freebsd-skq/contrib/ofed/opensm/complib/cl_pool.c
Hans Petter Selasky d6b92ffa99 OFED user-space import and update for use with Linux-4.9 compatible RDMA
kernel APIs.

List of sources used:

1) rdma-core was cloned from "https://github.com/linux-rdma/rdma-core.git"
Top commit d65138ef93af30b3ea249f3a84aa6a24ba7f8a75

2) OpenSM was cloned from git://git.openfabrics.org/~halr/opensm.git
Top commit 85f841cf209f791c89a075048a907020e924528d

3) libibmad was cloned from "git://git.openfabrics.org/~iraweiny/libibmad.git"
Tag 1.3.13 with some additional patches from Mellanox.

4) infiniband-diags was cloned from "git://git.openfabrics.org/~iraweiny/infiniband-diags.git"
Tag 1.6.7 with some additional patches from Mellanox.

Added the required Makefiles for building and installing.

Sponsored by:	Mellanox Technologies
2017-08-02 16:00:30 +00:00

657 lines
18 KiB
C

/*
* Copyright (c) 2004-2009 Voltaire, Inc. All rights reserved.
* Copyright (c) 2002-2005 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 1996-2003 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/*
* Abstract:
* Implementation of the grow pools. The grow pools manage a pool of objects.
* The pools can grow to meet demand, limited only by system memory.
*
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif /* HAVE_CONFIG_H */
#include <stdlib.h>
#include <string.h>
#include <complib/cl_qcomppool.h>
#include <complib/cl_comppool.h>
#include <complib/cl_qpool.h>
#include <complib/cl_pool.h>
#include <complib/cl_math.h>
/*
* IMPLEMENTATION OF QUICK COMPOSITE POOL
*/
void cl_qcpool_construct(IN cl_qcpool_t * const p_pool)
{
CL_ASSERT(p_pool);
memset(p_pool, 0, sizeof(cl_qcpool_t));
p_pool->state = CL_UNINITIALIZED;
}
cl_status_t cl_qcpool_init(IN cl_qcpool_t * const p_pool,
IN const size_t min_size, IN const size_t max_size,
IN const size_t grow_size,
IN const size_t * const component_sizes,
IN const uint32_t num_components,
IN cl_pfn_qcpool_init_t pfn_initializer OPTIONAL,
IN cl_pfn_qcpool_dtor_t pfn_destructor OPTIONAL,
IN const void *const context)
{
cl_status_t status;
uint32_t i;
CL_ASSERT(p_pool);
/* Must have a minimum of 1 component. */
CL_ASSERT(num_components);
/* A component size array is required. */
CL_ASSERT(component_sizes);
/*
* If no initializer is provided, the first component must be large
* enough to hold a pool item.
*/
CL_ASSERT(pfn_initializer ||
(component_sizes[0] >= sizeof(cl_pool_item_t)));
cl_qcpool_construct(p_pool);
if (num_components > 1 && !pfn_initializer)
return (CL_INVALID_SETTING);
if (max_size && max_size < min_size)
return (CL_INVALID_SETTING);
/*
* Allocate the array of component sizes and component pointers all
* in one allocation.
*/
p_pool->component_sizes = (size_t *) malloc((sizeof(size_t) +
sizeof(void *)) *
num_components);
if (!p_pool->component_sizes)
return (CL_INSUFFICIENT_MEMORY);
else
memset(p_pool->component_sizes, 0,
(sizeof(size_t) + sizeof(void *)) * num_components);
/* Calculate the pointer to the array of pointers, used for callbacks. */
p_pool->p_components =
(void **)(p_pool->component_sizes + num_components);
/* Copy the user's sizes into our array for future use. */
memcpy(p_pool->component_sizes, component_sizes,
sizeof(component_sizes[0]) * num_components);
/* Store the number of components per object. */
p_pool->num_components = num_components;
/* Round up and store the size of the components. */
for (i = 0; i < num_components; i++) {
/*
* We roundup each component size so that all components
* are aligned on a natural boundary.
*/
p_pool->component_sizes[i] =
ROUNDUP(p_pool->component_sizes[i], sizeof(uintptr_t));
}
p_pool->max_objects = max_size ? max_size : ~(size_t) 0;
p_pool->grow_size = grow_size;
/* Store callback function pointers. */
p_pool->pfn_init = pfn_initializer; /* may be NULL */
p_pool->pfn_dtor = pfn_destructor; /* may be NULL */
p_pool->context = context;
cl_qlist_init(&p_pool->alloc_list);
cl_qlist_init(&p_pool->free_list);
/*
* We are now initialized. We change the initialized flag before
* growing since the grow function asserts that we are initialized.
*/
p_pool->state = CL_INITIALIZED;
/* Allocate the minimum number of objects as requested. */
if (!min_size)
return (CL_SUCCESS);
status = cl_qcpool_grow(p_pool, min_size);
/* Trap for error and cleanup if necessary. */
if (status != CL_SUCCESS)
cl_qcpool_destroy(p_pool);
return (status);
}
void cl_qcpool_destroy(IN cl_qcpool_t * const p_pool)
{
/* CL_ASSERT that a non-NULL pointer was provided. */
CL_ASSERT(p_pool);
/* CL_ASSERT that we are in a valid state (not uninitialized memory). */
CL_ASSERT(cl_is_state_valid(p_pool->state));
if (p_pool->state == CL_INITIALIZED) {
/*
* Assert if the user hasn't put everything back in the pool
* before destroying it
* if they haven't, then most likely they are still using memory
* that will be freed, and the destructor will not be called!
*/
#ifdef _DEBUG_
/* but we do not want "free" version to assert on this one */
CL_ASSERT(cl_qcpool_count(p_pool) == p_pool->num_objects);
#endif
/* call the user's destructor for each object in the pool */
if (p_pool->pfn_dtor) {
while (!cl_is_qlist_empty(&p_pool->free_list)) {
p_pool->pfn_dtor((cl_pool_item_t *)
cl_qlist_remove_head(&p_pool->
free_list),
(void *)p_pool->context);
}
} else {
cl_qlist_remove_all(&p_pool->free_list);
}
/* Free all allocated memory blocks. */
while (!cl_is_qlist_empty(&p_pool->alloc_list))
free(cl_qlist_remove_head(&p_pool->alloc_list));
if (p_pool->component_sizes) {
free(p_pool->component_sizes);
p_pool->component_sizes = NULL;
}
}
p_pool->state = CL_UNINITIALIZED;
}
cl_status_t cl_qcpool_grow(IN cl_qcpool_t * const p_pool, IN size_t obj_count)
{
cl_status_t status = CL_SUCCESS;
uint8_t *p_objects;
cl_pool_item_t *p_pool_item;
uint32_t i;
size_t obj_size;
CL_ASSERT(p_pool);
CL_ASSERT(p_pool->state == CL_INITIALIZED);
CL_ASSERT(obj_count);
/* Validate that growth is possible. */
if (p_pool->num_objects == p_pool->max_objects)
return (CL_INSUFFICIENT_MEMORY);
/* Cap the growth to the desired maximum. */
if (obj_count > (p_pool->max_objects - p_pool->num_objects))
obj_count = p_pool->max_objects - p_pool->num_objects;
/* Calculate the size of an object. */
obj_size = 0;
for (i = 0; i < p_pool->num_components; i++)
obj_size += p_pool->component_sizes[i];
/* Allocate the buffer for the new objects. */
p_objects = (uint8_t *)
malloc(sizeof(cl_list_item_t) + (obj_size * obj_count));
/* Make sure the allocation succeeded. */
if (!p_objects)
return (CL_INSUFFICIENT_MEMORY);
else
memset(p_objects, 0,
sizeof(cl_list_item_t) + (obj_size * obj_count));
/* Insert the allocation in our list. */
cl_qlist_insert_tail(&p_pool->alloc_list, (cl_list_item_t *) p_objects);
p_objects += sizeof(cl_list_item_t);
/* initialize the new elements and add them to the free list */
while (obj_count--) {
/* Setup the array of components for the current object. */
p_pool->p_components[0] = p_objects;
for (i = 1; i < p_pool->num_components; i++) {
/* Calculate the pointer to the next component. */
p_pool->p_components[i] =
(uint8_t *) p_pool->p_components[i - 1] +
p_pool->component_sizes[i - 1];
}
/*
* call the user's initializer
* this can fail!
*/
if (p_pool->pfn_init) {
p_pool_item = NULL;
status = p_pool->pfn_init(p_pool->p_components,
p_pool->num_components,
(void *)p_pool->context,
&p_pool_item);
if (status != CL_SUCCESS) {
/*
* User initialization failed
* we may have only grown the pool by some partial amount
* Invoke the destructor for the object that failed
* initialization.
*/
if (p_pool->pfn_dtor)
p_pool->pfn_dtor(p_pool_item,
(void *)p_pool->
context);
/* Return the user's status. */
return (status);
}
CL_ASSERT(p_pool_item);
} else {
/*
* If no initializer is provided, assume that the pool item
* is stored at the beginning of the first component.
*/
p_pool_item =
(cl_pool_item_t *) p_pool->p_components[0];
}
#ifdef _DEBUG_
/*
* Set the pool item's pool pointer to this pool so that we can
* check that items get returned to the correct pool.
*/
p_pool_item->p_pool = p_pool;
#endif
/* Insert the new item in the free list, traping for failure. */
cl_qlist_insert_head(&p_pool->free_list,
&p_pool_item->list_item);
p_pool->num_objects++;
/* move the pointer to the next item */
p_objects += obj_size;
}
return (status);
}
cl_pool_item_t *cl_qcpool_get(IN cl_qcpool_t * const p_pool)
{
cl_list_item_t *p_list_item;
CL_ASSERT(p_pool);
CL_ASSERT(p_pool->state == CL_INITIALIZED);
if (cl_is_qlist_empty(&p_pool->free_list)) {
/*
* No object is available.
* Return NULL if the user does not want automatic growth.
*/
if (!p_pool->grow_size)
return (NULL);
/* We ran out of elements. Get more */
cl_qcpool_grow(p_pool, p_pool->grow_size);
/*
* We may not have gotten everything we wanted but we might have
* gotten something.
*/
if (cl_is_qlist_empty(&p_pool->free_list))
return (NULL);
}
p_list_item = cl_qlist_remove_head(&p_pool->free_list);
/* OK, at this point we have an object */
CL_ASSERT(p_list_item != cl_qlist_end(&p_pool->free_list));
return ((cl_pool_item_t *) p_list_item);
}
cl_pool_item_t *cl_qcpool_get_tail(IN cl_qcpool_t * const p_pool)
{
cl_list_item_t *p_list_item;
CL_ASSERT(p_pool);
CL_ASSERT(p_pool->state == CL_INITIALIZED);
if (cl_is_qlist_empty(&p_pool->free_list)) {
/*
* No object is available.
* Return NULL if the user does not want automatic growth.
*/
if (!p_pool->grow_size)
return (NULL);
/* We ran out of elements. Get more */
cl_qcpool_grow(p_pool, p_pool->grow_size);
/*
* We may not have gotten everything we wanted but we might have
* gotten something.
*/
if (cl_is_qlist_empty(&p_pool->free_list))
return (NULL);
}
p_list_item = cl_qlist_remove_tail(&p_pool->free_list);
/* OK, at this point we have an object */
CL_ASSERT(p_list_item != cl_qlist_end(&p_pool->free_list));
return ((cl_pool_item_t *) p_list_item);
}
/*
* IMPLEMENTATION OF QUICK GROW POOL
*/
/*
* Callback to translate quick composite to quick grow pool
* initializer callback.
*/
static cl_status_t __cl_qpool_init_cb(IN void **const p_comp_array,
IN const uint32_t num_components,
IN void *const context,
OUT cl_pool_item_t ** const pp_pool_item)
{
cl_qpool_t *p_pool = (cl_qpool_t *) context;
CL_ASSERT(p_pool);
CL_ASSERT(p_pool->pfn_init);
CL_ASSERT(num_components == 1);
UNUSED_PARAM(num_components);
return (p_pool->pfn_init(p_comp_array[0], (void *)p_pool->context,
pp_pool_item));
}
/*
* Callback to translate quick composite to quick grow pool
* destructor callback.
*/
static void __cl_qpool_dtor_cb(IN const cl_pool_item_t * const p_pool_item,
IN void *const context)
{
cl_qpool_t *p_pool = (cl_qpool_t *) context;
CL_ASSERT(p_pool);
CL_ASSERT(p_pool->pfn_dtor);
p_pool->pfn_dtor(p_pool_item, (void *)p_pool->context);
}
void cl_qpool_construct(IN cl_qpool_t * const p_pool)
{
memset(p_pool, 0, sizeof(cl_qpool_t));
cl_qcpool_construct(&p_pool->qcpool);
}
cl_status_t cl_qpool_init(IN cl_qpool_t * const p_pool,
IN const size_t min_size, IN const size_t max_size,
IN const size_t grow_size,
IN const size_t object_size,
IN cl_pfn_qpool_init_t pfn_initializer OPTIONAL,
IN cl_pfn_qpool_dtor_t pfn_destructor OPTIONAL,
IN const void *const context)
{
cl_status_t status;
CL_ASSERT(p_pool);
p_pool->pfn_init = pfn_initializer; /* may be NULL */
p_pool->pfn_dtor = pfn_destructor; /* may be NULL */
p_pool->context = context;
status = cl_qcpool_init(&p_pool->qcpool, min_size, max_size, grow_size,
&object_size, 1,
pfn_initializer ? __cl_qpool_init_cb : NULL,
pfn_destructor ? __cl_qpool_dtor_cb : NULL,
p_pool);
return (status);
}
/*
* IMPLEMENTATION OF COMPOSITE POOL
*/
/*
* Callback to translate quick composite to compsite pool
* initializer callback.
*/
static cl_status_t __cl_cpool_init_cb(IN void **const p_comp_array,
IN const uint32_t num_components,
IN void *const context,
OUT cl_pool_item_t ** const pp_pool_item)
{
cl_cpool_t *p_pool = (cl_cpool_t *) context;
cl_pool_obj_t *p_pool_obj;
cl_status_t status = CL_SUCCESS;
CL_ASSERT(p_pool);
/*
* Set our pointer to the list item, which is stored at the beginning of
* the first component.
*/
p_pool_obj = (cl_pool_obj_t *) p_comp_array[0];
/* Set the pool item pointer for the caller. */
*pp_pool_item = &p_pool_obj->pool_item;
/* Calculate the pointer to the user's first component. */
p_comp_array[0] = ((uint8_t *) p_comp_array[0]) + sizeof(cl_pool_obj_t);
/*
* Set the object pointer in the pool object to point to the first of the
* user's components.
*/
p_pool_obj->p_object = p_comp_array[0];
/* Invoke the user's constructor callback. */
if (p_pool->pfn_init) {
status = p_pool->pfn_init(p_comp_array, num_components,
(void *)p_pool->context);
}
return (status);
}
/*
* Callback to translate quick composite to composite pool
* destructor callback.
*/
static void __cl_cpool_dtor_cb(IN const cl_pool_item_t * const p_pool_item,
IN void *const context)
{
cl_cpool_t *p_pool = (cl_cpool_t *) context;
CL_ASSERT(p_pool);
CL_ASSERT(p_pool->pfn_dtor);
CL_ASSERT(((cl_pool_obj_t *) p_pool_item)->p_object);
/* Invoke the user's destructor callback. */
p_pool->pfn_dtor((void *)((cl_pool_obj_t *) p_pool_item)->p_object,
(void *)p_pool->context);
}
void cl_cpool_construct(IN cl_cpool_t * const p_pool)
{
CL_ASSERT(p_pool);
memset(p_pool, 0, sizeof(cl_cpool_t));
cl_qcpool_construct(&p_pool->qcpool);
}
cl_status_t cl_cpool_init(IN cl_cpool_t * const p_pool,
IN const size_t min_size, IN const size_t max_size,
IN const size_t grow_size,
IN size_t * const component_sizes,
IN const uint32_t num_components,
IN cl_pfn_cpool_init_t pfn_initializer OPTIONAL,
IN cl_pfn_cpool_dtor_t pfn_destructor OPTIONAL,
IN const void *const context)
{
cl_status_t status;
CL_ASSERT(p_pool);
CL_ASSERT(num_components);
CL_ASSERT(component_sizes);
/* Add the size of the pool object to the first component. */
component_sizes[0] += sizeof(cl_pool_obj_t);
/* Store callback function pointers. */
p_pool->pfn_init = pfn_initializer; /* may be NULL */
p_pool->pfn_dtor = pfn_destructor; /* may be NULL */
p_pool->context = context;
status = cl_qcpool_init(&p_pool->qcpool, min_size, max_size, grow_size,
component_sizes, num_components,
__cl_cpool_init_cb,
pfn_destructor ? __cl_cpool_dtor_cb : NULL,
p_pool);
/* Restore the original value of the first component. */
component_sizes[0] -= sizeof(cl_pool_obj_t);
return (status);
}
/*
* IMPLEMENTATION OF GROW POOL
*/
/*
* Callback to translate quick composite to grow pool constructor callback.
*/
static cl_status_t __cl_pool_init_cb(IN void **const pp_obj,
IN const uint32_t count,
IN void *const context,
OUT cl_pool_item_t ** const pp_pool_item)
{
cl_pool_t *p_pool = (cl_pool_t *) context;
cl_pool_obj_t *p_pool_obj;
cl_status_t status = CL_SUCCESS;
CL_ASSERT(p_pool);
CL_ASSERT(pp_obj);
CL_ASSERT(count == 1);
UNUSED_PARAM(count);
/*
* Set our pointer to the list item, which is stored at the beginning of
* the first component.
*/
p_pool_obj = (cl_pool_obj_t *) * pp_obj;
*pp_pool_item = &p_pool_obj->pool_item;
/* Calculate the pointer to the user's first component. */
*pp_obj = ((uint8_t *) * pp_obj) + sizeof(cl_pool_obj_t);
/*
* Set the object pointer in the pool item to point to the first of the
* user's components.
*/
p_pool_obj->p_object = *pp_obj;
/* Invoke the user's constructor callback. */
if (p_pool->pfn_init)
status = p_pool->pfn_init(*pp_obj, (void *)p_pool->context);
return (status);
}
/*
* Callback to translate quick composite to grow pool destructor callback.
*/
static void __cl_pool_dtor_cb(IN const cl_pool_item_t * const p_pool_item,
IN void *const context)
{
cl_pool_t *p_pool = (cl_pool_t *) context;
CL_ASSERT(p_pool);
CL_ASSERT(p_pool->pfn_dtor);
CL_ASSERT(((cl_pool_obj_t *) p_pool_item)->p_object);
/* Invoke the user's destructor callback. */
p_pool->pfn_dtor((void *)((cl_pool_obj_t *) p_pool_item)->p_object,
(void *)p_pool->context);
}
void cl_pool_construct(IN cl_pool_t * const p_pool)
{
CL_ASSERT(p_pool);
memset(p_pool, 0, sizeof(cl_pool_t));
cl_qcpool_construct(&p_pool->qcpool);
}
cl_status_t cl_pool_init(IN cl_pool_t * const p_pool, IN const size_t min_size,
IN const size_t max_size, IN const size_t grow_size,
IN const size_t object_size,
IN cl_pfn_pool_init_t pfn_initializer OPTIONAL,
IN cl_pfn_pool_dtor_t pfn_destructor OPTIONAL,
IN const void *const context)
{
cl_status_t status;
size_t total_size;
CL_ASSERT(p_pool);
/* Add the size of the list item to the first component. */
total_size = object_size + sizeof(cl_pool_obj_t);
/* Store callback function pointers. */
p_pool->pfn_init = pfn_initializer; /* may be NULL */
p_pool->pfn_dtor = pfn_destructor; /* may be NULL */
p_pool->context = context;
/*
* We need an initializer in all cases for quick composite pool, since
* the user pointer must be manipulated to hide the prefixed cl_pool_obj_t.
*/
status = cl_qcpool_init(&p_pool->qcpool, min_size, max_size, grow_size,
&total_size, 1, __cl_pool_init_cb,
pfn_destructor ? __cl_pool_dtor_cb : NULL,
p_pool);
return (status);
}