freebsd-skq/sys/crypto/aesni/aesni.c
Conrad Meyer 8475a4175f aesni(4): Stylistic/comment enhancements
Improve clarity of a comment and style(9) some areas.

No functional change.

Reported by:	markj (on review of a mostly-copied driver)
Sponsored by:	Dell EMC Isilon
2018-03-15 16:17:02 +00:00

956 lines
23 KiB
C

/*-
* Copyright (c) 2005-2008 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org>
* Copyright (c) 2014 The FreeBSD Foundation
* Copyright (c) 2017 Conrad Meyer <cem@FreeBSD.org>
* All rights reserved.
*
* Portions of this software were developed by John-Mark Gurney
* under sponsorship of the FreeBSD Foundation and
* Rubicon Communications, LLC (Netgate).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/libkern.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rwlock.h>
#include <sys/bus.h>
#include <sys/uio.h>
#include <sys/mbuf.h>
#include <sys/smp.h>
#include <crypto/aesni/aesni.h>
#include <crypto/aesni/sha_sse.h>
#include <crypto/sha1.h>
#include <crypto/sha2/sha256.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/gmac.h>
#include <cryptodev_if.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#if defined(__i386__)
#include <machine/npx.h>
#elif defined(__amd64__)
#include <machine/fpu.h>
#endif
static struct mtx_padalign *ctx_mtx;
static struct fpu_kern_ctx **ctx_fpu;
struct aesni_softc {
int dieing;
int32_t cid;
uint32_t sid;
bool has_aes;
bool has_sha;
TAILQ_HEAD(aesni_sessions_head, aesni_session) sessions;
struct rwlock lock;
};
#define ACQUIRE_CTX(i, ctx) \
do { \
(i) = PCPU_GET(cpuid); \
mtx_lock(&ctx_mtx[(i)]); \
(ctx) = ctx_fpu[(i)]; \
} while (0)
#define RELEASE_CTX(i, ctx) \
do { \
mtx_unlock(&ctx_mtx[(i)]); \
(i) = -1; \
(ctx) = NULL; \
} while (0)
static int aesni_newsession(device_t, uint32_t *sidp, struct cryptoini *cri);
static int aesni_freesession(device_t, uint64_t tid);
static void aesni_freesession_locked(struct aesni_softc *sc,
struct aesni_session *ses);
static int aesni_cipher_setup(struct aesni_session *ses,
struct cryptoini *encini, struct cryptoini *authini);
static int aesni_cipher_process(struct aesni_session *ses,
struct cryptodesc *enccrd, struct cryptodesc *authcrd, struct cryptop *crp);
static int aesni_cipher_crypt(struct aesni_session *ses,
struct cryptodesc *enccrd, struct cryptodesc *authcrd, struct cryptop *crp);
static int aesni_cipher_mac(struct aesni_session *ses, struct cryptodesc *crd,
struct cryptop *crp);
MALLOC_DEFINE(M_AESNI, "aesni_data", "AESNI Data");
static void
aesni_identify(driver_t *drv, device_t parent)
{
/* NB: order 10 is so we get attached after h/w devices */
if (device_find_child(parent, "aesni", -1) == NULL &&
BUS_ADD_CHILD(parent, 10, "aesni", -1) == 0)
panic("aesni: could not attach");
}
static void
detect_cpu_features(bool *has_aes, bool *has_sha)
{
*has_aes = ((cpu_feature2 & CPUID2_AESNI) != 0 &&
(cpu_feature2 & CPUID2_SSE41) != 0);
*has_sha = ((cpu_stdext_feature & CPUID_STDEXT_SHA) != 0 &&
(cpu_feature2 & CPUID2_SSSE3) != 0);
}
static int
aesni_probe(device_t dev)
{
bool has_aes, has_sha;
detect_cpu_features(&has_aes, &has_sha);
if (!has_aes && !has_sha) {
device_printf(dev, "No AES or SHA support.\n");
return (EINVAL);
} else if (has_aes && has_sha)
device_set_desc(dev,
"AES-CBC,AES-XTS,AES-GCM,AES-ICM,SHA1,SHA256");
else if (has_aes)
device_set_desc(dev, "AES-CBC,AES-XTS,AES-GCM,AES-ICM");
else
device_set_desc(dev, "SHA1,SHA256");
return (0);
}
static void
aesni_cleanctx(void)
{
int i;
/* XXX - no way to return driverid */
CPU_FOREACH(i) {
if (ctx_fpu[i] != NULL) {
mtx_destroy(&ctx_mtx[i]);
fpu_kern_free_ctx(ctx_fpu[i]);
}
ctx_fpu[i] = NULL;
}
free(ctx_mtx, M_AESNI);
ctx_mtx = NULL;
free(ctx_fpu, M_AESNI);
ctx_fpu = NULL;
}
static int
aesni_attach(device_t dev)
{
struct aesni_softc *sc;
int i;
sc = device_get_softc(dev);
sc->dieing = 0;
TAILQ_INIT(&sc->sessions);
sc->sid = 1;
sc->cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE |
CRYPTOCAP_F_SYNC);
if (sc->cid < 0) {
device_printf(dev, "Could not get crypto driver id.\n");
return (ENOMEM);
}
ctx_mtx = malloc(sizeof *ctx_mtx * (mp_maxid + 1), M_AESNI,
M_WAITOK|M_ZERO);
ctx_fpu = malloc(sizeof *ctx_fpu * (mp_maxid + 1), M_AESNI,
M_WAITOK|M_ZERO);
CPU_FOREACH(i) {
ctx_fpu[i] = fpu_kern_alloc_ctx(0);
mtx_init(&ctx_mtx[i], "anifpumtx", NULL, MTX_DEF|MTX_NEW);
}
rw_init(&sc->lock, "aesni_lock");
detect_cpu_features(&sc->has_aes, &sc->has_sha);
if (sc->has_aes) {
crypto_register(sc->cid, CRYPTO_AES_CBC, 0, 0);
crypto_register(sc->cid, CRYPTO_AES_ICM, 0, 0);
crypto_register(sc->cid, CRYPTO_AES_NIST_GCM_16, 0, 0);
crypto_register(sc->cid, CRYPTO_AES_128_NIST_GMAC, 0, 0);
crypto_register(sc->cid, CRYPTO_AES_192_NIST_GMAC, 0, 0);
crypto_register(sc->cid, CRYPTO_AES_256_NIST_GMAC, 0, 0);
crypto_register(sc->cid, CRYPTO_AES_XTS, 0, 0);
}
if (sc->has_sha) {
crypto_register(sc->cid, CRYPTO_SHA1, 0, 0);
crypto_register(sc->cid, CRYPTO_SHA1_HMAC, 0, 0);
crypto_register(sc->cid, CRYPTO_SHA2_256_HMAC, 0, 0);
}
return (0);
}
static int
aesni_detach(device_t dev)
{
struct aesni_softc *sc;
struct aesni_session *ses;
sc = device_get_softc(dev);
rw_wlock(&sc->lock);
TAILQ_FOREACH(ses, &sc->sessions, next) {
if (ses->used) {
rw_wunlock(&sc->lock);
device_printf(dev,
"Cannot detach, sessions still active.\n");
return (EBUSY);
}
}
sc->dieing = 1;
while ((ses = TAILQ_FIRST(&sc->sessions)) != NULL) {
TAILQ_REMOVE(&sc->sessions, ses, next);
free(ses, M_AESNI);
}
rw_wunlock(&sc->lock);
crypto_unregister_all(sc->cid);
rw_destroy(&sc->lock);
aesni_cleanctx();
return (0);
}
static int
aesni_newsession(device_t dev, uint32_t *sidp, struct cryptoini *cri)
{
struct aesni_softc *sc;
struct aesni_session *ses;
struct cryptoini *encini, *authini;
bool gcm_hash, gcm;
int error;
if (sidp == NULL || cri == NULL) {
CRYPTDEB("no sidp or cri");
return (EINVAL);
}
sc = device_get_softc(dev);
if (sc->dieing)
return (EINVAL);
ses = NULL;
authini = NULL;
encini = NULL;
gcm = false;
gcm_hash = false;
for (; cri != NULL; cri = cri->cri_next) {
switch (cri->cri_alg) {
case CRYPTO_AES_NIST_GCM_16:
gcm = true;
/* FALLTHROUGH */
case CRYPTO_AES_CBC:
case CRYPTO_AES_ICM:
case CRYPTO_AES_XTS:
if (!sc->has_aes)
goto unhandled;
if (encini != NULL) {
CRYPTDEB("encini already set");
return (EINVAL);
}
encini = cri;
break;
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
/*
* nothing to do here, maybe in the future cache some
* values for GHASH
*/
gcm_hash = true;
break;
case CRYPTO_SHA1:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_256_HMAC:
if (!sc->has_sha)
goto unhandled;
if (authini != NULL) {
CRYPTDEB("authini already set");
return (EINVAL);
}
authini = cri;
break;
default:
unhandled:
CRYPTDEB("unhandled algorithm");
return (EINVAL);
}
}
if (encini == NULL && authini == NULL) {
CRYPTDEB("no cipher");
return (EINVAL);
}
/*
* GMAC algorithms are only supported with simultaneous GCM. Likewise
* GCM is not supported without GMAC.
*/
if (gcm_hash != gcm)
return (EINVAL);
rw_wlock(&sc->lock);
if (sc->dieing) {
rw_wunlock(&sc->lock);
return (EINVAL);
}
/*
* Free sessions are inserted at the head of the list. So if the first
* session is used, none are free and we must allocate a new one.
*/
ses = TAILQ_FIRST(&sc->sessions);
if (ses == NULL || ses->used) {
ses = malloc(sizeof(*ses), M_AESNI, M_NOWAIT | M_ZERO);
if (ses == NULL) {
rw_wunlock(&sc->lock);
return (ENOMEM);
}
ses->id = sc->sid++;
} else {
TAILQ_REMOVE(&sc->sessions, ses, next);
}
ses->used = 1;
TAILQ_INSERT_TAIL(&sc->sessions, ses, next);
rw_wunlock(&sc->lock);
if (encini != NULL)
ses->algo = encini->cri_alg;
if (authini != NULL)
ses->auth_algo = authini->cri_alg;
error = aesni_cipher_setup(ses, encini, authini);
if (error != 0) {
CRYPTDEB("setup failed");
rw_wlock(&sc->lock);
aesni_freesession_locked(sc, ses);
rw_wunlock(&sc->lock);
return (error);
}
*sidp = ses->id;
return (0);
}
static void
aesni_freesession_locked(struct aesni_softc *sc, struct aesni_session *ses)
{
uint32_t sid;
rw_assert(&sc->lock, RA_WLOCKED);
sid = ses->id;
TAILQ_REMOVE(&sc->sessions, ses, next);
explicit_bzero(ses, sizeof(*ses));
ses->id = sid;
TAILQ_INSERT_HEAD(&sc->sessions, ses, next);
}
static int
aesni_freesession(device_t dev, uint64_t tid)
{
struct aesni_softc *sc;
struct aesni_session *ses;
uint32_t sid;
sc = device_get_softc(dev);
sid = ((uint32_t)tid) & 0xffffffff;
rw_wlock(&sc->lock);
TAILQ_FOREACH_REVERSE(ses, &sc->sessions, aesni_sessions_head, next) {
if (ses->id == sid)
break;
}
if (ses == NULL) {
rw_wunlock(&sc->lock);
return (EINVAL);
}
aesni_freesession_locked(sc, ses);
rw_wunlock(&sc->lock);
return (0);
}
static int
aesni_process(device_t dev, struct cryptop *crp, int hint __unused)
{
struct aesni_softc *sc;
struct aesni_session *ses;
struct cryptodesc *crd, *enccrd, *authcrd;
int error, needauth;
sc = device_get_softc(dev);
ses = NULL;
error = 0;
enccrd = NULL;
authcrd = NULL;
needauth = 0;
/* Sanity check. */
if (crp == NULL)
return (EINVAL);
if (crp->crp_callback == NULL || crp->crp_desc == NULL) {
error = EINVAL;
goto out;
}
for (crd = crp->crp_desc; crd != NULL; crd = crd->crd_next) {
switch (crd->crd_alg) {
case CRYPTO_AES_NIST_GCM_16:
needauth = 1;
/* FALLTHROUGH */
case CRYPTO_AES_CBC:
case CRYPTO_AES_ICM:
case CRYPTO_AES_XTS:
if (enccrd != NULL) {
error = EINVAL;
goto out;
}
enccrd = crd;
break;
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
case CRYPTO_SHA1:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_256_HMAC:
if (authcrd != NULL) {
error = EINVAL;
goto out;
}
authcrd = crd;
break;
default:
error = EINVAL;
goto out;
}
}
if ((enccrd == NULL && authcrd == NULL) ||
(needauth && authcrd == NULL)) {
error = EINVAL;
goto out;
}
/* CBC & XTS can only handle full blocks for now */
if (enccrd != NULL && (enccrd->crd_alg == CRYPTO_AES_CBC ||
enccrd->crd_alg == CRYPTO_AES_XTS) &&
(enccrd->crd_len % AES_BLOCK_LEN) != 0) {
error = EINVAL;
goto out;
}
rw_rlock(&sc->lock);
TAILQ_FOREACH_REVERSE(ses, &sc->sessions, aesni_sessions_head, next) {
if (ses->id == (crp->crp_sid & 0xffffffff))
break;
}
rw_runlock(&sc->lock);
if (ses == NULL) {
error = EINVAL;
goto out;
}
error = aesni_cipher_process(ses, enccrd, authcrd, crp);
if (error != 0)
goto out;
out:
crp->crp_etype = error;
crypto_done(crp);
return (error);
}
static uint8_t *
aesni_cipher_alloc(struct cryptodesc *enccrd, struct cryptop *crp,
bool *allocated)
{
struct mbuf *m;
struct uio *uio;
struct iovec *iov;
uint8_t *addr;
if (crp->crp_flags & CRYPTO_F_IMBUF) {
m = (struct mbuf *)crp->crp_buf;
if (m->m_next != NULL)
goto alloc;
addr = mtod(m, uint8_t *);
} else if (crp->crp_flags & CRYPTO_F_IOV) {
uio = (struct uio *)crp->crp_buf;
if (uio->uio_iovcnt != 1)
goto alloc;
iov = uio->uio_iov;
addr = (uint8_t *)iov->iov_base;
} else
addr = (uint8_t *)crp->crp_buf;
*allocated = false;
addr += enccrd->crd_skip;
return (addr);
alloc:
addr = malloc(enccrd->crd_len, M_AESNI, M_NOWAIT);
if (addr != NULL) {
*allocated = true;
crypto_copydata(crp->crp_flags, crp->crp_buf, enccrd->crd_skip,
enccrd->crd_len, addr);
} else
*allocated = false;
return (addr);
}
static device_method_t aesni_methods[] = {
DEVMETHOD(device_identify, aesni_identify),
DEVMETHOD(device_probe, aesni_probe),
DEVMETHOD(device_attach, aesni_attach),
DEVMETHOD(device_detach, aesni_detach),
DEVMETHOD(cryptodev_newsession, aesni_newsession),
DEVMETHOD(cryptodev_freesession, aesni_freesession),
DEVMETHOD(cryptodev_process, aesni_process),
DEVMETHOD_END
};
static driver_t aesni_driver = {
"aesni",
aesni_methods,
sizeof(struct aesni_softc),
};
static devclass_t aesni_devclass;
DRIVER_MODULE(aesni, nexus, aesni_driver, aesni_devclass, 0, 0);
MODULE_VERSION(aesni, 1);
MODULE_DEPEND(aesni, crypto, 1, 1, 1);
static int
aesni_cipher_setup(struct aesni_session *ses, struct cryptoini *encini,
struct cryptoini *authini)
{
struct fpu_kern_ctx *ctx;
int kt, ctxidx, keylen, error;
switch (ses->auth_algo) {
case CRYPTO_SHA1:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_256_HMAC:
if (authini->cri_klen % 8 != 0)
return (EINVAL);
keylen = authini->cri_klen / 8;
if (keylen > sizeof(ses->hmac_key))
return (EINVAL);
if (ses->auth_algo == CRYPTO_SHA1 && keylen > 0)
return (EINVAL);
memcpy(ses->hmac_key, authini->cri_key, keylen);
ses->mlen = authini->cri_mlen;
}
kt = is_fpu_kern_thread(0) || (encini == NULL);
if (!kt) {
ACQUIRE_CTX(ctxidx, ctx);
fpu_kern_enter(curthread, ctx,
FPU_KERN_NORMAL | FPU_KERN_KTHR);
}
error = 0;
if (encini != NULL)
error = aesni_cipher_setup_common(ses, encini->cri_key,
encini->cri_klen);
if (!kt) {
fpu_kern_leave(curthread, ctx);
RELEASE_CTX(ctxidx, ctx);
}
return (error);
}
static int
intel_sha1_update(void *vctx, const void *vdata, u_int datalen)
{
struct sha1_ctxt *ctx = vctx;
const char *data = vdata;
size_t gaplen;
size_t gapstart;
size_t off;
size_t copysiz;
u_int blocks;
off = 0;
/* Do any aligned blocks without redundant copying. */
if (datalen >= 64 && ctx->count % 64 == 0) {
blocks = datalen / 64;
ctx->c.b64[0] += blocks * 64 * 8;
intel_sha1_step(ctx->h.b32, data + off, blocks);
off += blocks * 64;
}
while (off < datalen) {
gapstart = ctx->count % 64;
gaplen = 64 - gapstart;
copysiz = (gaplen < datalen - off) ? gaplen : datalen - off;
bcopy(&data[off], &ctx->m.b8[gapstart], copysiz);
ctx->count += copysiz;
ctx->count %= 64;
ctx->c.b64[0] += copysiz * 8;
if (ctx->count % 64 == 0)
intel_sha1_step(ctx->h.b32, (void *)ctx->m.b8, 1);
off += copysiz;
}
return (0);
}
static void
SHA1_Finalize_fn(void *digest, void *ctx)
{
sha1_result(ctx, digest);
}
static int
intel_sha256_update(void *vctx, const void *vdata, u_int len)
{
SHA256_CTX *ctx = vctx;
uint64_t bitlen;
uint32_t r;
u_int blocks;
const unsigned char *src = vdata;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen = len << 3;
/* Update number of bits */
ctx->count += bitlen;
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return (0);
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
intel_sha256_step(ctx->state, ctx->buf, 1);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
if (len >= 64) {
blocks = len / 64;
intel_sha256_step(ctx->state, src, blocks);
src += blocks * 64;
len -= blocks * 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
return (0);
}
static void
SHA256_Finalize_fn(void *digest, void *ctx)
{
SHA256_Final(digest, ctx);
}
/*
* Compute the HASH( (key ^ xorbyte) || buf )
*/
static void
hmac_internal(void *ctx, uint32_t *res,
int (*update)(void *, const void *, u_int),
void (*finalize)(void *, void *), uint8_t *key, uint8_t xorbyte,
const void *buf, size_t off, size_t buflen, int crpflags)
{
size_t i;
for (i = 0; i < 64; i++)
key[i] ^= xorbyte;
update(ctx, key, 64);
for (i = 0; i < 64; i++)
key[i] ^= xorbyte;
crypto_apply(crpflags, __DECONST(void *, buf), off, buflen,
__DECONST(int (*)(void *, void *, u_int), update), ctx);
finalize(res, ctx);
}
static int
aesni_cipher_process(struct aesni_session *ses, struct cryptodesc *enccrd,
struct cryptodesc *authcrd, struct cryptop *crp)
{
struct fpu_kern_ctx *ctx;
int error, ctxidx;
bool kt;
if (enccrd != NULL) {
if ((enccrd->crd_alg == CRYPTO_AES_ICM ||
enccrd->crd_alg == CRYPTO_AES_NIST_GCM_16) &&
(enccrd->crd_flags & CRD_F_IV_EXPLICIT) == 0)
return (EINVAL);
}
ctx = NULL;
ctxidx = 0;
error = 0;
kt = is_fpu_kern_thread(0);
if (!kt) {
ACQUIRE_CTX(ctxidx, ctx);
fpu_kern_enter(curthread, ctx,
FPU_KERN_NORMAL | FPU_KERN_KTHR);
}
/* Do work */
if (enccrd != NULL && authcrd != NULL) {
/* Perform the first operation */
if (crp->crp_desc == enccrd)
error = aesni_cipher_crypt(ses, enccrd, authcrd, crp);
else
error = aesni_cipher_mac(ses, authcrd, crp);
if (error != 0)
goto out;
/* Perform the second operation */
if (crp->crp_desc == enccrd)
error = aesni_cipher_mac(ses, authcrd, crp);
else
error = aesni_cipher_crypt(ses, enccrd, authcrd, crp);
} else if (enccrd != NULL)
error = aesni_cipher_crypt(ses, enccrd, authcrd, crp);
else
error = aesni_cipher_mac(ses, authcrd, crp);
if (error != 0)
goto out;
out:
if (!kt) {
fpu_kern_leave(curthread, ctx);
RELEASE_CTX(ctxidx, ctx);
}
return (error);
}
static int
aesni_cipher_crypt(struct aesni_session *ses, struct cryptodesc *enccrd,
struct cryptodesc *authcrd, struct cryptop *crp)
{
uint8_t iv[AES_BLOCK_LEN], tag[GMAC_DIGEST_LEN], *buf, *authbuf;
int error, ivlen;
bool encflag, allocated, authallocated;
KASSERT(ses->algo != CRYPTO_AES_NIST_GCM_16 || authcrd != NULL,
("AES_NIST_GCM_16 must include MAC descriptor"));
ivlen = 0;
authbuf = NULL;
buf = aesni_cipher_alloc(enccrd, crp, &allocated);
if (buf == NULL)
return (ENOMEM);
authallocated = false;
if (ses->algo == CRYPTO_AES_NIST_GCM_16) {
authbuf = aesni_cipher_alloc(authcrd, crp, &authallocated);
if (authbuf == NULL) {
error = ENOMEM;
goto out;
}
}
error = 0;
encflag = (enccrd->crd_flags & CRD_F_ENCRYPT) == CRD_F_ENCRYPT;
if ((enccrd->crd_flags & CRD_F_KEY_EXPLICIT) != 0) {
error = aesni_cipher_setup_common(ses, enccrd->crd_key,
enccrd->crd_klen);
if (error != 0)
goto out;
}
switch (enccrd->crd_alg) {
case CRYPTO_AES_CBC:
case CRYPTO_AES_ICM:
ivlen = AES_BLOCK_LEN;
break;
case CRYPTO_AES_XTS:
ivlen = 8;
break;
case CRYPTO_AES_NIST_GCM_16:
ivlen = 12; /* should support arbitarily larger */
break;
}
/* Setup iv */
if (encflag) {
if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT) != 0)
bcopy(enccrd->crd_iv, iv, ivlen);
else
arc4rand(iv, ivlen, 0);
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
enccrd->crd_inject, ivlen, iv);
} else {
if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT) != 0)
bcopy(enccrd->crd_iv, iv, ivlen);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
enccrd->crd_inject, ivlen, iv);
}
switch (ses->algo) {
case CRYPTO_AES_CBC:
if (encflag)
aesni_encrypt_cbc(ses->rounds, ses->enc_schedule,
enccrd->crd_len, buf, buf, iv);
else
aesni_decrypt_cbc(ses->rounds, ses->dec_schedule,
enccrd->crd_len, buf, iv);
break;
case CRYPTO_AES_ICM:
/* encryption & decryption are the same */
aesni_encrypt_icm(ses->rounds, ses->enc_schedule,
enccrd->crd_len, buf, buf, iv);
break;
case CRYPTO_AES_XTS:
if (encflag)
aesni_encrypt_xts(ses->rounds, ses->enc_schedule,
ses->xts_schedule, enccrd->crd_len, buf, buf,
iv);
else
aesni_decrypt_xts(ses->rounds, ses->dec_schedule,
ses->xts_schedule, enccrd->crd_len, buf, buf,
iv);
break;
case CRYPTO_AES_NIST_GCM_16:
if (!encflag)
crypto_copydata(crp->crp_flags, crp->crp_buf,
authcrd->crd_inject, GMAC_DIGEST_LEN, tag);
else
bzero(tag, sizeof tag);
if (encflag) {
AES_GCM_encrypt(buf, buf, authbuf, iv, tag,
enccrd->crd_len, authcrd->crd_len, ivlen,
ses->enc_schedule, ses->rounds);
if (authcrd != NULL)
crypto_copyback(crp->crp_flags, crp->crp_buf,
authcrd->crd_inject, GMAC_DIGEST_LEN, tag);
} else {
if (!AES_GCM_decrypt(buf, buf, authbuf, iv, tag,
enccrd->crd_len, authcrd->crd_len, ivlen,
ses->enc_schedule, ses->rounds))
error = EBADMSG;
}
break;
}
out:
if (allocated) {
explicit_bzero(buf, enccrd->crd_len);
free(buf, M_AESNI);
}
if (authallocated) {
explicit_bzero(authbuf, authcrd->crd_len);
free(authbuf, M_AESNI);
}
return (error);
}
static int
aesni_cipher_mac(struct aesni_session *ses, struct cryptodesc *crd,
struct cryptop *crp)
{
union {
struct SHA256Context sha2 __aligned(16);
struct sha1_ctxt sha1 __aligned(16);
} sctx;
uint32_t res[SHA2_256_HASH_LEN / sizeof(uint32_t)];
int hashlen;
if (crd->crd_flags != 0)
return (EINVAL);
switch (ses->auth_algo) {
case CRYPTO_SHA1_HMAC:
hashlen = SHA1_HASH_LEN;
/* Inner hash: (K ^ IPAD) || data */
sha1_init(&sctx.sha1);
hmac_internal(&sctx.sha1, res, intel_sha1_update,
SHA1_Finalize_fn, ses->hmac_key, 0x36, crp->crp_buf,
crd->crd_skip, crd->crd_len, crp->crp_flags);
/* Outer hash: (K ^ OPAD) || inner hash */
sha1_init(&sctx.sha1);
hmac_internal(&sctx.sha1, res, intel_sha1_update,
SHA1_Finalize_fn, ses->hmac_key, 0x5C, res, 0, hashlen, 0);
break;
case CRYPTO_SHA1:
hashlen = SHA1_HASH_LEN;
sha1_init(&sctx.sha1);
crypto_apply(crp->crp_flags, crp->crp_buf, crd->crd_skip,
crd->crd_len, __DECONST(int (*)(void *, void *, u_int),
intel_sha1_update), &sctx.sha1);
sha1_result(&sctx.sha1, (void *)res);
break;
case CRYPTO_SHA2_256_HMAC:
hashlen = SHA2_256_HASH_LEN;
/* Inner hash: (K ^ IPAD) || data */
SHA256_Init(&sctx.sha2);
hmac_internal(&sctx.sha2, res, intel_sha256_update,
SHA256_Finalize_fn, ses->hmac_key, 0x36, crp->crp_buf,
crd->crd_skip, crd->crd_len, crp->crp_flags);
/* Outer hash: (K ^ OPAD) || inner hash */
SHA256_Init(&sctx.sha2);
hmac_internal(&sctx.sha2, res, intel_sha256_update,
SHA256_Finalize_fn, ses->hmac_key, 0x5C, res, 0, hashlen,
0);
break;
default:
/*
* AES-GMAC authentication is verified while processing the
* enccrd
*/
return (0);
}
if (ses->mlen != 0 && ses->mlen < hashlen)
hashlen = ses->mlen;
crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, hashlen,
(void *)res);
return (0);
}