|
|
len--;
|
|
} else
|
|
accept_frame = 0;
|
|
}
|
|
|
|
if (accept_frame) {
|
|
if (lem_get_buf(adapter, i) != 0) {
|
|
ifp->if_iqdrops++;
|
|
goto discard;
|
|
}
|
|
|
|
/* Assign correct length to the current fragment */
|
|
mp->m_len = len;
|
|
|
|
if (adapter->fmp == NULL) {
|
|
mp->m_pkthdr.len = len;
|
|
adapter->fmp = mp; /* Store the first mbuf */
|
|
adapter->lmp = mp;
|
|
} else {
|
|
/* Chain mbuf's together */
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
/*
|
|
* Adjust length of previous mbuf in chain if
|
|
* we received less than 4 bytes in the last
|
|
* descriptor.
|
|
*/
|
|
if (prev_len_adj > 0) {
|
|
adapter->lmp->m_len -= prev_len_adj;
|
|
adapter->fmp->m_pkthdr.len -=
|
|
prev_len_adj;
|
|
}
|
|
adapter->lmp->m_next = mp;
|
|
adapter->lmp = adapter->lmp->m_next;
|
|
adapter->fmp->m_pkthdr.len += len;
|
|
}
|
|
|
|
if (eop) {
|
|
adapter->fmp->m_pkthdr.rcvif = ifp;
|
|
ifp->if_ipackets++;
|
|
lem_receive_checksum(adapter, current_desc,
|
|
adapter->fmp);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
if (adapter->max_frame_size >
|
|
(MCLBYTES - ETHER_ALIGN) &&
|
|
lem_fixup_rx(adapter) != 0)
|
|
goto skip;
|
|
#endif
|
|
if (status & E1000_RXD_STAT_VP) {
|
|
adapter->fmp->m_pkthdr.ether_vtag =
|
|
le16toh(current_desc->special);
|
|
adapter->fmp->m_flags |= M_VLANTAG;
|
|
}
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
skip:
|
|
#endif
|
|
m = adapter->fmp;
|
|
adapter->fmp = NULL;
|
|
adapter->lmp = NULL;
|
|
}
|
|
} else {
|
|
adapter->dropped_pkts++;
|
|
discard:
|
|
/* Reuse loaded DMA map and just update mbuf chain */
|
|
mp = adapter->rx_buffer_area[i].m_head;
|
|
mp->m_len = mp->m_pkthdr.len = MCLBYTES;
|
|
mp->m_data = mp->m_ext.ext_buf;
|
|
mp->m_next = NULL;
|
|
if (adapter->max_frame_size <=
|
|
(MCLBYTES - ETHER_ALIGN))
|
|
m_adj(mp, ETHER_ALIGN);
|
|
if (adapter->fmp != NULL) {
|
|
m_freem(adapter->fmp);
|
|
adapter->fmp = NULL;
|
|
adapter->lmp = NULL;
|
|
}
|
|
m = NULL;
|
|
}
|
|
|
|
/* Zero out the receive descriptors status. */
|
|
current_desc->status = 0;
|
|
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef NIC_PARAVIRT
|
|
if (csb_mode) {
|
|
/* the buffer at i has been already replaced by lem_get_buf()
|
|
* so it is safe to set guest_rdt = i and possibly send a kick.
|
|
* XXX see if we can optimize it later.
|
|
*/
|
|
csb->guest_rdt = i;
|
|
// XXX memory barrier
|
|
if (i == csb->host_rxkick_at)
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
|
|
}
|
|
#endif /* NIC_PARAVIRT */
|
|
/* Advance our pointers to the next descriptor. */
|
|
if (++i == adapter->num_rx_desc)
|
|
i = 0;
|
|
/* Call into the stack */
|
|
if (m != NULL) {
|
|
#ifdef BATCH_DISPATCH
|
|
if (adapter->batch_enable) {
|
|
if (mh == NULL)
|
|
mh = mt = m;
|
|
else
|
|
mt->m_nextpkt = m;
|
|
mt = m;
|
|
m->m_nextpkt = NULL;
|
|
rx_sent++;
|
|
current_desc = &adapter->rx_desc_base[i];
|
|
continue;
|
|
}
|
|
#endif /* BATCH_DISPATCH */
|
|
adapter->next_rx_desc_to_check = i;
|
|
EM_RX_UNLOCK(adapter);
|
|
(*ifp->if_input)(ifp, m);
|
|
EM_RX_LOCK(adapter);
|
|
rx_sent++;
|
|
i = adapter->next_rx_desc_to_check;
|
|
}
|
|
current_desc = &adapter->rx_desc_base[i];
|
|
}
|
|
adapter->next_rx_desc_to_check = i;
|
|
#ifdef BATCH_DISPATCH
|
|
if (mh) {
|
|
EM_RX_UNLOCK(adapter);
|
|
while ( (mt = mh) != NULL) {
|
|
mh = mh->m_nextpkt;
|
|
mt->m_nextpkt = NULL;
|
|
if_input(ifp, mt);
|
|
}
|
|
EM_RX_LOCK(adapter);
|
|
i = adapter->next_rx_desc_to_check; /* in case of interrupts */
|
|
if (count > 0)
|
|
goto batch_again;
|
|
}
|
|
#endif /* BATCH_DISPATCH */
|
|
|
|
/* Advance the E1000's Receive Queue #0 "Tail Pointer". */
|
|
if (--i < 0)
|
|
i = adapter->num_rx_desc - 1;
|
|
#ifdef NIC_PARAVIRT
|
|
if (!csb_mode) /* filter out writes */
|
|
#endif /* NIC_PARAVIRT */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
|
|
if (done != NULL)
|
|
*done = rx_sent;
|
|
EM_RX_UNLOCK(adapter);
|
|
return ((status & E1000_RXD_STAT_DD) ? TRUE : FALSE);
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* When jumbo frames are enabled we should realign entire payload on
|
|
* architecures with strict alignment. This is serious design mistake of 8254x
|
|
* as it nullifies DMA operations. 8254x just allows RX buffer size to be
|
|
* 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its
|
|
* payload. On architecures without strict alignment restrictions 8254x still
|
|
* performs unaligned memory access which would reduce the performance too.
|
|
* To avoid copying over an entire frame to align, we allocate a new mbuf and
|
|
* copy ethernet header to the new mbuf. The new mbuf is prepended into the
|
|
* existing mbuf chain.
|
|
*
|
|
* Be aware, best performance of the 8254x is achived only when jumbo frame is
|
|
* not used at all on architectures with strict alignment.
|
|
*/
|
|
static int
|
|
lem_fixup_rx(struct adapter *adapter)
|
|
{
|
|
struct mbuf *m, *n;
|
|
int error;
|
|
|
|
error = 0;
|
|
m = adapter->fmp;
|
|
if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
|
|
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
|
|
m->m_data += ETHER_HDR_LEN;
|
|
} else {
|
|
MGETHDR(n, M_NOWAIT, MT_DATA);
|
|
if (n != NULL) {
|
|
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
|
|
m->m_data += ETHER_HDR_LEN;
|
|
m->m_len -= ETHER_HDR_LEN;
|
|
n->m_len = ETHER_HDR_LEN;
|
|
M_MOVE_PKTHDR(n, m);
|
|
n->m_next = m;
|
|
adapter->fmp = n;
|
|
} else {
|
|
adapter->dropped_pkts++;
|
|
m_freem(adapter->fmp);
|
|
adapter->fmp = NULL;
|
|
error = ENOMEM;
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Verify that the hardware indicated that the checksum is valid.
|
|
* Inform the stack about the status of checksum so that stack
|
|
* doesn't spend time verifying the checksum.
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
lem_receive_checksum(struct adapter *adapter,
|
|
struct e1000_rx_desc *rx_desc, struct mbuf *mp)
|
|
{
|
|
/* 82543 or newer only */
|
|
if ((adapter->hw.mac.type < e1000_82543) ||
|
|
/* Ignore Checksum bit is set */
|
|
(rx_desc->status & E1000_RXD_STAT_IXSM)) {
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
return;
|
|
}
|
|
|
|
if (rx_desc->status & E1000_RXD_STAT_IPCS) {
|
|
/* Did it pass? */
|
|
if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
|
|
/* IP Checksum Good */
|
|
mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
|
|
mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
|
|
} else {
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
}
|
|
}
|
|
|
|
if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
|
|
/* Did it pass? */
|
|
if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
|
|
mp->m_pkthdr.csum_flags |=
|
|
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
|
mp->m_pkthdr.csum_data = htons(0xffff);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine is run via an vlan
|
|
* config EVENT
|
|
*/
|
|
static void
|
|
lem_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u32 index, bit;
|
|
|
|
if (ifp->if_softc != arg) /* Not our event */
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid ID */
|
|
return;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
index = (vtag >> 5) & 0x7F;
|
|
bit = vtag & 0x1F;
|
|
adapter->shadow_vfta[index] |= (1 << bit);
|
|
++adapter->num_vlans;
|
|
/* Re-init to load the changes */
|
|
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
|
|
lem_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/*
|
|
* This routine is run via an vlan
|
|
* unconfig EVENT
|
|
*/
|
|
static void
|
|
lem_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u32 index, bit;
|
|
|
|
if (ifp->if_softc != arg)
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
|
|
return;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
index = (vtag >> 5) & 0x7F;
|
|
bit = vtag & 0x1F;
|
|
adapter->shadow_vfta[index] &= ~(1 << bit);
|
|
--adapter->num_vlans;
|
|
/* Re-init to load the changes */
|
|
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
|
|
lem_init_locked(adapter);
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
static void
|
|
lem_setup_vlan_hw_support(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 reg;
|
|
|
|
/*
|
|
** We get here thru init_locked, meaning
|
|
** a soft reset, this has already cleared
|
|
** the VFTA and other state, so if there
|
|
** have been no vlan's registered do nothing.
|
|
*/
|
|
if (adapter->num_vlans == 0)
|
|
return;
|
|
|
|
/*
|
|
** A soft reset zero's out the VFTA, so
|
|
** we need to repopulate it now.
|
|
*/
|
|
for (int i = 0; i < EM_VFTA_SIZE; i++)
|
|
if (adapter->shadow_vfta[i] != 0)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
|
|
i, adapter->shadow_vfta[i]);
|
|
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
|
|
/* Enable the Filter Table */
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg |= E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
}
|
|
|
|
static void
|
|
lem_enable_intr(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 ims_mask = IMS_ENABLE_MASK;
|
|
|
|
E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
|
|
}
|
|
|
|
static void
|
|
lem_disable_intr(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
}
|
|
|
|
/*
|
|
* Bit of a misnomer, what this really means is
|
|
* to enable OS management of the system... aka
|
|
* to disable special hardware management features
|
|
*/
|
|
static void
|
|
lem_init_manageability(struct adapter *adapter)
|
|
{
|
|
/* A shared code workaround */
|
|
if (adapter->has_manage) {
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
/* disable hardware interception of ARP */
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Give control back to hardware management
|
|
* controller if there is one.
|
|
*/
|
|
static void
|
|
lem_release_manageability(struct adapter *adapter)
|
|
{
|
|
if (adapter->has_manage) {
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
|
|
/* re-enable hardware interception of ARP */
|
|
manc |= E1000_MANC_ARP_EN;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* lem_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means
|
|
* that the driver is loaded. For AMT version type f/w
|
|
* this means that the network i/f is open.
|
|
*/
|
|
static void
|
|
lem_get_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* lem_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that
|
|
* the driver is no longer loaded. For AMT versions of the
|
|
* f/w this means that the network i/f is closed.
|
|
*/
|
|
static void
|
|
lem_release_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
if (!adapter->has_manage)
|
|
return;
|
|
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
return;
|
|
}
|
|
|
|
static int
|
|
lem_is_valid_ether_addr(u8 *addr)
|
|
{
|
|
char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
|
|
|
|
if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
** Parse the interface capabilities with regard
|
|
** to both system management and wake-on-lan for
|
|
** later use.
|
|
*/
|
|
static void
|
|
lem_get_wakeup(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
u16 eeprom_data = 0, device_id, apme_mask;
|
|
|
|
adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
|
|
apme_mask = EM_EEPROM_APME;
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82542:
|
|
case e1000_82543:
|
|
break;
|
|
case e1000_82544:
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
|
|
apme_mask = EM_82544_APME;
|
|
break;
|
|
case e1000_82546:
|
|
case e1000_82546_rev_3:
|
|
if (adapter->hw.bus.func == 1) {
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
|
|
break;
|
|
} else
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
|
break;
|
|
default:
|
|
e1000_read_nvm(&adapter->hw,
|
|
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
|
|
break;
|
|
}
|
|
if (eeprom_data & apme_mask)
|
|
adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
|
|
/*
|
|
* We have the eeprom settings, now apply the special cases
|
|
* where the eeprom may be wrong or the board won't support
|
|
* wake on lan on a particular port
|
|
*/
|
|
device_id = pci_get_device(dev);
|
|
switch (device_id) {
|
|
case E1000_DEV_ID_82546GB_PCIE:
|
|
adapter->wol = 0;
|
|
break;
|
|
case E1000_DEV_ID_82546EB_FIBER:
|
|
case E1000_DEV_ID_82546GB_FIBER:
|
|
/* Wake events only supported on port A for dual fiber
|
|
* regardless of eeprom setting */
|
|
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
|
|
E1000_STATUS_FUNC_1)
|
|
adapter->wol = 0;
|
|
break;
|
|
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
|
|
/* if quad port adapter, disable WoL on all but port A */
|
|
if (global_quad_port_a != 0)
|
|
adapter->wol = 0;
|
|
/* Reset for multiple quad port adapters */
|
|
if (++global_quad_port_a == 4)
|
|
global_quad_port_a = 0;
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Enable PCI Wake On Lan capability
|
|
*/
|
|
static void
|
|
lem_enable_wakeup(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct ifnet *ifp = adapter->ifp;
|
|
u32 pmc, ctrl, ctrl_ext, rctl;
|
|
u16 status;
|
|
|
|
if ((pci_find_cap(dev, PCIY_PMG, &pmc) != 0))
|
|
return;
|
|
|
|
/* Advertise the wakeup capability */
|
|
ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
|
|
ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
|
|
/* Keep the laser running on Fiber adapters */
|
|
if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
|
|
adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
|
|
}
|
|
|
|
/*
|
|
** Determine type of Wakeup: note that wol
|
|
** is set with all bits on by default.
|
|
*/
|
|
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) == 0)
|
|
adapter->wol &= ~E1000_WUFC_MAG;
|
|
|
|
if ((ifp->if_capenable & IFCAP_WOL_MCAST) == 0)
|
|
adapter->wol &= ~E1000_WUFC_MC;
|
|
else {
|
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
if (adapter->hw.mac.type == e1000_pchlan) {
|
|
if (lem_enable_phy_wakeup(adapter))
|
|
return;
|
|
} else {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
|
|
}
|
|
|
|
|
|
/* Request PME */
|
|
status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
|
|
status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
|
|
if (ifp->if_capenable & IFCAP_WOL)
|
|
status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** WOL in the newer chipset interfaces (pchlan)
|
|
** require thing to be copied into the phy
|
|
*/
|
|
static int
|
|
lem_enable_phy_wakeup(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 mreg, ret = 0;
|
|
u16 preg;
|
|
|
|
/* copy MAC RARs to PHY RARs */
|
|
for (int i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
|
|
mreg = E1000_READ_REG(hw, E1000_RAL(i));
|
|
e1000_write_phy_reg(hw, BM_RAR_L(i), (u16)(mreg & 0xFFFF));
|
|
e1000_write_phy_reg(hw, BM_RAR_M(i),
|
|
(u16)((mreg >> 16) & 0xFFFF));
|
|
mreg = E1000_READ_REG(hw, E1000_RAH(i));
|
|
e1000_write_phy_reg(hw, BM_RAR_H(i), (u16)(mreg & 0xFFFF));
|
|
e1000_write_phy_reg(hw, BM_RAR_CTRL(i),
|
|
(u16)((mreg >> 16) & 0xFFFF));
|
|
}
|
|
|
|
/* copy MAC MTA to PHY MTA */
|
|
for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
|
|
mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
|
|
e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
|
|
e1000_write_phy_reg(hw, BM_MTA(i) + 1,
|
|
(u16)((mreg >> 16) & 0xFFFF));
|
|
}
|
|
|
|
/* configure PHY Rx Control register */
|
|
e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
|
|
mreg = E1000_READ_REG(hw, E1000_RCTL);
|
|
if (mreg & E1000_RCTL_UPE)
|
|
preg |= BM_RCTL_UPE;
|
|
if (mreg & E1000_RCTL_MPE)
|
|
preg |= BM_RCTL_MPE;
|
|
preg &= ~(BM_RCTL_MO_MASK);
|
|
if (mreg & E1000_RCTL_MO_3)
|
|
preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
|
|
<< BM_RCTL_MO_SHIFT);
|
|
if (mreg & E1000_RCTL_BAM)
|
|
preg |= BM_RCTL_BAM;
|
|
if (mreg & E1000_RCTL_PMCF)
|
|
preg |= BM_RCTL_PMCF;
|
|
mreg = E1000_READ_REG(hw, E1000_CTRL);
|
|
if (mreg & E1000_CTRL_RFCE)
|
|
preg |= BM_RCTL_RFCE;
|
|
e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
|
|
|
|
/* enable PHY wakeup in MAC register */
|
|
E1000_WRITE_REG(hw, E1000_WUC,
|
|
E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
|
|
|
|
/* configure and enable PHY wakeup in PHY registers */
|
|
e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
|
|
e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
|
|
|
|
/* activate PHY wakeup */
|
|
ret = hw->phy.ops.acquire(hw);
|
|
if (ret) {
|
|
printf("Could not acquire PHY\n");
|
|
return ret;
|
|
}
|
|
e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
(BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
|
|
ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
|
|
if (ret) {
|
|
printf("Could not read PHY page 769\n");
|
|
goto out;
|
|
}
|
|
preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
|
|
ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
|
|
if (ret)
|
|
printf("Could not set PHY Host Wakeup bit\n");
|
|
out:
|
|
hw->phy.ops.release(hw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
lem_led_func(void *arg, int onoff)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
if (onoff) {
|
|
e1000_setup_led(&adapter->hw);
|
|
e1000_led_on(&adapter->hw);
|
|
} else {
|
|
e1000_led_off(&adapter->hw);
|
|
e1000_cleanup_led(&adapter->hw);
|
|
}
|
|
EM_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* 82544 Coexistence issue workaround.
|
|
* There are 2 issues.
|
|
* 1. Transmit Hang issue.
|
|
* To detect this issue, following equation can be used...
|
|
* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
|
|
* If SUM[3:0] is in between 1 to 4, we will have this issue.
|
|
*
|
|
* 2. DAC issue.
|
|
* To detect this issue, following equation can be used...
|
|
* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
|
|
* If SUM[3:0] is in between 9 to c, we will have this issue.
|
|
*
|
|
*
|
|
* WORKAROUND:
|
|
* Make sure we do not have ending address
|
|
* as 1,2,3,4(Hang) or 9,a,b,c (DAC)
|
|
*
|
|
*************************************************************************/
|
|
static u32
|
|
lem_fill_descriptors (bus_addr_t address, u32 length,
|
|
PDESC_ARRAY desc_array)
|
|
{
|
|
u32 safe_terminator;
|
|
|
|
/* Since issue is sensitive to length and address.*/
|
|
/* Let us first check the address...*/
|
|
if (length <= 4) {
|
|
desc_array->descriptor[0].address = address;
|
|
desc_array->descriptor[0].length = length;
|
|
desc_array->elements = 1;
|
|
return (desc_array->elements);
|
|
}
|
|
safe_terminator = (u32)((((u32)address & 0x7) +
|
|
(length & 0xF)) & 0xF);
|
|
/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
|
|
if (safe_terminator == 0 ||
|
|
(safe_terminator > 4 &&
|
|
safe_terminator < 9) ||
|
|
(safe_terminator > 0xC &&
|
|
safe_terminator <= 0xF)) {
|
|
desc_array->descriptor[0].address = address;
|
|
desc_array->descriptor[0].length = length;
|
|
desc_array->elements = 1;
|
|
return (desc_array->elements);
|
|
}
|
|
|
|
desc_array->descriptor[0].address = address;
|
|
desc_array->descriptor[0].length = length - 4;
|
|
desc_array->descriptor[1].address = address + (length - 4);
|
|
desc_array->descriptor[1].length = 4;
|
|
desc_array->elements = 2;
|
|
return (desc_array->elements);
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Update the board statistics counters.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
lem_update_stats_counters(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
if(adapter->hw.phy.media_type == e1000_media_type_copper ||
|
|
(E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
|
|
adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
|
|
adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
|
|
}
|
|
adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
|
|
adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
|
|
adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
|
|
adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
|
|
|
|
adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
|
|
adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
|
|
adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
|
|
adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
|
|
adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
|
|
adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
|
|
adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
|
|
adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
|
|
adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
|
|
adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
|
|
adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
|
|
adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
|
|
adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
|
|
adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
|
|
adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
|
|
adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
|
|
adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
|
|
adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
|
|
adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
|
|
adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
|
|
|
|
/* For the 64-bit byte counters the low dword must be read first. */
|
|
/* Both registers clear on the read of the high dword */
|
|
|
|
adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
|
|
((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
|
|
adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
|
|
((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
|
|
|
|
adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
|
|
adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
|
|
adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
|
|
adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
|
|
adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
|
|
|
|
adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
|
|
adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
|
|
|
|
adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
|
|
adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
|
|
adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
|
|
adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
|
|
adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
|
|
adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
|
|
adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
|
|
adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
|
|
adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
|
|
adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
|
|
|
|
if (adapter->hw.mac.type >= e1000_82543) {
|
|
adapter->stats.algnerrc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
|
|
adapter->stats.rxerrc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_RXERRC);
|
|
adapter->stats.tncrs +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TNCRS);
|
|
adapter->stats.cexterr +=
|
|
E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
|
|
adapter->stats.tsctc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TSCTC);
|
|
adapter->stats.tsctfc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
|
|
}
|
|
ifp = adapter->ifp;
|
|
|
|
ifp->if_collisions = adapter->stats.colc;
|
|
|
|
/* Rx Errors */
|
|
ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc +
|
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
|
adapter->stats.ruc + adapter->stats.roc +
|
|
adapter->stats.mpc + adapter->stats.cexterr;
|
|
|
|
/* Tx Errors */
|
|
ifp->if_oerrors = adapter->stats.ecol +
|
|
adapter->stats.latecol + adapter->watchdog_events;
|
|
}
|
|
|
|
/* Export a single 32-bit register via a read-only sysctl. */
|
|
static int
|
|
lem_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
u_int val;
|
|
|
|
adapter = oidp->oid_arg1;
|
|
val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
|
|
return (sysctl_handle_int(oidp, &val, 0, req));
|
|
}
|
|
|
|
/*
|
|
* Add sysctl variables, one per statistic, to the system.
|
|
*/
|
|
static void
|
|
lem_add_hw_stats(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
|
|
struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
|
|
struct e1000_hw_stats *stats = &adapter->stats;
|
|
|
|
struct sysctl_oid *stat_node;
|
|
struct sysctl_oid_list *stat_list;
|
|
|
|
/* Driver Statistics */
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_fail",
|
|
CTLFLAG_RD, &adapter->mbuf_alloc_failed,
|
|
"Std mbuf failed");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "cluster_alloc_fail",
|
|
CTLFLAG_RD, &adapter->mbuf_cluster_failed,
|
|
"Std mbuf cluster failed");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
|
|
CTLFLAG_RD, &adapter->dropped_pkts,
|
|
"Driver dropped packets");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
|
|
CTLFLAG_RD, &adapter->no_tx_dma_setup,
|
|
"Driver tx dma failure in xmit");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_desc_fail1",
|
|
CTLFLAG_RD, &adapter->no_tx_desc_avail1,
|
|
"Not enough tx descriptors failure in xmit");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_desc_fail2",
|
|
CTLFLAG_RD, &adapter->no_tx_desc_avail2,
|
|
"Not enough tx descriptors failure in xmit");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
|
|
CTLFLAG_RD, &adapter->rx_overruns,
|
|
"RX overruns");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
|
|
CTLFLAG_RD, &adapter->watchdog_events,
|
|
"Watchdog timeouts");
|
|
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
|
|
lem_sysctl_reg_handler, "IU",
|
|
"Device Control Register");
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
|
|
lem_sysctl_reg_handler, "IU",
|
|
"Receiver Control Register");
|
|
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
|
|
CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
|
|
"Flow Control High Watermark");
|
|
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
|
|
CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
|
|
"Flow Control Low Watermark");
|
|
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "fifo_workaround",
|
|
CTLFLAG_RD, &adapter->tx_fifo_wrk_cnt,
|
|
"TX FIFO workaround events");
|
|
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "fifo_reset",
|
|
CTLFLAG_RD, &adapter->tx_fifo_reset_cnt,
|
|
"TX FIFO resets");
|
|
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txd_head",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_TDH(0),
|
|
lem_sysctl_reg_handler, "IU",
|
|
"Transmit Descriptor Head");
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txd_tail",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_TDT(0),
|
|
lem_sysctl_reg_handler, "IU",
|
|
"Transmit Descriptor Tail");
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxd_head",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RDH(0),
|
|
lem_sysctl_reg_handler, "IU",
|
|
"Receive Descriptor Head");
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxd_tail",
|
|
CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RDT(0),
|
|
lem_sysctl_reg_handler, "IU",
|
|
"Receive Descriptor Tail");
|
|
|
|
|
|
/* MAC stats get their own sub node */
|
|
|
|
stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
|
|
CTLFLAG_RD, NULL, "Statistics");
|
|
stat_list = SYSCTL_CHILDREN(stat_node);
|
|
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
|
|
CTLFLAG_RD, &stats->ecol,
|
|
"Excessive collisions");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
|
|
CTLFLAG_RD, &stats->scc,
|
|
"Single collisions");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
|
|
CTLFLAG_RD, &stats->mcc,
|
|
"Multiple collisions");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
|
|
CTLFLAG_RD, &stats->latecol,
|
|
"Late collisions");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
|
|
CTLFLAG_RD, &stats->colc,
|
|
"Collision Count");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
|
|
CTLFLAG_RD, &adapter->stats.symerrs,
|
|
"Symbol Errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
|
|
CTLFLAG_RD, &adapter->stats.sec,
|
|
"Sequence Errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
|
|
CTLFLAG_RD, &adapter->stats.dc,
|
|
"Defer Count");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
|
|
CTLFLAG_RD, &adapter->stats.mpc,
|
|
"Missed Packets");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
|
|
CTLFLAG_RD, &adapter->stats.rnbc,
|
|
"Receive No Buffers");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
|
|
CTLFLAG_RD, &adapter->stats.ruc,
|
|
"Receive Undersize");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
|
|
CTLFLAG_RD, &adapter->stats.rfc,
|
|
"Fragmented Packets Received ");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
|
|
CTLFLAG_RD, &adapter->stats.roc,
|
|
"Oversized Packets Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
|
|
CTLFLAG_RD, &adapter->stats.rjc,
|
|
"Recevied Jabber");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
|
|
CTLFLAG_RD, &adapter->stats.rxerrc,
|
|
"Receive Errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
|
|
CTLFLAG_RD, &adapter->stats.crcerrs,
|
|
"CRC errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
|
|
CTLFLAG_RD, &adapter->stats.algnerrc,
|
|
"Alignment Errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
|
|
CTLFLAG_RD, &adapter->stats.cexterr,
|
|
"Collision/Carrier extension errors");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
|
|
CTLFLAG_RD, &adapter->stats.xonrxc,
|
|
"XON Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
|
|
CTLFLAG_RD, &adapter->stats.xontxc,
|
|
"XON Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
|
|
CTLFLAG_RD, &adapter->stats.xoffrxc,
|
|
"XOFF Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
|
|
CTLFLAG_RD, &adapter->stats.xofftxc,
|
|
"XOFF Transmitted");
|
|
|
|
/* Packet Reception Stats */
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
|
|
CTLFLAG_RD, &adapter->stats.tpr,
|
|
"Total Packets Received ");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
|
|
CTLFLAG_RD, &adapter->stats.gprc,
|
|
"Good Packets Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
|
|
CTLFLAG_RD, &adapter->stats.bprc,
|
|
"Broadcast Packets Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
|
|
CTLFLAG_RD, &adapter->stats.mprc,
|
|
"Multicast Packets Received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
|
|
CTLFLAG_RD, &adapter->stats.prc64,
|
|
"64 byte frames received ");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
|
|
CTLFLAG_RD, &adapter->stats.prc127,
|
|
"65-127 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
|
|
CTLFLAG_RD, &adapter->stats.prc255,
|
|
"128-255 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
|
|
CTLFLAG_RD, &adapter->stats.prc511,
|
|
"256-511 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
|
|
CTLFLAG_RD, &adapter->stats.prc1023,
|
|
"512-1023 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
|
|
CTLFLAG_RD, &adapter->stats.prc1522,
|
|
"1023-1522 byte frames received");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
|
|
CTLFLAG_RD, &adapter->stats.gorc,
|
|
"Good Octets Received");
|
|
|
|
/* Packet Transmission Stats */
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
|
|
CTLFLAG_RD, &adapter->stats.gotc,
|
|
"Good Octets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
|
|
CTLFLAG_RD, &adapter->stats.tpt,
|
|
"Total Packets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
|
|
CTLFLAG_RD, &adapter->stats.gptc,
|
|
"Good Packets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
|
|
CTLFLAG_RD, &adapter->stats.bptc,
|
|
"Broadcast Packets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
|
|
CTLFLAG_RD, &adapter->stats.mptc,
|
|
"Multicast Packets Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
|
|
CTLFLAG_RD, &adapter->stats.ptc64,
|
|
"64 byte frames transmitted ");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
|
|
CTLFLAG_RD, &adapter->stats.ptc127,
|
|
"65-127 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
|
|
CTLFLAG_RD, &adapter->stats.ptc255,
|
|
"128-255 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
|
|
CTLFLAG_RD, &adapter->stats.ptc511,
|
|
"256-511 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
|
|
CTLFLAG_RD, &adapter->stats.ptc1023,
|
|
"512-1023 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
|
|
CTLFLAG_RD, &adapter->stats.ptc1522,
|
|
"1024-1522 byte frames transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
|
|
CTLFLAG_RD, &adapter->stats.tsctc,
|
|
"TSO Contexts Transmitted");
|
|
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
|
|
CTLFLAG_RD, &adapter->stats.tsctfc,
|
|
"TSO Contexts Failed");
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* This routine provides a way to dump out the adapter eeprom,
|
|
* often a useful debug/service tool. This only dumps the first
|
|
* 32 words, stuff that matters is in that extent.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
lem_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
/*
|
|
* This value will cause a hex dump of the
|
|
* first 32 16-bit words of the EEPROM to
|
|
* the screen.
|
|
*/
|
|
if (result == 1) {
|
|
adapter = (struct adapter *)arg1;
|
|
lem_print_nvm_info(adapter);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
lem_print_nvm_info(struct adapter *adapter)
|
|
{
|
|
u16 eeprom_data;
|
|
int i, j, row = 0;
|
|
|
|
/* Its a bit crude, but it gets the job done */
|
|
printf("\nInterface EEPROM Dump:\n");
|
|
printf("Offset\n0x0000 ");
|
|
for (i = 0, j = 0; i < 32; i++, j++) {
|
|
if (j == 8) { /* Make the offset block */
|
|
j = 0; ++row;
|
|
printf("\n0x00%x0 ",row);
|
|
}
|
|
e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
|
|
printf("%04x ", eeprom_data);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static int
|
|
lem_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct em_int_delay_info *info;
|
|
struct adapter *adapter;
|
|
u32 regval;
|
|
int error;
|
|
int usecs;
|
|
int ticks;
|
|
|
|
info = (struct em_int_delay_info *)arg1;
|
|
usecs = info->value;
|
|
error = sysctl_handle_int(oidp, &usecs, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
|
|
return (EINVAL);
|
|
info->value = usecs;
|
|
ticks = EM_USECS_TO_TICKS(usecs);
|
|
if (info->offset == E1000_ITR) /* units are 256ns here */
|
|
ticks *= 4;
|
|
|
|
adapter = info->adapter;
|
|
|
|
EM_CORE_LOCK(adapter);
|
|
regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
|
|
regval = (regval & ~0xffff) | (ticks & 0xffff);
|
|
/* Handle a few special cases. */
|
|
switch (info->offset) {
|
|
case E1000_RDTR:
|
|
break;
|
|
case E1000_TIDV:
|
|
if (ticks == 0) {
|
|
adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
|
|
/* Don't write 0 into the TIDV register. */
|
|
regval++;
|
|
} else
|
|
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
|
|
break;
|
|
}
|
|
E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
|
|
EM_CORE_UNLOCK(adapter);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
lem_add_int_delay_sysctl(struct adapter *adapter, const char *name,
|
|
const char *description, struct em_int_delay_info *info,
|
|
int offset, int value)
|
|
{
|
|
info->adapter = adapter;
|
|
info->offset = offset;
|
|
info->value = value;
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
|
|
info, 0, lem_sysctl_int_delay, "I", description);
|
|
}
|
|
|
|
static void
|
|
lem_set_flow_cntrl(struct adapter *adapter, const char *name,
|
|
const char *description, int *limit, int value)
|
|
{
|
|
*limit = value;
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, name, CTLFLAG_RW, limit, value, description);
|
|
}
|
|
|
|
static void
|
|
lem_add_rx_process_limit(struct adapter *adapter, const char *name,
|
|
const char *description, int *limit, int value)
|
|
{
|
|
*limit = value;
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, name, CTLFLAG_RW, limit, value, description);
|
|
}
|