freebsd-skq/sys/mips/rmi/pic.h
jchandra 4eb4bc749d XLS B0 revision PCI support and related changes.
- XLS B0 and later revision chips have PCIe link 2 & 3 mapped to different
  PIC interrupts. Update pic.h, board.h and xlr_pci.c to reflect this.
- remove debug prints in xlr_pci.c
- add more processor IDs to board.h, add function xlr_is_xls_b0()
- some style(9) and whitespace fixes
2010-09-27 14:50:51 +00:00

273 lines
9.1 KiB
C

/*-
* Copyright (c) 2003-2009 RMI Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of RMI Corporation, nor the names of its contributors,
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RMI_BSD
* $FreeBSD$
*/
#ifndef _RMI_PIC_H_
#define _RMI_PIC_H_
#include <sys/cdefs.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <mips/rmi/iomap.h>
#define PIC_IRT_WD_INDEX 0
#define PIC_IRT_TIMER_INDEX(i) (1 + (i))
#define PIC_IRT_UART_0_INDEX 9
#define PIC_IRT_UART_1_INDEX 10
#define PIC_IRT_I2C_0_INDEX 11
#define PIC_IRT_I2C_1_INDEX 12
#define PIC_IRT_PCMCIA_INDEX 13
#define PIC_IRT_GPIO_INDEX 14
#define PIC_IRT_HYPER_INDEX 15
#define PIC_IRT_PCIX_INDEX 16
#define PIC_IRT_GMAC0_INDEX 17
#define PIC_IRT_GMAC1_INDEX 18
#define PIC_IRT_GMAC2_INDEX 19
#define PIC_IRT_GMAC3_INDEX 20
#define PIC_IRT_XGS0_INDEX 21
#define PIC_IRT_XGS1_INDEX 22
#define PIC_IRT_HYPER_FATAL_INDEX 23
#define PIC_IRT_PCIX_FATAL_INDEX 24
#define PIC_IRT_BRIDGE_AERR_INDEX 25
#define PIC_IRT_BRIDGE_BERR_INDEX 26
#define PIC_IRT_BRIDGE_TB_INDEX 27
#define PIC_IRT_BRIDGE_AERR_NMI_INDEX 28
/* numbering for XLS */
#define PIC_IRT_BRIDGE_ERR_INDEX 25
#define PIC_IRT_PCIE_LINK0_INDEX 26
#define PIC_IRT_PCIE_LINK1_INDEX 27
#define PIC_IRT_PCIE_LINK2_INDEX 23
#define PIC_IRT_PCIE_LINK3_INDEX 24
#define PIC_IRT_PCIE_B0_LINK2_INDEX 28
#define PIC_IRT_PCIE_B0_LINK3_INDEX 29
#define PIC_IRT_PCIE_INT_INDEX 28
#define PIC_IRT_PCIE_FATAL_INDEX 29
#define PIC_IRT_GPIO_B_INDEX 30
#define PIC_IRT_USB_INDEX 31
#define PIC_NUM_IRTS 32
#define PIC_CLOCK_TIMER 7
#define PIC_CTRL 0x00
#define PIC_IPI 0x04
#define PIC_INT_ACK 0x06
#define WD_MAX_VAL_0 0x08
#define WD_MAX_VAL_1 0x09
#define WD_MASK_0 0x0a
#define WD_MASK_1 0x0b
#define WD_HEARBEAT_0 0x0c
#define WD_HEARBEAT_1 0x0d
#define PIC_IRT_0_BASE 0x40
#define PIC_IRT_1_BASE 0x80
#define PIC_TIMER_MAXVAL_0_BASE 0x100
#define PIC_TIMER_MAXVAL_1_BASE 0x110
#define PIC_TIMER_COUNT_0_BASE 0x120
#define PIC_TIMER_COUNT_1_BASE 0x130
#define PIC_IRT_0(picintr) (PIC_IRT_0_BASE + (picintr))
#define PIC_IRT_1(picintr) (PIC_IRT_1_BASE + (picintr))
#define PIC_TIMER_MAXVAL_0(i) (PIC_TIMER_MAXVAL_0_BASE + (i))
#define PIC_TIMER_MAXVAL_1(i) (PIC_TIMER_MAXVAL_1_BASE + (i))
#define PIC_TIMER_COUNT_0(i) (PIC_TIMER_COUNT_0_BASE + (i))
#define PIC_TIMER_COUNT_1(i) (PIC_TIMER_COUNT_0_BASE + (i))
#define PIC_TIMER_HZ 66000000U
/*
* We use a simple mapping form PIC interrupts to CPU IRQs.
* The PIC interrupts 0-31 are mapped to CPU irq's 8-39.
* this leaves the lower 0-7 for the cpu interrupts (like
* count/compare, msgrng) and 40-63 for IPIs
*/
#define PIC_IRQ_BASE 8
#define PIC_INTR_TO_IRQ(i) (PIC_IRQ_BASE + (i))
#define PIC_IRQ_TO_INTR(i) ((i) - PIC_IRQ_BASE)
#define PIC_WD_IRQ (PIC_IRQ_BASE + PIC_IRT_WD_INDEX)
#define PIC_TIMER_IRQ(i) (PIC_IRQ_BASE + PIC_IRT_TIMER_INDEX(i))
#define PIC_CLOCK_IRQ PIC_TIMER_IRQ(PIC_CLOCK_TIMER)
#define PIC_UART_0_IRQ (PIC_IRQ_BASE + PIC_IRT_UART_0_INDEX)
#define PIC_UART_1_IRQ (PIC_IRQ_BASE + PIC_IRT_UART_1_INDEX)
#define PIC_I2C_0_IRQ (PIC_IRQ_BASE + PIC_IRT_I2C_0_INDEX)
#define PIC_I2C_1_IRQ (PIC_IRQ_BASE + PIC_IRT_I2C_1_INDEX)
#define PIC_PCMCIA_IRQ (PIC_IRQ_BASE + PIC_IRT_PCMCIA_INDEX)
#define PIC_GPIO_IRQ (PIC_IRQ_BASE + PIC_IRT_GPIO_INDEX)
#define PIC_HYPER_IRQ (PIC_IRQ_BASE + PIC_IRT_HYPER_INDEX)
#define PIC_PCIX_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIX_INDEX)
#define PIC_GMAC_0_IRQ (PIC_IRQ_BASE + PIC_IRT_GMAC0_INDEX)
#define PIC_GMAC_1_IRQ (PIC_IRQ_BASE + PIC_IRT_GMAC1_INDEX)
#define PIC_GMAC_2_IRQ (PIC_IRQ_BASE + PIC_IRT_GMAC2_INDEX)
#define PIC_GMAC_3_IRQ (PIC_IRQ_BASE + PIC_IRT_GMAC3_INDEX)
#define PIC_XGS_0_IRQ (PIC_IRQ_BASE + PIC_IRT_XGS0_INDEX)
#define PIC_XGS_1_IRQ (PIC_IRQ_BASE + PIC_IRT_XGS1_INDEX)
#define PIC_HYPER_FATAL_IRQ (PIC_IRQ_BASE + PIC_IRT_HYPER_FATAL_INDEX)
#define PIC_PCIX_FATAL_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIX_FATAL_INDEX)
#define PIC_BRIDGE_AERR_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_AERR_INDEX)
#define PIC_BRIDGE_BERR_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_BERR_INDEX)
#define PIC_BRIDGE_TB_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_TB_INDEX)
#define PIC_BRIDGE_AERR_NMI_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_AERR_NMI_INDEX)
#define PIC_BRIDGE_ERR_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_ERR_INDEX)
#define PIC_PCIE_LINK0_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_LINK0_INDEX)
#define PIC_PCIE_LINK1_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_LINK1_INDEX)
#define PIC_PCIE_LINK2_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_LINK2_INDEX)
#define PIC_PCIE_LINK3_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_LINK3_INDEX)
#define PIC_PCIE_B0_LINK2_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_B0_LINK2_INDEX)
#define PIC_PCIE_B0_LINK3_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_B0_LINK3_INDEX)
#define PIC_PCIE_INT_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_INT_INDEX)
#define PIC_PCIE_FATAL_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_FATAL_INDEX)
#define PIC_GPIO_B_IRQ (PIC_IRQ_BASE + PIC_IRT_GPIO_B_INDEX)
#define PIC_USB_IRQ (PIC_IRQ_BASE + PIC_IRT_USB_INDEX)
#define PIC_IRQ_IS_PICINTR(irq) ((irq) >= PIC_IRQ_BASE && \
(irq) < PIC_IRQ_BASE + PIC_NUM_IRTS)
#define PIC_IS_EDGE_TRIGGERED(i) ((i) >= PIC_IRT_TIMER_INDEX(0) && \
(i) <= PIC_IRT_TIMER_INDEX(7))
extern struct mtx xlr_pic_lock;
static __inline uint32_t
pic_read_control(void)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
uint32_t reg;
mtx_lock_spin(&xlr_pic_lock);
xlr_read_reg(mmio, PIC_CTRL);
mtx_unlock_spin(&xlr_pic_lock);
return (reg);
}
static __inline void
pic_write_control(uint32_t control)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
mtx_lock_spin(&xlr_pic_lock);
xlr_write_reg(mmio, PIC_CTRL, control);
mtx_unlock_spin(&xlr_pic_lock);
}
static __inline void
pic_update_control(__uint32_t control)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
mtx_lock_spin(&xlr_pic_lock);
xlr_write_reg(mmio, PIC_CTRL, (control | xlr_read_reg(mmio, PIC_CTRL)));
mtx_unlock_spin(&xlr_pic_lock);
}
static __inline void
pic_ack(int picintr)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
xlr_write_reg(mmio, PIC_INT_ACK, 1U << picintr);
}
static __inline
void pic_send_ipi(int cpu, int ipi)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
int tid, pid;
tid = cpu & 0x3;
pid = (cpu >> 2) & 0x7;
xlr_write_reg(mmio, PIC_IPI, (pid << 20) | (tid << 16) | ipi);
}
static __inline
void pic_setup_intr(int picintr, int irq, uint32_t cpumask, int level)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
mtx_lock_spin(&xlr_pic_lock);
xlr_write_reg(mmio, PIC_IRT_0(picintr), cpumask);
xlr_write_reg(mmio, PIC_IRT_1(picintr), ((1 << 31) | (level << 30) |
(1 << 6) | irq));
mtx_unlock_spin(&xlr_pic_lock);
}
static __inline void
pic_init_timer(int timer)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
uint32_t val;
mtx_lock_spin(&xlr_pic_lock);
val = xlr_read_reg(mmio, PIC_CTRL);
val |= (1 << (8 + timer));
xlr_write_reg(mmio, PIC_CTRL, val);
mtx_unlock_spin(&xlr_pic_lock);
}
static __inline void
pic_set_timer(int timer, uint64_t maxval)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
xlr_write_reg(mmio, PIC_TIMER_MAXVAL_0(timer),
(maxval & 0xffffffff));
xlr_write_reg(mmio, PIC_TIMER_MAXVAL_1(timer),
(maxval >> 32) & 0xffffffff);
}
static __inline uint32_t
pic_timer_count32(int timer)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
return (xlr_read_reg(mmio, PIC_TIMER_COUNT_0(timer)));
}
/*
* The timer can wrap 32 bits between the two reads, so we
* need additional logic to detect that.
*/
static __inline uint64_t
pic_timer_count(int timer)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
uint32_t tu1, tu2, tl;
tu1 = xlr_read_reg(mmio, PIC_TIMER_COUNT_1(timer));
tl = xlr_read_reg(mmio, PIC_TIMER_COUNT_0(timer));
tu2 = xlr_read_reg(mmio, PIC_TIMER_COUNT_1(timer));
if (tu2 != tu1)
tl = xlr_read_reg(mmio, PIC_TIMER_COUNT_0(timer));
return (((uint64_t)tu2 << 32) | tl);
}
#endif /* _RMI_PIC_H_ */