396f47bf91
when r180992 was committed. Reviewed by: peter MFC after: 1 week
1363 lines
33 KiB
C
1363 lines
33 KiB
C
/*-
|
|
* Copyright (c) 2004 Tim J. Robbins
|
|
* Copyright (c) 2002 Doug Rabson
|
|
* Copyright (c) 2000 Marcel Moolenaar
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer
|
|
* in this position and unchanged.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/file.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/clock.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/unistd.h>
|
|
|
|
#include <machine/frame.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/segments.h>
|
|
#include <machine/specialreg.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
#include <amd64/linux32/linux.h>
|
|
#include <amd64/linux32/linux32_proto.h>
|
|
#include <compat/linux/linux_ipc.h>
|
|
#include <compat/linux/linux_signal.h>
|
|
#include <compat/linux/linux_util.h>
|
|
#include <compat/linux/linux_emul.h>
|
|
|
|
struct l_old_select_argv {
|
|
l_int nfds;
|
|
l_uintptr_t readfds;
|
|
l_uintptr_t writefds;
|
|
l_uintptr_t exceptfds;
|
|
l_uintptr_t timeout;
|
|
} __packed;
|
|
|
|
int
|
|
linux_to_bsd_sigaltstack(int lsa)
|
|
{
|
|
int bsa = 0;
|
|
|
|
if (lsa & LINUX_SS_DISABLE)
|
|
bsa |= SS_DISABLE;
|
|
if (lsa & LINUX_SS_ONSTACK)
|
|
bsa |= SS_ONSTACK;
|
|
return (bsa);
|
|
}
|
|
|
|
int
|
|
bsd_to_linux_sigaltstack(int bsa)
|
|
{
|
|
int lsa = 0;
|
|
|
|
if (bsa & SS_DISABLE)
|
|
lsa |= LINUX_SS_DISABLE;
|
|
if (bsa & SS_ONSTACK)
|
|
lsa |= LINUX_SS_ONSTACK;
|
|
return (lsa);
|
|
}
|
|
|
|
/*
|
|
* Custom version of exec_copyin_args() so that we can translate
|
|
* the pointers.
|
|
*/
|
|
static int
|
|
linux_exec_copyin_args(struct image_args *args, char *fname,
|
|
enum uio_seg segflg, char **argv, char **envv)
|
|
{
|
|
char *argp, *envp;
|
|
u_int32_t *p32, arg;
|
|
size_t length;
|
|
int error;
|
|
|
|
bzero(args, sizeof(*args));
|
|
if (argv == NULL)
|
|
return (EFAULT);
|
|
|
|
/*
|
|
* Allocate temporary demand zeroed space for argument and
|
|
* environment strings
|
|
*/
|
|
args->buf = (char *)kmem_alloc_wait(exec_map,
|
|
PATH_MAX + ARG_MAX + MAXSHELLCMDLEN);
|
|
if (args->buf == NULL)
|
|
return (ENOMEM);
|
|
args->begin_argv = args->buf;
|
|
args->endp = args->begin_argv;
|
|
args->stringspace = ARG_MAX;
|
|
|
|
args->fname = args->buf + ARG_MAX;
|
|
|
|
/*
|
|
* Copy the file name.
|
|
*/
|
|
error = (segflg == UIO_SYSSPACE) ?
|
|
copystr(fname, args->fname, PATH_MAX, &length) :
|
|
copyinstr(fname, args->fname, PATH_MAX, &length);
|
|
if (error != 0)
|
|
goto err_exit;
|
|
|
|
/*
|
|
* extract arguments first
|
|
*/
|
|
p32 = (u_int32_t *)argv;
|
|
for (;;) {
|
|
error = copyin(p32++, &arg, sizeof(arg));
|
|
if (error)
|
|
goto err_exit;
|
|
if (arg == 0)
|
|
break;
|
|
argp = PTRIN(arg);
|
|
error = copyinstr(argp, args->endp, args->stringspace, &length);
|
|
if (error) {
|
|
if (error == ENAMETOOLONG)
|
|
error = E2BIG;
|
|
|
|
goto err_exit;
|
|
}
|
|
args->stringspace -= length;
|
|
args->endp += length;
|
|
args->argc++;
|
|
}
|
|
|
|
args->begin_envv = args->endp;
|
|
|
|
/*
|
|
* extract environment strings
|
|
*/
|
|
if (envv) {
|
|
p32 = (u_int32_t *)envv;
|
|
for (;;) {
|
|
error = copyin(p32++, &arg, sizeof(arg));
|
|
if (error)
|
|
goto err_exit;
|
|
if (arg == 0)
|
|
break;
|
|
envp = PTRIN(arg);
|
|
error = copyinstr(envp, args->endp, args->stringspace,
|
|
&length);
|
|
if (error) {
|
|
if (error == ENAMETOOLONG)
|
|
error = E2BIG;
|
|
goto err_exit;
|
|
}
|
|
args->stringspace -= length;
|
|
args->endp += length;
|
|
args->envc++;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
err_exit:
|
|
kmem_free_wakeup(exec_map, (vm_offset_t)args->buf,
|
|
PATH_MAX + ARG_MAX + MAXSHELLCMDLEN);
|
|
args->buf = NULL;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_execve(struct thread *td, struct linux_execve_args *args)
|
|
{
|
|
struct image_args eargs;
|
|
char *path;
|
|
int error;
|
|
|
|
LCONVPATHEXIST(td, args->path, &path);
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(execve))
|
|
printf(ARGS(execve, "%s"), path);
|
|
#endif
|
|
|
|
error = linux_exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp,
|
|
args->envp);
|
|
free(path, M_TEMP);
|
|
if (error == 0)
|
|
error = kern_execve(td, &eargs, NULL);
|
|
if (error == 0)
|
|
/* Linux process can execute FreeBSD one, do not attempt
|
|
* to create emuldata for such process using
|
|
* linux_proc_init, this leads to a panic on KASSERT
|
|
* because such process has p->p_emuldata == NULL.
|
|
*/
|
|
if (td->td_proc->p_sysent == &elf_linux_sysvec)
|
|
error = linux_proc_init(td, 0, 0);
|
|
return (error);
|
|
}
|
|
|
|
struct iovec32 {
|
|
u_int32_t iov_base;
|
|
int iov_len;
|
|
};
|
|
|
|
CTASSERT(sizeof(struct iovec32) == 8);
|
|
|
|
static int
|
|
linux32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
|
|
{
|
|
struct iovec32 iov32;
|
|
struct iovec *iov;
|
|
struct uio *uio;
|
|
u_int iovlen;
|
|
int error, i;
|
|
|
|
*uiop = NULL;
|
|
if (iovcnt > UIO_MAXIOV)
|
|
return (EINVAL);
|
|
iovlen = iovcnt * sizeof(struct iovec);
|
|
uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
|
|
iov = (struct iovec *)(uio + 1);
|
|
for (i = 0; i < iovcnt; i++) {
|
|
error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
|
|
if (error) {
|
|
free(uio, M_IOV);
|
|
return (error);
|
|
}
|
|
iov[i].iov_base = PTRIN(iov32.iov_base);
|
|
iov[i].iov_len = iov32.iov_len;
|
|
}
|
|
uio->uio_iov = iov;
|
|
uio->uio_iovcnt = iovcnt;
|
|
uio->uio_segflg = UIO_USERSPACE;
|
|
uio->uio_offset = -1;
|
|
uio->uio_resid = 0;
|
|
for (i = 0; i < iovcnt; i++) {
|
|
if (iov->iov_len > INT_MAX - uio->uio_resid) {
|
|
free(uio, M_IOV);
|
|
return (EINVAL);
|
|
}
|
|
uio->uio_resid += iov->iov_len;
|
|
iov++;
|
|
}
|
|
*uiop = uio;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_readv(struct thread *td, struct linux_readv_args *uap)
|
|
{
|
|
struct uio *auio;
|
|
int error;
|
|
|
|
error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
|
|
if (error)
|
|
return (error);
|
|
error = kern_readv(td, uap->fd, auio);
|
|
free(auio, M_IOV);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_writev(struct thread *td, struct linux_writev_args *uap)
|
|
{
|
|
struct uio *auio;
|
|
int error;
|
|
|
|
error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
|
|
if (error)
|
|
return (error);
|
|
error = kern_writev(td, uap->fd, auio);
|
|
free(auio, M_IOV);
|
|
return (error);
|
|
}
|
|
|
|
struct l_ipc_kludge {
|
|
l_uintptr_t msgp;
|
|
l_long msgtyp;
|
|
} __packed;
|
|
|
|
int
|
|
linux_ipc(struct thread *td, struct linux_ipc_args *args)
|
|
{
|
|
|
|
switch (args->what & 0xFFFF) {
|
|
case LINUX_SEMOP: {
|
|
struct linux_semop_args a;
|
|
|
|
a.semid = args->arg1;
|
|
a.tsops = args->ptr;
|
|
a.nsops = args->arg2;
|
|
return (linux_semop(td, &a));
|
|
}
|
|
case LINUX_SEMGET: {
|
|
struct linux_semget_args a;
|
|
|
|
a.key = args->arg1;
|
|
a.nsems = args->arg2;
|
|
a.semflg = args->arg3;
|
|
return (linux_semget(td, &a));
|
|
}
|
|
case LINUX_SEMCTL: {
|
|
struct linux_semctl_args a;
|
|
int error;
|
|
|
|
a.semid = args->arg1;
|
|
a.semnum = args->arg2;
|
|
a.cmd = args->arg3;
|
|
error = copyin(args->ptr, &a.arg, sizeof(a.arg));
|
|
if (error)
|
|
return (error);
|
|
return (linux_semctl(td, &a));
|
|
}
|
|
case LINUX_MSGSND: {
|
|
struct linux_msgsnd_args a;
|
|
|
|
a.msqid = args->arg1;
|
|
a.msgp = args->ptr;
|
|
a.msgsz = args->arg2;
|
|
a.msgflg = args->arg3;
|
|
return (linux_msgsnd(td, &a));
|
|
}
|
|
case LINUX_MSGRCV: {
|
|
struct linux_msgrcv_args a;
|
|
|
|
a.msqid = args->arg1;
|
|
a.msgsz = args->arg2;
|
|
a.msgflg = args->arg3;
|
|
if ((args->what >> 16) == 0) {
|
|
struct l_ipc_kludge tmp;
|
|
int error;
|
|
|
|
if (args->ptr == 0)
|
|
return (EINVAL);
|
|
error = copyin(args->ptr, &tmp, sizeof(tmp));
|
|
if (error)
|
|
return (error);
|
|
a.msgp = PTRIN(tmp.msgp);
|
|
a.msgtyp = tmp.msgtyp;
|
|
} else {
|
|
a.msgp = args->ptr;
|
|
a.msgtyp = args->arg5;
|
|
}
|
|
return (linux_msgrcv(td, &a));
|
|
}
|
|
case LINUX_MSGGET: {
|
|
struct linux_msgget_args a;
|
|
|
|
a.key = args->arg1;
|
|
a.msgflg = args->arg2;
|
|
return (linux_msgget(td, &a));
|
|
}
|
|
case LINUX_MSGCTL: {
|
|
struct linux_msgctl_args a;
|
|
|
|
a.msqid = args->arg1;
|
|
a.cmd = args->arg2;
|
|
a.buf = args->ptr;
|
|
return (linux_msgctl(td, &a));
|
|
}
|
|
case LINUX_SHMAT: {
|
|
struct linux_shmat_args a;
|
|
|
|
a.shmid = args->arg1;
|
|
a.shmaddr = args->ptr;
|
|
a.shmflg = args->arg2;
|
|
a.raddr = PTRIN((l_uint)args->arg3);
|
|
return (linux_shmat(td, &a));
|
|
}
|
|
case LINUX_SHMDT: {
|
|
struct linux_shmdt_args a;
|
|
|
|
a.shmaddr = args->ptr;
|
|
return (linux_shmdt(td, &a));
|
|
}
|
|
case LINUX_SHMGET: {
|
|
struct linux_shmget_args a;
|
|
|
|
a.key = args->arg1;
|
|
a.size = args->arg2;
|
|
a.shmflg = args->arg3;
|
|
return (linux_shmget(td, &a));
|
|
}
|
|
case LINUX_SHMCTL: {
|
|
struct linux_shmctl_args a;
|
|
|
|
a.shmid = args->arg1;
|
|
a.cmd = args->arg2;
|
|
a.buf = args->ptr;
|
|
return (linux_shmctl(td, &a));
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
int
|
|
linux_old_select(struct thread *td, struct linux_old_select_args *args)
|
|
{
|
|
struct l_old_select_argv linux_args;
|
|
struct linux_select_args newsel;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(old_select))
|
|
printf(ARGS(old_select, "%p"), args->ptr);
|
|
#endif
|
|
|
|
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
|
|
if (error)
|
|
return (error);
|
|
|
|
newsel.nfds = linux_args.nfds;
|
|
newsel.readfds = PTRIN(linux_args.readfds);
|
|
newsel.writefds = PTRIN(linux_args.writefds);
|
|
newsel.exceptfds = PTRIN(linux_args.exceptfds);
|
|
newsel.timeout = PTRIN(linux_args.timeout);
|
|
return (linux_select(td, &newsel));
|
|
}
|
|
|
|
int
|
|
linux_fork(struct thread *td, struct linux_fork_args *args)
|
|
{
|
|
int error;
|
|
struct proc *p2;
|
|
struct thread *td2;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(fork))
|
|
printf(ARGS(fork, ""));
|
|
#endif
|
|
|
|
if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0)
|
|
return (error);
|
|
|
|
if (error == 0) {
|
|
td->td_retval[0] = p2->p_pid;
|
|
td->td_retval[1] = 0;
|
|
}
|
|
|
|
if (td->td_retval[1] == 1)
|
|
td->td_retval[0] = 0;
|
|
error = linux_proc_init(td, td->td_retval[0], 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
td2 = FIRST_THREAD_IN_PROC(p2);
|
|
|
|
/*
|
|
* Make this runnable after we are finished with it.
|
|
*/
|
|
thread_lock(td2);
|
|
TD_SET_CAN_RUN(td2);
|
|
sched_add(td2, SRQ_BORING);
|
|
thread_unlock(td2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_vfork(struct thread *td, struct linux_vfork_args *args)
|
|
{
|
|
int error;
|
|
struct proc *p2;
|
|
struct thread *td2;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(vfork))
|
|
printf(ARGS(vfork, ""));
|
|
#endif
|
|
|
|
/* Exclude RFPPWAIT */
|
|
if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0)
|
|
return (error);
|
|
if (error == 0) {
|
|
td->td_retval[0] = p2->p_pid;
|
|
td->td_retval[1] = 0;
|
|
}
|
|
/* Are we the child? */
|
|
if (td->td_retval[1] == 1)
|
|
td->td_retval[0] = 0;
|
|
error = linux_proc_init(td, td->td_retval[0], 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
PROC_LOCK(p2);
|
|
p2->p_flag |= P_PPWAIT;
|
|
PROC_UNLOCK(p2);
|
|
|
|
td2 = FIRST_THREAD_IN_PROC(p2);
|
|
|
|
/*
|
|
* Make this runnable after we are finished with it.
|
|
*/
|
|
thread_lock(td2);
|
|
TD_SET_CAN_RUN(td2);
|
|
sched_add(td2, SRQ_BORING);
|
|
thread_unlock(td2);
|
|
|
|
/* wait for the children to exit, ie. emulate vfork */
|
|
PROC_LOCK(p2);
|
|
while (p2->p_flag & P_PPWAIT)
|
|
msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0);
|
|
PROC_UNLOCK(p2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_clone(struct thread *td, struct linux_clone_args *args)
|
|
{
|
|
int error, ff = RFPROC | RFSTOPPED;
|
|
struct proc *p2;
|
|
struct thread *td2;
|
|
int exit_signal;
|
|
struct linux_emuldata *em;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(clone)) {
|
|
printf(ARGS(clone, "flags %x, stack %p, parent tid: %p, "
|
|
"child tid: %p"), (unsigned)args->flags,
|
|
args->stack, args->parent_tidptr, args->child_tidptr);
|
|
}
|
|
#endif
|
|
|
|
exit_signal = args->flags & 0x000000ff;
|
|
if (LINUX_SIG_VALID(exit_signal)) {
|
|
if (exit_signal <= LINUX_SIGTBLSZ)
|
|
exit_signal =
|
|
linux_to_bsd_signal[_SIG_IDX(exit_signal)];
|
|
} else if (exit_signal != 0)
|
|
return (EINVAL);
|
|
|
|
if (args->flags & LINUX_CLONE_VM)
|
|
ff |= RFMEM;
|
|
if (args->flags & LINUX_CLONE_SIGHAND)
|
|
ff |= RFSIGSHARE;
|
|
/*
|
|
* XXX: In Linux, sharing of fs info (chroot/cwd/umask)
|
|
* and open files is independant. In FreeBSD, its in one
|
|
* structure but in reality it does not cause any problems
|
|
* because both of these flags are usually set together.
|
|
*/
|
|
if (!(args->flags & (LINUX_CLONE_FILES | LINUX_CLONE_FS)))
|
|
ff |= RFFDG;
|
|
|
|
/*
|
|
* Attempt to detect when linux_clone(2) is used for creating
|
|
* kernel threads. Unfortunately despite the existence of the
|
|
* CLONE_THREAD flag, version of linuxthreads package used in
|
|
* most popular distros as of beginning of 2005 doesn't make
|
|
* any use of it. Therefore, this detection relies on
|
|
* empirical observation that linuxthreads sets certain
|
|
* combination of flags, so that we can make more or less
|
|
* precise detection and notify the FreeBSD kernel that several
|
|
* processes are in fact part of the same threading group, so
|
|
* that special treatment is necessary for signal delivery
|
|
* between those processes and fd locking.
|
|
*/
|
|
if ((args->flags & 0xffffff00) == LINUX_THREADING_FLAGS)
|
|
ff |= RFTHREAD;
|
|
|
|
if (args->flags & LINUX_CLONE_PARENT_SETTID)
|
|
if (args->parent_tidptr == NULL)
|
|
return (EINVAL);
|
|
|
|
error = fork1(td, ff, 0, &p2);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (args->flags & (LINUX_CLONE_PARENT | LINUX_CLONE_THREAD)) {
|
|
sx_xlock(&proctree_lock);
|
|
PROC_LOCK(p2);
|
|
proc_reparent(p2, td->td_proc->p_pptr);
|
|
PROC_UNLOCK(p2);
|
|
sx_xunlock(&proctree_lock);
|
|
}
|
|
|
|
/* create the emuldata */
|
|
error = linux_proc_init(td, p2->p_pid, args->flags);
|
|
/* reference it - no need to check this */
|
|
em = em_find(p2, EMUL_DOLOCK);
|
|
KASSERT(em != NULL, ("clone: emuldata not found.\n"));
|
|
/* and adjust it */
|
|
|
|
if (args->flags & LINUX_CLONE_THREAD) {
|
|
#ifdef notyet
|
|
PROC_LOCK(p2);
|
|
p2->p_pgrp = td->td_proc->p_pgrp;
|
|
PROC_UNLOCK(p2);
|
|
#endif
|
|
exit_signal = 0;
|
|
}
|
|
|
|
if (args->flags & LINUX_CLONE_CHILD_SETTID)
|
|
em->child_set_tid = args->child_tidptr;
|
|
else
|
|
em->child_set_tid = NULL;
|
|
|
|
if (args->flags & LINUX_CLONE_CHILD_CLEARTID)
|
|
em->child_clear_tid = args->child_tidptr;
|
|
else
|
|
em->child_clear_tid = NULL;
|
|
|
|
EMUL_UNLOCK(&emul_lock);
|
|
|
|
if (args->flags & LINUX_CLONE_PARENT_SETTID) {
|
|
error = copyout(&p2->p_pid, args->parent_tidptr,
|
|
sizeof(p2->p_pid));
|
|
if (error)
|
|
printf(LMSG("copyout failed!"));
|
|
}
|
|
|
|
PROC_LOCK(p2);
|
|
p2->p_sigparent = exit_signal;
|
|
PROC_UNLOCK(p2);
|
|
td2 = FIRST_THREAD_IN_PROC(p2);
|
|
/*
|
|
* In a case of stack = NULL, we are supposed to COW calling process
|
|
* stack. This is what normal fork() does, so we just keep tf_rsp arg
|
|
* intact.
|
|
*/
|
|
if (args->stack)
|
|
td2->td_frame->tf_rsp = PTROUT(args->stack);
|
|
|
|
if (args->flags & LINUX_CLONE_SETTLS) {
|
|
struct user_segment_descriptor sd;
|
|
struct l_user_desc info;
|
|
int a[2];
|
|
|
|
error = copyin((void *)td->td_frame->tf_rsi, &info,
|
|
sizeof(struct l_user_desc));
|
|
if (error) {
|
|
printf(LMSG("copyin failed!"));
|
|
} else {
|
|
/* We might copy out the entry_number as GUGS32_SEL. */
|
|
info.entry_number = GUGS32_SEL;
|
|
error = copyout(&info, (void *)td->td_frame->tf_rsi,
|
|
sizeof(struct l_user_desc));
|
|
if (error)
|
|
printf(LMSG("copyout failed!"));
|
|
|
|
a[0] = LINUX_LDT_entry_a(&info);
|
|
a[1] = LINUX_LDT_entry_b(&info);
|
|
|
|
memcpy(&sd, &a, sizeof(a));
|
|
#ifdef DEBUG
|
|
if (ldebug(clone))
|
|
printf("Segment created in clone with "
|
|
"CLONE_SETTLS: lobase: %x, hibase: %x, "
|
|
"lolimit: %x, hilimit: %x, type: %i, "
|
|
"dpl: %i, p: %i, xx: %i, long: %i, "
|
|
"def32: %i, gran: %i\n", sd.sd_lobase,
|
|
sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit,
|
|
sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx,
|
|
sd.sd_long, sd.sd_def32, sd.sd_gran);
|
|
#endif
|
|
td2->td_pcb->pcb_gsbase = (register_t)info.base_addr;
|
|
td2->td_pcb->pcb_gs32sd = sd;
|
|
td2->td_pcb->pcb_gs32p = &gdt[GUGS32_SEL];
|
|
td2->td_pcb->pcb_gs = GSEL(GUGS32_SEL, SEL_UPL);
|
|
td2->td_pcb->pcb_flags |= PCB_GS32BIT | PCB_32BIT;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(clone))
|
|
printf(LMSG("clone: successful rfork to %d, "
|
|
"stack %p sig = %d"), (int)p2->p_pid, args->stack,
|
|
exit_signal);
|
|
#endif
|
|
if (args->flags & LINUX_CLONE_VFORK) {
|
|
PROC_LOCK(p2);
|
|
p2->p_flag |= P_PPWAIT;
|
|
PROC_UNLOCK(p2);
|
|
}
|
|
|
|
/*
|
|
* Make this runnable after we are finished with it.
|
|
*/
|
|
thread_lock(td2);
|
|
TD_SET_CAN_RUN(td2);
|
|
sched_add(td2, SRQ_BORING);
|
|
thread_unlock(td2);
|
|
|
|
td->td_retval[0] = p2->p_pid;
|
|
td->td_retval[1] = 0;
|
|
|
|
if (args->flags & LINUX_CLONE_VFORK) {
|
|
/* wait for the children to exit, ie. emulate vfork */
|
|
PROC_LOCK(p2);
|
|
while (p2->p_flag & P_PPWAIT)
|
|
msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0);
|
|
PROC_UNLOCK(p2);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#define STACK_SIZE (2 * 1024 * 1024)
|
|
#define GUARD_SIZE (4 * PAGE_SIZE)
|
|
|
|
static int linux_mmap_common(struct thread *, struct l_mmap_argv *);
|
|
|
|
int
|
|
linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
|
|
{
|
|
struct l_mmap_argv linux_args;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap2))
|
|
printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"),
|
|
args->addr, args->len, args->prot,
|
|
args->flags, args->fd, args->pgoff);
|
|
#endif
|
|
|
|
linux_args.addr = PTROUT(args->addr);
|
|
linux_args.len = args->len;
|
|
linux_args.prot = args->prot;
|
|
linux_args.flags = args->flags;
|
|
linux_args.fd = args->fd;
|
|
linux_args.pgoff = args->pgoff;
|
|
|
|
return (linux_mmap_common(td, &linux_args));
|
|
}
|
|
|
|
int
|
|
linux_mmap(struct thread *td, struct linux_mmap_args *args)
|
|
{
|
|
int error;
|
|
struct l_mmap_argv linux_args;
|
|
|
|
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
|
|
if (error)
|
|
return (error);
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap))
|
|
printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"),
|
|
linux_args.addr, linux_args.len, linux_args.prot,
|
|
linux_args.flags, linux_args.fd, linux_args.pgoff);
|
|
#endif
|
|
if ((linux_args.pgoff % PAGE_SIZE) != 0)
|
|
return (EINVAL);
|
|
linux_args.pgoff /= PAGE_SIZE;
|
|
|
|
return (linux_mmap_common(td, &linux_args));
|
|
}
|
|
|
|
static int
|
|
linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct mmap_args /* {
|
|
caddr_t addr;
|
|
size_t len;
|
|
int prot;
|
|
int flags;
|
|
int fd;
|
|
long pad;
|
|
off_t pos;
|
|
} */ bsd_args;
|
|
int error;
|
|
struct file *fp;
|
|
|
|
error = 0;
|
|
bsd_args.flags = 0;
|
|
fp = NULL;
|
|
|
|
/*
|
|
* Linux mmap(2):
|
|
* You must specify exactly one of MAP_SHARED and MAP_PRIVATE
|
|
*/
|
|
if (! ((linux_args->flags & LINUX_MAP_SHARED) ^
|
|
(linux_args->flags & LINUX_MAP_PRIVATE)))
|
|
return (EINVAL);
|
|
|
|
if (linux_args->flags & LINUX_MAP_SHARED)
|
|
bsd_args.flags |= MAP_SHARED;
|
|
if (linux_args->flags & LINUX_MAP_PRIVATE)
|
|
bsd_args.flags |= MAP_PRIVATE;
|
|
if (linux_args->flags & LINUX_MAP_FIXED)
|
|
bsd_args.flags |= MAP_FIXED;
|
|
if (linux_args->flags & LINUX_MAP_ANON)
|
|
bsd_args.flags |= MAP_ANON;
|
|
else
|
|
bsd_args.flags |= MAP_NOSYNC;
|
|
if (linux_args->flags & LINUX_MAP_GROWSDOWN)
|
|
bsd_args.flags |= MAP_STACK;
|
|
|
|
/*
|
|
* PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
|
|
* on Linux/i386. We do this to ensure maximum compatibility.
|
|
* Linux/ia64 does the same in i386 emulation mode.
|
|
*/
|
|
bsd_args.prot = linux_args->prot;
|
|
if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
|
|
bsd_args.prot |= PROT_READ | PROT_EXEC;
|
|
|
|
/* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
|
|
bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : linux_args->fd;
|
|
if (bsd_args.fd != -1) {
|
|
/*
|
|
* Linux follows Solaris mmap(2) description:
|
|
* The file descriptor fildes is opened with
|
|
* read permission, regardless of the
|
|
* protection options specified.
|
|
*/
|
|
|
|
if ((error = fget(td, bsd_args.fd, &fp)) != 0)
|
|
return (error);
|
|
if (fp->f_type != DTYPE_VNODE) {
|
|
fdrop(fp, td);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Linux mmap() just fails for O_WRONLY files */
|
|
if (!(fp->f_flag & FREAD)) {
|
|
fdrop(fp, td);
|
|
return (EACCES);
|
|
}
|
|
|
|
fdrop(fp, td);
|
|
}
|
|
|
|
if (linux_args->flags & LINUX_MAP_GROWSDOWN) {
|
|
/*
|
|
* The Linux MAP_GROWSDOWN option does not limit auto
|
|
* growth of the region. Linux mmap with this option
|
|
* takes as addr the inital BOS, and as len, the initial
|
|
* region size. It can then grow down from addr without
|
|
* limit. However, Linux threads has an implicit internal
|
|
* limit to stack size of STACK_SIZE. Its just not
|
|
* enforced explicitly in Linux. But, here we impose
|
|
* a limit of (STACK_SIZE - GUARD_SIZE) on the stack
|
|
* region, since we can do this with our mmap.
|
|
*
|
|
* Our mmap with MAP_STACK takes addr as the maximum
|
|
* downsize limit on BOS, and as len the max size of
|
|
* the region. It then maps the top SGROWSIZ bytes,
|
|
* and auto grows the region down, up to the limit
|
|
* in addr.
|
|
*
|
|
* If we don't use the MAP_STACK option, the effect
|
|
* of this code is to allocate a stack region of a
|
|
* fixed size of (STACK_SIZE - GUARD_SIZE).
|
|
*/
|
|
|
|
if ((caddr_t)PTRIN(linux_args->addr) + linux_args->len >
|
|
p->p_vmspace->vm_maxsaddr) {
|
|
/*
|
|
* Some Linux apps will attempt to mmap
|
|
* thread stacks near the top of their
|
|
* address space. If their TOS is greater
|
|
* than vm_maxsaddr, vm_map_growstack()
|
|
* will confuse the thread stack with the
|
|
* process stack and deliver a SEGV if they
|
|
* attempt to grow the thread stack past their
|
|
* current stacksize rlimit. To avoid this,
|
|
* adjust vm_maxsaddr upwards to reflect
|
|
* the current stacksize rlimit rather
|
|
* than the maximum possible stacksize.
|
|
* It would be better to adjust the
|
|
* mmap'ed region, but some apps do not check
|
|
* mmap's return value.
|
|
*/
|
|
PROC_LOCK(p);
|
|
p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK -
|
|
lim_cur(p, RLIMIT_STACK);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
|
|
/*
|
|
* This gives us our maximum stack size and a new BOS.
|
|
* If we're using VM_STACK, then mmap will just map
|
|
* the top SGROWSIZ bytes, and let the stack grow down
|
|
* to the limit at BOS. If we're not using VM_STACK
|
|
* we map the full stack, since we don't have a way
|
|
* to autogrow it.
|
|
*/
|
|
if (linux_args->len > STACK_SIZE - GUARD_SIZE) {
|
|
bsd_args.addr = (caddr_t)PTRIN(linux_args->addr);
|
|
bsd_args.len = linux_args->len;
|
|
} else {
|
|
bsd_args.addr = (caddr_t)PTRIN(linux_args->addr) -
|
|
(STACK_SIZE - GUARD_SIZE - linux_args->len);
|
|
bsd_args.len = STACK_SIZE - GUARD_SIZE;
|
|
}
|
|
} else {
|
|
bsd_args.addr = (caddr_t)PTRIN(linux_args->addr);
|
|
bsd_args.len = linux_args->len;
|
|
}
|
|
bsd_args.pos = (off_t)linux_args->pgoff * PAGE_SIZE;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap))
|
|
printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
|
|
__func__,
|
|
(void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
|
|
bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
|
|
#endif
|
|
error = mmap(td, &bsd_args);
|
|
#ifdef DEBUG
|
|
if (ldebug(mmap))
|
|
printf("-> %s() return: 0x%x (0x%08x)\n",
|
|
__func__, error, (u_int)td->td_retval[0]);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
|
|
{
|
|
struct mprotect_args bsd_args;
|
|
|
|
bsd_args.addr = uap->addr;
|
|
bsd_args.len = uap->len;
|
|
bsd_args.prot = uap->prot;
|
|
if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
|
|
bsd_args.prot |= PROT_READ | PROT_EXEC;
|
|
return (mprotect(td, &bsd_args));
|
|
}
|
|
|
|
int
|
|
linux_iopl(struct thread *td, struct linux_iopl_args *args)
|
|
{
|
|
int error;
|
|
|
|
if (args->level < 0 || args->level > 3)
|
|
return (EINVAL);
|
|
if ((error = priv_check(td, PRIV_IO)) != 0)
|
|
return (error);
|
|
if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
|
|
return (error);
|
|
td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
|
|
(args->level * (PSL_IOPL / 3));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_pipe(struct thread *td, struct linux_pipe_args *args)
|
|
{
|
|
int pip[2];
|
|
int error;
|
|
register_t reg_rdx;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(pipe))
|
|
printf(ARGS(pipe, "*"));
|
|
#endif
|
|
|
|
reg_rdx = td->td_retval[1];
|
|
error = pipe(td, 0);
|
|
if (error) {
|
|
td->td_retval[1] = reg_rdx;
|
|
return (error);
|
|
}
|
|
|
|
pip[0] = td->td_retval[0];
|
|
pip[1] = td->td_retval[1];
|
|
error = copyout(pip, args->pipefds, 2 * sizeof(int));
|
|
if (error) {
|
|
td->td_retval[1] = reg_rdx;
|
|
return (error);
|
|
}
|
|
|
|
td->td_retval[1] = reg_rdx;
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
|
|
{
|
|
l_osigaction_t osa;
|
|
l_sigaction_t act, oact;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(sigaction))
|
|
printf(ARGS(sigaction, "%d, %p, %p"),
|
|
args->sig, (void *)args->nsa, (void *)args->osa);
|
|
#endif
|
|
|
|
if (args->nsa != NULL) {
|
|
error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
|
|
if (error)
|
|
return (error);
|
|
act.lsa_handler = osa.lsa_handler;
|
|
act.lsa_flags = osa.lsa_flags;
|
|
act.lsa_restorer = osa.lsa_restorer;
|
|
LINUX_SIGEMPTYSET(act.lsa_mask);
|
|
act.lsa_mask.__bits[0] = osa.lsa_mask;
|
|
}
|
|
|
|
error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
|
|
args->osa ? &oact : NULL);
|
|
|
|
if (args->osa != NULL && !error) {
|
|
osa.lsa_handler = oact.lsa_handler;
|
|
osa.lsa_flags = oact.lsa_flags;
|
|
osa.lsa_restorer = oact.lsa_restorer;
|
|
osa.lsa_mask = oact.lsa_mask.__bits[0];
|
|
error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Linux has two extra args, restart and oldmask. We don't use these,
|
|
* but it seems that "restart" is actually a context pointer that
|
|
* enables the signal to happen with a different register set.
|
|
*/
|
|
int
|
|
linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
|
|
{
|
|
sigset_t sigmask;
|
|
l_sigset_t mask;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(sigsuspend))
|
|
printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
|
|
#endif
|
|
|
|
LINUX_SIGEMPTYSET(mask);
|
|
mask.__bits[0] = args->mask;
|
|
linux_to_bsd_sigset(&mask, &sigmask);
|
|
return (kern_sigsuspend(td, sigmask));
|
|
}
|
|
|
|
int
|
|
linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
|
|
{
|
|
l_sigset_t lmask;
|
|
sigset_t sigmask;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(rt_sigsuspend))
|
|
printf(ARGS(rt_sigsuspend, "%p, %d"),
|
|
(void *)uap->newset, uap->sigsetsize);
|
|
#endif
|
|
|
|
if (uap->sigsetsize != sizeof(l_sigset_t))
|
|
return (EINVAL);
|
|
|
|
error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
|
|
if (error)
|
|
return (error);
|
|
|
|
linux_to_bsd_sigset(&lmask, &sigmask);
|
|
return (kern_sigsuspend(td, sigmask));
|
|
}
|
|
|
|
int
|
|
linux_pause(struct thread *td, struct linux_pause_args *args)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
sigset_t sigmask;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(pause))
|
|
printf(ARGS(pause, ""));
|
|
#endif
|
|
|
|
PROC_LOCK(p);
|
|
sigmask = td->td_sigmask;
|
|
PROC_UNLOCK(p);
|
|
return (kern_sigsuspend(td, sigmask));
|
|
}
|
|
|
|
int
|
|
linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
|
|
{
|
|
stack_t ss, oss;
|
|
l_stack_t lss;
|
|
int error;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(sigaltstack))
|
|
printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
|
|
#endif
|
|
|
|
if (uap->uss != NULL) {
|
|
error = copyin(uap->uss, &lss, sizeof(l_stack_t));
|
|
if (error)
|
|
return (error);
|
|
|
|
ss.ss_sp = PTRIN(lss.ss_sp);
|
|
ss.ss_size = lss.ss_size;
|
|
ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
|
|
}
|
|
error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
|
|
(uap->uoss != NULL) ? &oss : NULL);
|
|
if (!error && uap->uoss != NULL) {
|
|
lss.ss_sp = PTROUT(oss.ss_sp);
|
|
lss.ss_size = oss.ss_size;
|
|
lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
|
|
error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
|
|
{
|
|
struct ftruncate_args sa;
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(ftruncate64))
|
|
printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
|
|
(intmax_t)args->length);
|
|
#endif
|
|
|
|
sa.fd = args->fd;
|
|
sa.length = args->length;
|
|
return ftruncate(td, &sa);
|
|
}
|
|
|
|
int
|
|
linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
|
|
{
|
|
struct timeval atv;
|
|
l_timeval atv32;
|
|
struct timezone rtz;
|
|
int error = 0;
|
|
|
|
if (uap->tp) {
|
|
microtime(&atv);
|
|
atv32.tv_sec = atv.tv_sec;
|
|
atv32.tv_usec = atv.tv_usec;
|
|
error = copyout(&atv32, uap->tp, sizeof(atv32));
|
|
}
|
|
if (error == 0 && uap->tzp != NULL) {
|
|
rtz.tz_minuteswest = tz_minuteswest;
|
|
rtz.tz_dsttime = tz_dsttime;
|
|
error = copyout(&rtz, uap->tzp, sizeof(rtz));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
|
|
{
|
|
l_timeval atv32;
|
|
struct timeval atv, *tvp;
|
|
struct timezone atz, *tzp;
|
|
int error;
|
|
|
|
if (uap->tp) {
|
|
error = copyin(uap->tp, &atv32, sizeof(atv32));
|
|
if (error)
|
|
return (error);
|
|
atv.tv_sec = atv32.tv_sec;
|
|
atv.tv_usec = atv32.tv_usec;
|
|
tvp = &atv;
|
|
} else
|
|
tvp = NULL;
|
|
if (uap->tzp) {
|
|
error = copyin(uap->tzp, &atz, sizeof(atz));
|
|
if (error)
|
|
return (error);
|
|
tzp = &atz;
|
|
} else
|
|
tzp = NULL;
|
|
return (kern_settimeofday(td, tvp, tzp));
|
|
}
|
|
|
|
int
|
|
linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
|
|
{
|
|
struct l_rusage s32;
|
|
struct rusage s;
|
|
int error;
|
|
|
|
error = kern_getrusage(td, uap->who, &s);
|
|
if (error != 0)
|
|
return (error);
|
|
if (uap->rusage != NULL) {
|
|
s32.ru_utime.tv_sec = s.ru_utime.tv_sec;
|
|
s32.ru_utime.tv_usec = s.ru_utime.tv_usec;
|
|
s32.ru_stime.tv_sec = s.ru_stime.tv_sec;
|
|
s32.ru_stime.tv_usec = s.ru_stime.tv_usec;
|
|
s32.ru_maxrss = s.ru_maxrss;
|
|
s32.ru_ixrss = s.ru_ixrss;
|
|
s32.ru_idrss = s.ru_idrss;
|
|
s32.ru_isrss = s.ru_isrss;
|
|
s32.ru_minflt = s.ru_minflt;
|
|
s32.ru_majflt = s.ru_majflt;
|
|
s32.ru_nswap = s.ru_nswap;
|
|
s32.ru_inblock = s.ru_inblock;
|
|
s32.ru_oublock = s.ru_oublock;
|
|
s32.ru_msgsnd = s.ru_msgsnd;
|
|
s32.ru_msgrcv = s.ru_msgrcv;
|
|
s32.ru_nsignals = s.ru_nsignals;
|
|
s32.ru_nvcsw = s.ru_nvcsw;
|
|
s32.ru_nivcsw = s.ru_nivcsw;
|
|
error = copyout(&s32, uap->rusage, sizeof(s32));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_sched_rr_get_interval(struct thread *td,
|
|
struct linux_sched_rr_get_interval_args *uap)
|
|
{
|
|
struct timespec ts;
|
|
struct l_timespec ts32;
|
|
int error;
|
|
|
|
error = kern_sched_rr_get_interval(td, uap->pid, &ts);
|
|
if (error != 0)
|
|
return (error);
|
|
ts32.tv_sec = ts.tv_sec;
|
|
ts32.tv_nsec = ts.tv_nsec;
|
|
return (copyout(&ts32, uap->interval, sizeof(ts32)));
|
|
}
|
|
|
|
int
|
|
linux_set_thread_area(struct thread *td,
|
|
struct linux_set_thread_area_args *args)
|
|
{
|
|
struct l_user_desc info;
|
|
struct user_segment_descriptor sd;
|
|
int a[2];
|
|
int error;
|
|
|
|
error = copyin(args->desc, &info, sizeof(struct l_user_desc));
|
|
if (error)
|
|
return (error);
|
|
|
|
#ifdef DEBUG
|
|
if (ldebug(set_thread_area))
|
|
printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, "
|
|
"%i, %i, %i"), info.entry_number, info.base_addr,
|
|
info.limit, info.seg_32bit, info.contents,
|
|
info.read_exec_only, info.limit_in_pages,
|
|
info.seg_not_present, info.useable);
|
|
#endif
|
|
|
|
/*
|
|
* Semantics of Linux version: every thread in the system has array
|
|
* of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
|
|
* This syscall loads one of the selected TLS decriptors with a value
|
|
* and also loads GDT descriptors 6, 7 and 8 with the content of
|
|
* the per-thread descriptors.
|
|
*
|
|
* Semantics of FreeBSD version: I think we can ignore that Linux has
|
|
* three per-thread descriptors and use just the first one.
|
|
* The tls_array[] is used only in [gs]et_thread_area() syscalls and
|
|
* for loading the GDT descriptors. We use just one GDT descriptor
|
|
* for TLS, so we will load just one.
|
|
*
|
|
* XXX: This doesn't work when a user space process tries to use more
|
|
* than one TLS segment. Comment in the Linux source says wine might
|
|
* do this.
|
|
*/
|
|
|
|
/*
|
|
* GLIBC reads current %gs and call set_thread_area() with it.
|
|
* We should let GUDATA_SEL and GUGS32_SEL proceed as well because
|
|
* we use these segments.
|
|
*/
|
|
switch (info.entry_number) {
|
|
case GUGS32_SEL:
|
|
case GUDATA_SEL:
|
|
case 6:
|
|
case -1:
|
|
info.entry_number = GUGS32_SEL;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* We have to copy out the GDT entry we use.
|
|
*
|
|
* XXX: What if a user space program does not check the return value
|
|
* and tries to use 6, 7 or 8?
|
|
*/
|
|
error = copyout(&info, args->desc, sizeof(struct l_user_desc));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (LINUX_LDT_empty(&info)) {
|
|
a[0] = 0;
|
|
a[1] = 0;
|
|
} else {
|
|
a[0] = LINUX_LDT_entry_a(&info);
|
|
a[1] = LINUX_LDT_entry_b(&info);
|
|
}
|
|
|
|
memcpy(&sd, &a, sizeof(a));
|
|
#ifdef DEBUG
|
|
if (ldebug(set_thread_area))
|
|
printf("Segment created in set_thread_area: "
|
|
"lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, "
|
|
"type: %i, dpl: %i, p: %i, xx: %i, long: %i, "
|
|
"def32: %i, gran: %i\n",
|
|
sd.sd_lobase,
|
|
sd.sd_hibase,
|
|
sd.sd_lolimit,
|
|
sd.sd_hilimit,
|
|
sd.sd_type,
|
|
sd.sd_dpl,
|
|
sd.sd_p,
|
|
sd.sd_xx,
|
|
sd.sd_long,
|
|
sd.sd_def32,
|
|
sd.sd_gran);
|
|
#endif
|
|
|
|
critical_enter();
|
|
td->td_pcb->pcb_gsbase = (register_t)info.base_addr;
|
|
td->td_pcb->pcb_gs32sd = gdt[GUGS32_SEL] = sd;
|
|
td->td_pcb->pcb_gs32p = &gdt[GUGS32_SEL];
|
|
td->td_pcb->pcb_flags |= PCB_32BIT | PCB_GS32BIT;
|
|
wrmsr(MSR_KGSBASE, td->td_pcb->pcb_gsbase);
|
|
critical_exit();
|
|
|
|
return (0);
|
|
}
|