2016-09-22 13:27:44 +00:00

961 lines
30 KiB
C

/* Author: Maurice Gittens <maurice@gittens.nl> */
/* ====================================================================
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/dso.h>
#include <openssl/x509.h>
#include <openssl/objects.h>
#include <openssl/engine.h>
#include <openssl/rand.h>
#ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
#endif
#include <openssl/bn.h>
#ifndef OPENSSL_NO_HW
# ifndef OPENSSL_NO_HW_4758_CCA
# ifdef FLAT_INC
# include "hw_4758_cca.h"
# else
# include "vendor_defns/hw_4758_cca.h"
# endif
# include "e_4758cca_err.c"
static int ibm_4758_cca_destroy(ENGINE *e);
static int ibm_4758_cca_init(ENGINE *e);
static int ibm_4758_cca_finish(ENGINE *e);
static int ibm_4758_cca_ctrl(ENGINE *e, int cmd, long i, void *p,
void (*f) (void));
/* rsa functions */
/* -------------*/
# ifndef OPENSSL_NO_RSA
static int cca_rsa_pub_enc(int flen, const unsigned char *from,
unsigned char *to, RSA *rsa, int padding);
static int cca_rsa_priv_dec(int flen, const unsigned char *from,
unsigned char *to, RSA *rsa, int padding);
static int cca_rsa_sign(int type, const unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen,
const RSA *rsa);
static int cca_rsa_verify(int dtype, const unsigned char *m,
unsigned int m_len, const unsigned char *sigbuf,
unsigned int siglen, const RSA *rsa);
/* utility functions */
/* ---------------------*/
static EVP_PKEY *ibm_4758_load_privkey(ENGINE *, const char *,
UI_METHOD *ui_method,
void *callback_data);
static EVP_PKEY *ibm_4758_load_pubkey(ENGINE *, const char *,
UI_METHOD *ui_method,
void *callback_data);
static int getModulusAndExponent(const unsigned char *token,
long *exponentLength,
unsigned char *exponent, long *modulusLength,
long *modulusFieldLength,
unsigned char *modulus);
# endif
/* RAND number functions */
/* ---------------------*/
static int cca_get_random_bytes(unsigned char *, int);
static int cca_random_status(void);
# ifndef OPENSSL_NO_RSA
static void cca_ex_free(void *obj, void *item, CRYPTO_EX_DATA *ad,
int idx, long argl, void *argp);
# endif
/* Function pointers for CCA verbs */
/* -------------------------------*/
# ifndef OPENSSL_NO_RSA
static F_KEYRECORDREAD keyRecordRead;
static F_DIGITALSIGNATUREGENERATE digitalSignatureGenerate;
static F_DIGITALSIGNATUREVERIFY digitalSignatureVerify;
static F_PUBLICKEYEXTRACT publicKeyExtract;
static F_PKAENCRYPT pkaEncrypt;
static F_PKADECRYPT pkaDecrypt;
# endif
static F_RANDOMNUMBERGENERATE randomNumberGenerate;
/* static variables */
/* ----------------*/
static const char *CCA4758_LIB_NAME = NULL;
static const char *get_CCA4758_LIB_NAME(void)
{
if (CCA4758_LIB_NAME)
return CCA4758_LIB_NAME;
return CCA_LIB_NAME;
}
static void free_CCA4758_LIB_NAME(void)
{
if (CCA4758_LIB_NAME)
OPENSSL_free((void *)CCA4758_LIB_NAME);
CCA4758_LIB_NAME = NULL;
}
static long set_CCA4758_LIB_NAME(const char *name)
{
free_CCA4758_LIB_NAME();
return (((CCA4758_LIB_NAME = BUF_strdup(name)) != NULL) ? 1 : 0);
}
# ifndef OPENSSL_NO_RSA
static const char *n_keyRecordRead = CSNDKRR;
static const char *n_digitalSignatureGenerate = CSNDDSG;
static const char *n_digitalSignatureVerify = CSNDDSV;
static const char *n_publicKeyExtract = CSNDPKX;
static const char *n_pkaEncrypt = CSNDPKE;
static const char *n_pkaDecrypt = CSNDPKD;
# endif
static const char *n_randomNumberGenerate = CSNBRNG;
# ifndef OPENSSL_NO_RSA
static int hndidx = -1;
# endif
static DSO *dso = NULL;
/* openssl engine initialization structures */
/* ----------------------------------------*/
# define CCA4758_CMD_SO_PATH ENGINE_CMD_BASE
static const ENGINE_CMD_DEFN cca4758_cmd_defns[] = {
{CCA4758_CMD_SO_PATH,
"SO_PATH",
"Specifies the path to the '4758cca' shared library",
ENGINE_CMD_FLAG_STRING},
{0, NULL, NULL, 0}
};
# ifndef OPENSSL_NO_RSA
static RSA_METHOD ibm_4758_cca_rsa = {
"IBM 4758 CCA RSA method",
cca_rsa_pub_enc,
NULL,
NULL,
cca_rsa_priv_dec,
NULL, /* rsa_mod_exp, */
NULL, /* mod_exp_mont, */
NULL, /* init */
NULL, /* finish */
RSA_FLAG_SIGN_VER, /* flags */
NULL, /* app_data */
cca_rsa_sign, /* rsa_sign */
cca_rsa_verify, /* rsa_verify */
NULL /* rsa_keygen */
};
# endif
static RAND_METHOD ibm_4758_cca_rand = {
/* "IBM 4758 RAND method", */
NULL, /* seed */
cca_get_random_bytes, /* get random bytes from the card */
NULL, /* cleanup */
NULL, /* add */
cca_get_random_bytes, /* pseudo rand */
cca_random_status, /* status */
};
static const char *engine_4758_cca_id = "4758cca";
static const char *engine_4758_cca_name =
"IBM 4758 CCA hardware engine support";
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
/* Compatibility hack, the dynamic library uses this form in the path */
static const char *engine_4758_cca_id_alt = "4758_cca";
# endif
/* engine implementation */
/* ---------------------*/
static int bind_helper(ENGINE *e)
{
if (!ENGINE_set_id(e, engine_4758_cca_id) ||
!ENGINE_set_name(e, engine_4758_cca_name) ||
# ifndef OPENSSL_NO_RSA
!ENGINE_set_RSA(e, &ibm_4758_cca_rsa) ||
# endif
!ENGINE_set_RAND(e, &ibm_4758_cca_rand) ||
!ENGINE_set_destroy_function(e, ibm_4758_cca_destroy) ||
!ENGINE_set_init_function(e, ibm_4758_cca_init) ||
!ENGINE_set_finish_function(e, ibm_4758_cca_finish) ||
!ENGINE_set_ctrl_function(e, ibm_4758_cca_ctrl) ||
# ifndef OPENSSL_NO_RSA
!ENGINE_set_load_privkey_function(e, ibm_4758_load_privkey) ||
!ENGINE_set_load_pubkey_function(e, ibm_4758_load_pubkey) ||
# endif
!ENGINE_set_cmd_defns(e, cca4758_cmd_defns))
return 0;
/* Ensure the error handling is set up */
ERR_load_CCA4758_strings();
return 1;
}
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
static ENGINE *engine_4758_cca(void)
{
ENGINE *ret = ENGINE_new();
if (!ret)
return NULL;
if (!bind_helper(ret)) {
ENGINE_free(ret);
return NULL;
}
return ret;
}
void ENGINE_load_4758cca(void)
{
ENGINE *e_4758 = engine_4758_cca();
if (!e_4758)
return;
ENGINE_add(e_4758);
ENGINE_free(e_4758);
ERR_clear_error();
}
# endif
static int ibm_4758_cca_destroy(ENGINE *e)
{
ERR_unload_CCA4758_strings();
free_CCA4758_LIB_NAME();
return 1;
}
static int ibm_4758_cca_init(ENGINE *e)
{
if (dso) {
CCA4758err(CCA4758_F_IBM_4758_CCA_INIT, CCA4758_R_ALREADY_LOADED);
goto err;
}
dso = DSO_load(NULL, get_CCA4758_LIB_NAME(), NULL, 0);
if (!dso) {
CCA4758err(CCA4758_F_IBM_4758_CCA_INIT, CCA4758_R_DSO_FAILURE);
goto err;
}
# ifndef OPENSSL_NO_RSA
if (!(keyRecordRead = (F_KEYRECORDREAD)
DSO_bind_func(dso, n_keyRecordRead)) ||
!(randomNumberGenerate = (F_RANDOMNUMBERGENERATE)
DSO_bind_func(dso, n_randomNumberGenerate)) ||
!(digitalSignatureGenerate = (F_DIGITALSIGNATUREGENERATE)
DSO_bind_func(dso, n_digitalSignatureGenerate)) ||
!(digitalSignatureVerify = (F_DIGITALSIGNATUREVERIFY)
DSO_bind_func(dso, n_digitalSignatureVerify)) ||
!(publicKeyExtract = (F_PUBLICKEYEXTRACT)
DSO_bind_func(dso, n_publicKeyExtract)) ||
!(pkaEncrypt = (F_PKAENCRYPT)
DSO_bind_func(dso, n_pkaEncrypt)) || !(pkaDecrypt = (F_PKADECRYPT)
DSO_bind_func(dso,
n_pkaDecrypt)))
{
CCA4758err(CCA4758_F_IBM_4758_CCA_INIT, CCA4758_R_DSO_FAILURE);
goto err;
}
# else
if (!(randomNumberGenerate = (F_RANDOMNUMBERGENERATE)
DSO_bind_func(dso, n_randomNumberGenerate))) {
CCA4758err(CCA4758_F_IBM_4758_CCA_INIT, CCA4758_R_DSO_FAILURE);
goto err;
}
# endif
# ifndef OPENSSL_NO_RSA
hndidx = RSA_get_ex_new_index(0, "IBM 4758 CCA RSA key handle",
NULL, NULL, cca_ex_free);
# endif
return 1;
err:
if (dso)
DSO_free(dso);
dso = NULL;
# ifndef OPENSSL_NO_RSA
keyRecordRead = (F_KEYRECORDREAD) 0;
digitalSignatureGenerate = (F_DIGITALSIGNATUREGENERATE) 0;
digitalSignatureVerify = (F_DIGITALSIGNATUREVERIFY)0;
publicKeyExtract = (F_PUBLICKEYEXTRACT)0;
pkaEncrypt = (F_PKAENCRYPT) 0;
pkaDecrypt = (F_PKADECRYPT) 0;
# endif
randomNumberGenerate = (F_RANDOMNUMBERGENERATE) 0;
return 0;
}
static int ibm_4758_cca_finish(ENGINE *e)
{
free_CCA4758_LIB_NAME();
if (!dso) {
CCA4758err(CCA4758_F_IBM_4758_CCA_FINISH, CCA4758_R_NOT_LOADED);
return 0;
}
if (!DSO_free(dso)) {
CCA4758err(CCA4758_F_IBM_4758_CCA_FINISH, CCA4758_R_UNIT_FAILURE);
return 0;
}
dso = NULL;
# ifndef OPENSSL_NO_RSA
keyRecordRead = (F_KEYRECORDREAD) 0;
randomNumberGenerate = (F_RANDOMNUMBERGENERATE) 0;
digitalSignatureGenerate = (F_DIGITALSIGNATUREGENERATE) 0;
digitalSignatureVerify = (F_DIGITALSIGNATUREVERIFY)0;
publicKeyExtract = (F_PUBLICKEYEXTRACT)0;
pkaEncrypt = (F_PKAENCRYPT) 0;
pkaDecrypt = (F_PKADECRYPT) 0;
# endif
randomNumberGenerate = (F_RANDOMNUMBERGENERATE) 0;
return 1;
}
static int ibm_4758_cca_ctrl(ENGINE *e, int cmd, long i, void *p,
void (*f) (void))
{
int initialised = ((dso == NULL) ? 0 : 1);
switch (cmd) {
case CCA4758_CMD_SO_PATH:
if (p == NULL) {
CCA4758err(CCA4758_F_IBM_4758_CCA_CTRL,
ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (initialised) {
CCA4758err(CCA4758_F_IBM_4758_CCA_CTRL, CCA4758_R_ALREADY_LOADED);
return 0;
}
return set_CCA4758_LIB_NAME((const char *)p);
default:
break;
}
CCA4758err(CCA4758_F_IBM_4758_CCA_CTRL,
CCA4758_R_COMMAND_NOT_IMPLEMENTED);
return 0;
}
# ifndef OPENSSL_NO_RSA
# define MAX_CCA_PKA_TOKEN_SIZE 2500
static EVP_PKEY *ibm_4758_load_privkey(ENGINE *e, const char *key_id,
UI_METHOD *ui_method,
void *callback_data)
{
RSA *rtmp = NULL;
EVP_PKEY *res = NULL;
unsigned char *keyToken = NULL;
unsigned char pubKeyToken[MAX_CCA_PKA_TOKEN_SIZE];
long pubKeyTokenLength = MAX_CCA_PKA_TOKEN_SIZE;
long keyTokenLength = MAX_CCA_PKA_TOKEN_SIZE;
long returnCode;
long reasonCode;
long exitDataLength = 0;
long ruleArrayLength = 0;
unsigned char exitData[8];
unsigned char ruleArray[8];
unsigned char keyLabel[64];
unsigned long keyLabelLength = strlen(key_id);
unsigned char modulus[256];
long modulusFieldLength = sizeof(modulus);
long modulusLength = 0;
unsigned char exponent[256];
long exponentLength = sizeof(exponent);
if (keyLabelLength > sizeof(keyLabel)) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY,
CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
return NULL;
}
memset(keyLabel, ' ', sizeof(keyLabel));
memcpy(keyLabel, key_id, keyLabelLength);
keyToken = OPENSSL_malloc(MAX_CCA_PKA_TOKEN_SIZE + sizeof(long));
if (!keyToken) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
keyRecordRead(&returnCode, &reasonCode, &exitDataLength,
exitData, &ruleArrayLength, ruleArray, keyLabel,
&keyTokenLength, keyToken + sizeof(long));
if (returnCode) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY,
CCA4758_R_FAILED_LOADING_PRIVATE_KEY);
goto err;
}
publicKeyExtract(&returnCode, &reasonCode, &exitDataLength,
exitData, &ruleArrayLength, ruleArray, &keyTokenLength,
keyToken + sizeof(long), &pubKeyTokenLength,
pubKeyToken);
if (returnCode) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY,
CCA4758_R_FAILED_LOADING_PRIVATE_KEY);
goto err;
}
if (!getModulusAndExponent(pubKeyToken, &exponentLength,
exponent, &modulusLength, &modulusFieldLength,
modulus)) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY,
CCA4758_R_FAILED_LOADING_PRIVATE_KEY);
goto err;
}
(*(long *)keyToken) = keyTokenLength;
rtmp = RSA_new_method(e);
if (rtmp == NULL) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PRIVKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
RSA_set_ex_data(rtmp, hndidx, (char *)keyToken);
rtmp->e = BN_bin2bn(exponent, exponentLength, NULL);
rtmp->n = BN_bin2bn(modulus, modulusFieldLength, NULL);
rtmp->flags |= RSA_FLAG_EXT_PKEY;
res = EVP_PKEY_new();
EVP_PKEY_assign_RSA(res, rtmp);
return res;
err:
if (keyToken)
OPENSSL_free(keyToken);
return NULL;
}
static EVP_PKEY *ibm_4758_load_pubkey(ENGINE *e, const char *key_id,
UI_METHOD *ui_method,
void *callback_data)
{
RSA *rtmp = NULL;
EVP_PKEY *res = NULL;
unsigned char *keyToken = NULL;
long keyTokenLength = MAX_CCA_PKA_TOKEN_SIZE;
long returnCode;
long reasonCode;
long exitDataLength = 0;
long ruleArrayLength = 0;
unsigned char exitData[8];
unsigned char ruleArray[8];
unsigned char keyLabel[64];
unsigned long keyLabelLength = strlen(key_id);
unsigned char modulus[512];
long modulusFieldLength = sizeof(modulus);
long modulusLength = 0;
unsigned char exponent[512];
long exponentLength = sizeof(exponent);
if (keyLabelLength > sizeof(keyLabel)) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PUBKEY,
CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
return NULL;
}
memset(keyLabel, ' ', sizeof(keyLabel));
memcpy(keyLabel, key_id, keyLabelLength);
keyToken = OPENSSL_malloc(MAX_CCA_PKA_TOKEN_SIZE + sizeof(long));
if (!keyToken) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PUBKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
keyRecordRead(&returnCode, &reasonCode, &exitDataLength, exitData,
&ruleArrayLength, ruleArray, keyLabel, &keyTokenLength,
keyToken + sizeof(long));
if (returnCode) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PUBKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!getModulusAndExponent(keyToken + sizeof(long), &exponentLength,
exponent, &modulusLength, &modulusFieldLength,
modulus)) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PUBKEY,
CCA4758_R_FAILED_LOADING_PUBLIC_KEY);
goto err;
}
(*(long *)keyToken) = keyTokenLength;
rtmp = RSA_new_method(e);
if (rtmp == NULL) {
CCA4758err(CCA4758_F_IBM_4758_LOAD_PUBKEY, ERR_R_MALLOC_FAILURE);
goto err;
}
RSA_set_ex_data(rtmp, hndidx, (char *)keyToken);
rtmp->e = BN_bin2bn(exponent, exponentLength, NULL);
rtmp->n = BN_bin2bn(modulus, modulusFieldLength, NULL);
rtmp->flags |= RSA_FLAG_EXT_PKEY;
res = EVP_PKEY_new();
EVP_PKEY_assign_RSA(res, rtmp);
return res;
err:
if (keyToken)
OPENSSL_free(keyToken);
return NULL;
}
static int cca_rsa_pub_enc(int flen, const unsigned char *from,
unsigned char *to, RSA *rsa, int padding)
{
long returnCode;
long reasonCode;
long lflen = flen;
long exitDataLength = 0;
unsigned char exitData[8];
long ruleArrayLength = 1;
unsigned char ruleArray[8] = "PKCS-1.2";
long dataStructureLength = 0;
unsigned char dataStructure[8];
long outputLength = RSA_size(rsa);
long keyTokenLength;
unsigned char *keyToken = (unsigned char *)RSA_get_ex_data(rsa, hndidx);
keyTokenLength = *(long *)keyToken;
keyToken += sizeof(long);
pkaEncrypt(&returnCode, &reasonCode, &exitDataLength, exitData,
&ruleArrayLength, ruleArray, &lflen, (unsigned char *)from,
&dataStructureLength, dataStructure, &keyTokenLength,
keyToken, &outputLength, to);
if (returnCode || reasonCode)
return -(returnCode << 16 | reasonCode);
return outputLength;
}
static int cca_rsa_priv_dec(int flen, const unsigned char *from,
unsigned char *to, RSA *rsa, int padding)
{
long returnCode;
long reasonCode;
long lflen = flen;
long exitDataLength = 0;
unsigned char exitData[8];
long ruleArrayLength = 1;
unsigned char ruleArray[8] = "PKCS-1.2";
long dataStructureLength = 0;
unsigned char dataStructure[8];
long outputLength = RSA_size(rsa);
long keyTokenLength;
unsigned char *keyToken = (unsigned char *)RSA_get_ex_data(rsa, hndidx);
keyTokenLength = *(long *)keyToken;
keyToken += sizeof(long);
pkaDecrypt(&returnCode, &reasonCode, &exitDataLength, exitData,
&ruleArrayLength, ruleArray, &lflen, (unsigned char *)from,
&dataStructureLength, dataStructure, &keyTokenLength,
keyToken, &outputLength, to);
return (returnCode | reasonCode) ? 0 : 1;
}
# define SSL_SIG_LEN 36
static int cca_rsa_verify(int type, const unsigned char *m,
unsigned int m_len, const unsigned char *sigbuf,
unsigned int siglen, const RSA *rsa)
{
long returnCode;
long reasonCode;
long lsiglen = siglen;
long exitDataLength = 0;
unsigned char exitData[8];
long ruleArrayLength = 1;
unsigned char ruleArray[8] = "PKCS-1.1";
long keyTokenLength;
unsigned char *keyToken = (unsigned char *)RSA_get_ex_data(rsa, hndidx);
long length = SSL_SIG_LEN;
long keyLength;
unsigned char *hashBuffer = NULL;
X509_SIG sig;
ASN1_TYPE parameter;
X509_ALGOR algorithm;
ASN1_OCTET_STRING digest;
keyTokenLength = *(long *)keyToken;
keyToken += sizeof(long);
if (type == NID_md5 || type == NID_sha1) {
sig.algor = &algorithm;
algorithm.algorithm = OBJ_nid2obj(type);
if (!algorithm.algorithm) {
CCA4758err(CCA4758_F_CCA_RSA_VERIFY,
CCA4758_R_UNKNOWN_ALGORITHM_TYPE);
return 0;
}
if (!algorithm.algorithm->length) {
CCA4758err(CCA4758_F_CCA_RSA_VERIFY,
CCA4758_R_ASN1_OID_UNKNOWN_FOR_MD);
return 0;
}
parameter.type = V_ASN1_NULL;
parameter.value.ptr = NULL;
algorithm.parameter = &parameter;
sig.digest = &digest;
sig.digest->data = (unsigned char *)m;
sig.digest->length = m_len;
length = i2d_X509_SIG(&sig, NULL);
}
keyLength = RSA_size(rsa);
if (length - RSA_PKCS1_PADDING > keyLength) {
CCA4758err(CCA4758_F_CCA_RSA_VERIFY,
CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
return 0;
}
switch (type) {
case NID_md5_sha1:
if (m_len != SSL_SIG_LEN) {
CCA4758err(CCA4758_F_CCA_RSA_VERIFY,
CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
return 0;
}
hashBuffer = (unsigned char *)m;
length = m_len;
break;
case NID_md5:
{
unsigned char *ptr;
ptr = hashBuffer = OPENSSL_malloc((unsigned int)keyLength + 1);
if (!hashBuffer) {
CCA4758err(CCA4758_F_CCA_RSA_VERIFY, ERR_R_MALLOC_FAILURE);
return 0;
}
i2d_X509_SIG(&sig, &ptr);
}
break;
case NID_sha1:
{
unsigned char *ptr;
ptr = hashBuffer = OPENSSL_malloc((unsigned int)keyLength + 1);
if (!hashBuffer) {
CCA4758err(CCA4758_F_CCA_RSA_VERIFY, ERR_R_MALLOC_FAILURE);
return 0;
}
i2d_X509_SIG(&sig, &ptr);
}
break;
default:
return 0;
}
digitalSignatureVerify(&returnCode, &reasonCode, &exitDataLength,
exitData, &ruleArrayLength, ruleArray,
&keyTokenLength, keyToken, &length, hashBuffer,
&lsiglen, (unsigned char *)sigbuf);
if (type == NID_sha1 || type == NID_md5) {
OPENSSL_cleanse(hashBuffer, keyLength + 1);
OPENSSL_free(hashBuffer);
}
return ((returnCode || reasonCode) ? 0 : 1);
}
# define SSL_SIG_LEN 36
static int cca_rsa_sign(int type, const unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen,
const RSA *rsa)
{
long returnCode;
long reasonCode;
long exitDataLength = 0;
unsigned char exitData[8];
long ruleArrayLength = 1;
unsigned char ruleArray[8] = "PKCS-1.1";
long outputLength = 256;
long outputBitLength;
long keyTokenLength;
unsigned char *hashBuffer = NULL;
unsigned char *keyToken = (unsigned char *)RSA_get_ex_data(rsa, hndidx);
long length = SSL_SIG_LEN;
long keyLength;
X509_SIG sig;
ASN1_TYPE parameter;
X509_ALGOR algorithm;
ASN1_OCTET_STRING digest;
keyTokenLength = *(long *)keyToken;
keyToken += sizeof(long);
if (type == NID_md5 || type == NID_sha1) {
sig.algor = &algorithm;
algorithm.algorithm = OBJ_nid2obj(type);
if (!algorithm.algorithm) {
CCA4758err(CCA4758_F_CCA_RSA_SIGN,
CCA4758_R_UNKNOWN_ALGORITHM_TYPE);
return 0;
}
if (!algorithm.algorithm->length) {
CCA4758err(CCA4758_F_CCA_RSA_SIGN,
CCA4758_R_ASN1_OID_UNKNOWN_FOR_MD);
return 0;
}
parameter.type = V_ASN1_NULL;
parameter.value.ptr = NULL;
algorithm.parameter = &parameter;
sig.digest = &digest;
sig.digest->data = (unsigned char *)m;
sig.digest->length = m_len;
length = i2d_X509_SIG(&sig, NULL);
}
keyLength = RSA_size(rsa);
if (length - RSA_PKCS1_PADDING > keyLength) {
CCA4758err(CCA4758_F_CCA_RSA_SIGN,
CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
return 0;
}
switch (type) {
case NID_md5_sha1:
if (m_len != SSL_SIG_LEN) {
CCA4758err(CCA4758_F_CCA_RSA_SIGN,
CCA4758_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
return 0;
}
hashBuffer = (unsigned char *)m;
length = m_len;
break;
case NID_md5:
{
unsigned char *ptr;
ptr = hashBuffer = OPENSSL_malloc((unsigned int)keyLength + 1);
if (!hashBuffer) {
CCA4758err(CCA4758_F_CCA_RSA_SIGN, ERR_R_MALLOC_FAILURE);
return 0;
}
i2d_X509_SIG(&sig, &ptr);
}
break;
case NID_sha1:
{
unsigned char *ptr;
ptr = hashBuffer = OPENSSL_malloc((unsigned int)keyLength + 1);
if (!hashBuffer) {
CCA4758err(CCA4758_F_CCA_RSA_SIGN, ERR_R_MALLOC_FAILURE);
return 0;
}
i2d_X509_SIG(&sig, &ptr);
}
break;
default:
return 0;
}
digitalSignatureGenerate(&returnCode, &reasonCode, &exitDataLength,
exitData, &ruleArrayLength, ruleArray,
&keyTokenLength, keyToken, &length, hashBuffer,
&outputLength, &outputBitLength, sigret);
if (type == NID_sha1 || type == NID_md5) {
OPENSSL_cleanse(hashBuffer, keyLength + 1);
OPENSSL_free(hashBuffer);
}
*siglen = outputLength;
return ((returnCode || reasonCode) ? 0 : 1);
}
static int getModulusAndExponent(const unsigned char *token,
long *exponentLength,
unsigned char *exponent, long *modulusLength,
long *modulusFieldLength,
unsigned char *modulus)
{
unsigned long len;
if (*token++ != (char)0x1E) /* internal PKA token? */
return 0;
if (*token++) /* token version must be zero */
return 0;
len = *token++;
len = len << 8;
len |= (unsigned char)*token++;
token += 4; /* skip reserved bytes */
if (*token++ == (char)0x04) {
if (*token++) /* token version must be zero */
return 0;
len = *token++;
len = len << 8;
len |= (unsigned char)*token++;
token += 2; /* skip reserved section */
len = *token++;
len = len << 8;
len |= (unsigned char)*token++;
*exponentLength = len;
len = *token++;
len = len << 8;
len |= (unsigned char)*token++;
*modulusLength = len;
len = *token++;
len = len << 8;
len |= (unsigned char)*token++;
*modulusFieldLength = len;
memcpy(exponent, token, *exponentLength);
token += *exponentLength;
memcpy(modulus, token, *modulusFieldLength);
return 1;
}
return 0;
}
# endif /* OPENSSL_NO_RSA */
static int cca_random_status(void)
{
return 1;
}
static int cca_get_random_bytes(unsigned char *buf, int num)
{
long ret_code;
long reason_code;
long exit_data_length;
unsigned char exit_data[4];
unsigned char form[] = "RANDOM ";
unsigned char rand_buf[8];
while (num >= (int)sizeof(rand_buf)) {
randomNumberGenerate(&ret_code, &reason_code, &exit_data_length,
exit_data, form, rand_buf);
if (ret_code)
return 0;
num -= sizeof(rand_buf);
memcpy(buf, rand_buf, sizeof(rand_buf));
buf += sizeof(rand_buf);
}
if (num) {
randomNumberGenerate(&ret_code, &reason_code, NULL, NULL,
form, rand_buf);
if (ret_code)
return 0;
memcpy(buf, rand_buf, num);
}
return 1;
}
# ifndef OPENSSL_NO_RSA
static void cca_ex_free(void *obj, void *item, CRYPTO_EX_DATA *ad, int idx,
long argl, void *argp)
{
if (item)
OPENSSL_free(item);
}
# endif
/* Goo to handle building as a dynamic engine */
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int bind_fn(ENGINE *e, const char *id)
{
if (id && (strcmp(id, engine_4758_cca_id) != 0) &&
(strcmp(id, engine_4758_cca_id_alt) != 0))
return 0;
if (!bind_helper(e))
return 0;
return 1;
}
IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(bind_fn)
# endif /* OPENSSL_NO_DYNAMIC_ENGINE */
# endif /* !OPENSSL_NO_HW_4758_CCA */
#endif /* !OPENSSL_NO_HW */