John Baldwin 6f92bdd0c1 New APIC support code:
- The apic interrupt entry points have been rewritten so that each entry
  point can serve 32 different vectors.  When the entry is executed, it
  uses one of the 32-bit ISR registers to determine which vector in its
  assigned range was triggered.  Thus, the apic code can support 159
  different interrupt vectors with only 5 entry points.
- We now always to disable the local APIC to work around an errata in
  certain PPros and then re-enable it again if we decide to use the APICs
  to route interrupts.
- We no longer map IO APICs or local APICs using special page table
  entries.  Instead, we just use pmap_mapdev().  We also no longer
  export the virtual address of the local APIC as a global symbol to
  the rest of the system, but only in local_apic.c.  To aid this, the
  APIC ID of each CPU is exported as a per-CPU variable.
- Interrupt sources are provided for each intpin on each IO APIC.
  Currently, each source is given a unique interrupt vector meaning that
  PCI interrupts are not shared on most machines with an I/O APIC.
  That mapping for interrupt sources to interrupt vectors is up to the
  APIC enumerator driver however.
- We no longer probe to see if we need to use mixed mode to route IRQ 0,
  instead we always use mixed mode to route IRQ 0 for now.  This can be
  disabled via the 'NO_MIXED_MODE' kernel option.
- The npx(4) driver now always probes to see if a built-in FPU is present
  since this test can now be performed with the new APIC code.  However,
  an SMP kernel will panic if there is more than one CPU and a built-in
  FPU is not found.
- PCI interrupts are now properly routed when using APICs to route
  interrupts, so remove the hack to psuedo-route interrupts when the
  intpin register was read.
- The apic.h header was moved to apicreg.h and a new apicvar.h header
  that declares the APIs used by the new APIC code was added.
2003-11-03 21:53:38 +00:00
..
2003-06-11 00:34:37 +00:00
2003-11-03 21:53:38 +00:00
2002-10-16 10:38:48 +00:00
2003-06-11 00:34:37 +00:00
2003-06-11 00:34:37 +00:00
2003-06-11 00:34:37 +00:00