freebsd-skq/sys/dev/iwm/if_iwm.c
Andriy Voskoboinyk d845f44fb1 iwm: add 'command accepted' debug notification (copied from wpi(4)).
Now it should be easier to find out which command causes firmware
panics when few commands are sent in a short period of time.
2016-08-27 08:34:20 +00:00

6195 lines
168 KiB
C

/* $OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $ */
/*
* Copyright (c) 2014 genua mbh <info@genua.de>
* Copyright (c) 2014 Fixup Software Ltd.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Based on BSD-licensed source modules in the Linux iwlwifi driver,
* which were used as the reference documentation for this implementation.
*
* Driver version we are currently based off of is
* Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
*
***********************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/firmware.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/linker.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/resource.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_ratectl.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/iwm/if_iwmreg.h>
#include <dev/iwm/if_iwmvar.h>
#include <dev/iwm/if_iwm_debug.h>
#include <dev/iwm/if_iwm_util.h>
#include <dev/iwm/if_iwm_binding.h>
#include <dev/iwm/if_iwm_phy_db.h>
#include <dev/iwm/if_iwm_mac_ctxt.h>
#include <dev/iwm/if_iwm_phy_ctxt.h>
#include <dev/iwm/if_iwm_time_event.h>
#include <dev/iwm/if_iwm_power.h>
#include <dev/iwm/if_iwm_scan.h>
#include <dev/iwm/if_iwm_pcie_trans.h>
#include <dev/iwm/if_iwm_led.h>
const uint8_t iwm_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64,
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165
};
_Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
"IWM_NUM_CHANNELS is too small");
const uint8_t iwm_nvm_channels_8000[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165, 169, 173, 177, 181
};
_Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
"IWM_NUM_CHANNELS_8000 is too small");
#define IWM_NUM_2GHZ_CHANNELS 14
#define IWM_N_HW_ADDR_MASK 0xF
/*
* XXX For now, there's simply a fixed set of rate table entries
* that are populated.
*/
const struct iwm_rate {
uint8_t rate;
uint8_t plcp;
} iwm_rates[] = {
{ 2, IWM_RATE_1M_PLCP },
{ 4, IWM_RATE_2M_PLCP },
{ 11, IWM_RATE_5M_PLCP },
{ 22, IWM_RATE_11M_PLCP },
{ 12, IWM_RATE_6M_PLCP },
{ 18, IWM_RATE_9M_PLCP },
{ 24, IWM_RATE_12M_PLCP },
{ 36, IWM_RATE_18M_PLCP },
{ 48, IWM_RATE_24M_PLCP },
{ 72, IWM_RATE_36M_PLCP },
{ 96, IWM_RATE_48M_PLCP },
{ 108, IWM_RATE_54M_PLCP },
};
#define IWM_RIDX_CCK 0
#define IWM_RIDX_OFDM 4
#define IWM_RIDX_MAX (nitems(iwm_rates)-1)
#define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
#define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
struct iwm_nvm_section {
uint16_t length;
uint8_t *data;
};
static int iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
static int iwm_firmware_store_section(struct iwm_softc *,
enum iwm_ucode_type,
const uint8_t *, size_t);
static int iwm_set_default_calib(struct iwm_softc *, const void *);
static void iwm_fw_info_free(struct iwm_fw_info *);
static int iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
static void iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
bus_size_t, bus_size_t);
static void iwm_dma_contig_free(struct iwm_dma_info *);
static int iwm_alloc_fwmem(struct iwm_softc *);
static void iwm_free_fwmem(struct iwm_softc *);
static int iwm_alloc_sched(struct iwm_softc *);
static void iwm_free_sched(struct iwm_softc *);
static int iwm_alloc_kw(struct iwm_softc *);
static void iwm_free_kw(struct iwm_softc *);
static int iwm_alloc_ict(struct iwm_softc *);
static void iwm_free_ict(struct iwm_softc *);
static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
static void iwm_disable_rx_dma(struct iwm_softc *);
static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
int);
static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
static void iwm_enable_interrupts(struct iwm_softc *);
static void iwm_restore_interrupts(struct iwm_softc *);
static void iwm_disable_interrupts(struct iwm_softc *);
static void iwm_ict_reset(struct iwm_softc *);
static int iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
static void iwm_stop_device(struct iwm_softc *);
static void iwm_mvm_nic_config(struct iwm_softc *);
static int iwm_nic_rx_init(struct iwm_softc *);
static int iwm_nic_tx_init(struct iwm_softc *);
static int iwm_nic_init(struct iwm_softc *);
static int iwm_enable_txq(struct iwm_softc *, int, int, int);
static int iwm_post_alive(struct iwm_softc *);
static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
uint16_t, uint8_t *, uint16_t *);
static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
uint16_t *, size_t);
static uint32_t iwm_eeprom_channel_flags(uint16_t);
static void iwm_add_channel_band(struct iwm_softc *,
struct ieee80211_channel[], int, int *, int, size_t,
const uint8_t[]);
static void iwm_init_channel_map(struct ieee80211com *, int, int *,
struct ieee80211_channel[]);
static int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
const uint16_t *, const uint16_t *,
const uint16_t *, const uint16_t *,
const uint16_t *);
static void iwm_set_hw_address_8000(struct iwm_softc *,
struct iwm_nvm_data *,
const uint16_t *, const uint16_t *);
static int iwm_get_sku(const struct iwm_softc *, const uint16_t *,
const uint16_t *);
static int iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
static int iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
const uint16_t *);
static int iwm_get_n_hw_addrs(const struct iwm_softc *,
const uint16_t *);
static void iwm_set_radio_cfg(const struct iwm_softc *,
struct iwm_nvm_data *, uint32_t);
static int iwm_parse_nvm_sections(struct iwm_softc *,
struct iwm_nvm_section *);
static int iwm_nvm_init(struct iwm_softc *);
static int iwm_firmware_load_sect(struct iwm_softc *, uint32_t,
const uint8_t *, uint32_t);
static int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
const uint8_t *, uint32_t);
static int iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
static int iwm_load_cpu_sections_8000(struct iwm_softc *,
struct iwm_fw_sects *, int , int *);
static int iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
static int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
static int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
static int iwm_send_phy_cfg_cmd(struct iwm_softc *);
static int iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
enum iwm_ucode_type);
static int iwm_run_init_mvm_ucode(struct iwm_softc *, int);
static int iwm_rx_addbuf(struct iwm_softc *, int, int);
static int iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
static int iwm_mvm_get_signal_strength(struct iwm_softc *,
struct iwm_rx_phy_info *);
static void iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
struct iwm_rx_packet *,
struct iwm_rx_data *);
static int iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *);
static void iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
struct iwm_rx_data *);
static int iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
struct iwm_rx_packet *,
struct iwm_node *);
static void iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
struct iwm_rx_data *);
static void iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
#if 0
static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
uint16_t);
#endif
static const struct iwm_rate *
iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
struct ieee80211_frame *, struct iwm_tx_cmd *);
static int iwm_tx(struct iwm_softc *, struct mbuf *,
struct ieee80211_node *, int);
static int iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static int iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
struct iwm_mvm_add_sta_cmd_v7 *,
int *);
static int iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
int);
static int iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
static int iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
static int iwm_mvm_add_int_sta_common(struct iwm_softc *,
struct iwm_int_sta *,
const uint8_t *, uint16_t, uint16_t);
static int iwm_mvm_add_aux_sta(struct iwm_softc *);
static int iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
static int iwm_auth(struct ieee80211vap *, struct iwm_softc *);
static int iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
static int iwm_release(struct iwm_softc *, struct iwm_node *);
static struct ieee80211_node *
iwm_node_alloc(struct ieee80211vap *,
const uint8_t[IEEE80211_ADDR_LEN]);
static void iwm_setrates(struct iwm_softc *, struct iwm_node *);
static int iwm_media_change(struct ifnet *);
static int iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void iwm_endscan_cb(void *, int);
static void iwm_mvm_fill_sf_command(struct iwm_softc *,
struct iwm_sf_cfg_cmd *,
struct ieee80211_node *);
static int iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
static int iwm_send_bt_init_conf(struct iwm_softc *);
static int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
static void iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
static int iwm_init_hw(struct iwm_softc *);
static void iwm_init(struct iwm_softc *);
static void iwm_start(struct iwm_softc *);
static void iwm_stop(struct iwm_softc *);
static void iwm_watchdog(void *);
static void iwm_parent(struct ieee80211com *);
#ifdef IWM_DEBUG
static const char *
iwm_desc_lookup(uint32_t);
static void iwm_nic_error(struct iwm_softc *);
static void iwm_nic_umac_error(struct iwm_softc *);
#endif
static void iwm_notif_intr(struct iwm_softc *);
static void iwm_intr(void *);
static int iwm_attach(device_t);
static int iwm_is_valid_ether_addr(uint8_t *);
static void iwm_preinit(void *);
static int iwm_detach_local(struct iwm_softc *sc, int);
static void iwm_init_task(void *);
static void iwm_radiotap_attach(struct iwm_softc *);
static struct ieee80211vap *
iwm_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int,
enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void iwm_vap_delete(struct ieee80211vap *);
static void iwm_scan_start(struct ieee80211com *);
static void iwm_scan_end(struct ieee80211com *);
static void iwm_update_mcast(struct ieee80211com *);
static void iwm_set_channel(struct ieee80211com *);
static void iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
static void iwm_scan_mindwell(struct ieee80211_scan_state *);
static int iwm_detach(device_t);
/*
* Firmware parser.
*/
static int
iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
{
const struct iwm_fw_cscheme_list *l = (const void *)data;
if (dlen < sizeof(*l) ||
dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
return EINVAL;
/* we don't actually store anything for now, always use s/w crypto */
return 0;
}
static int
iwm_firmware_store_section(struct iwm_softc *sc,
enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
{
struct iwm_fw_sects *fws;
struct iwm_fw_onesect *fwone;
if (type >= IWM_UCODE_TYPE_MAX)
return EINVAL;
if (dlen < sizeof(uint32_t))
return EINVAL;
fws = &sc->sc_fw.fw_sects[type];
if (fws->fw_count >= IWM_UCODE_SECT_MAX)
return EINVAL;
fwone = &fws->fw_sect[fws->fw_count];
/* first 32bit are device load offset */
memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
/* rest is data */
fwone->fws_data = data + sizeof(uint32_t);
fwone->fws_len = dlen - sizeof(uint32_t);
fws->fw_count++;
fws->fw_totlen += fwone->fws_len;
return 0;
}
/* iwlwifi: iwl-drv.c */
struct iwm_tlv_calib_data {
uint32_t ucode_type;
struct iwm_tlv_calib_ctrl calib;
} __packed;
static int
iwm_set_default_calib(struct iwm_softc *sc, const void *data)
{
const struct iwm_tlv_calib_data *def_calib = data;
uint32_t ucode_type = le32toh(def_calib->ucode_type);
if (ucode_type >= IWM_UCODE_TYPE_MAX) {
device_printf(sc->sc_dev,
"Wrong ucode_type %u for default "
"calibration.\n", ucode_type);
return EINVAL;
}
sc->sc_default_calib[ucode_type].flow_trigger =
def_calib->calib.flow_trigger;
sc->sc_default_calib[ucode_type].event_trigger =
def_calib->calib.event_trigger;
return 0;
}
static void
iwm_fw_info_free(struct iwm_fw_info *fw)
{
firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
fw->fw_fp = NULL;
/* don't touch fw->fw_status */
memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
}
static int
iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
struct iwm_fw_info *fw = &sc->sc_fw;
const struct iwm_tlv_ucode_header *uhdr;
struct iwm_ucode_tlv tlv;
enum iwm_ucode_tlv_type tlv_type;
const struct firmware *fwp;
const uint8_t *data;
int error = 0;
size_t len;
if (fw->fw_status == IWM_FW_STATUS_DONE &&
ucode_type != IWM_UCODE_TYPE_INIT)
return 0;
while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
fw->fw_status = IWM_FW_STATUS_INPROGRESS;
if (fw->fw_fp != NULL)
iwm_fw_info_free(fw);
/*
* Load firmware into driver memory.
* fw_fp will be set.
*/
IWM_UNLOCK(sc);
fwp = firmware_get(sc->sc_fwname);
IWM_LOCK(sc);
if (fwp == NULL) {
device_printf(sc->sc_dev,
"could not read firmware %s (error %d)\n",
sc->sc_fwname, error);
goto out;
}
fw->fw_fp = fwp;
/* (Re-)Initialize default values. */
sc->sc_capaflags = 0;
sc->sc_capa_n_scan_channels = IWM_MAX_NUM_SCAN_CHANNELS;
memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
/*
* Parse firmware contents
*/
uhdr = (const void *)fw->fw_fp->data;
if (*(const uint32_t *)fw->fw_fp->data != 0
|| le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
device_printf(sc->sc_dev, "invalid firmware %s\n",
sc->sc_fwname);
error = EINVAL;
goto out;
}
snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
IWM_UCODE_MINOR(le32toh(uhdr->ver)),
IWM_UCODE_API(le32toh(uhdr->ver)));
data = uhdr->data;
len = fw->fw_fp->datasize - sizeof(*uhdr);
while (len >= sizeof(tlv)) {
size_t tlv_len;
const void *tlv_data;
memcpy(&tlv, data, sizeof(tlv));
tlv_len = le32toh(tlv.length);
tlv_type = le32toh(tlv.type);
len -= sizeof(tlv);
data += sizeof(tlv);
tlv_data = data;
if (len < tlv_len) {
device_printf(sc->sc_dev,
"firmware too short: %zu bytes\n",
len);
error = EINVAL;
goto parse_out;
}
switch ((int)tlv_type) {
case IWM_UCODE_TLV_PROBE_MAX_LEN:
if (tlv_len < sizeof(uint32_t)) {
device_printf(sc->sc_dev,
"%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
__func__,
(int) tlv_len);
error = EINVAL;
goto parse_out;
}
sc->sc_capa_max_probe_len
= le32toh(*(const uint32_t *)tlv_data);
/* limit it to something sensible */
if (sc->sc_capa_max_probe_len >
IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
"%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
"ridiculous\n", __func__);
error = EINVAL;
goto parse_out;
}
break;
case IWM_UCODE_TLV_PAN:
if (tlv_len) {
device_printf(sc->sc_dev,
"%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
__func__,
(int) tlv_len);
error = EINVAL;
goto parse_out;
}
sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
break;
case IWM_UCODE_TLV_FLAGS:
if (tlv_len < sizeof(uint32_t)) {
device_printf(sc->sc_dev,
"%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
__func__,
(int) tlv_len);
error = EINVAL;
goto parse_out;
}
/*
* Apparently there can be many flags, but Linux driver
* parses only the first one, and so do we.
*
* XXX: why does this override IWM_UCODE_TLV_PAN?
* Intentional or a bug? Observations from
* current firmware file:
* 1) TLV_PAN is parsed first
* 2) TLV_FLAGS contains TLV_FLAGS_PAN
* ==> this resets TLV_PAN to itself... hnnnk
*/
sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
break;
case IWM_UCODE_TLV_CSCHEME:
if ((error = iwm_store_cscheme(sc,
tlv_data, tlv_len)) != 0) {
device_printf(sc->sc_dev,
"%s: iwm_store_cscheme(): returned %d\n",
__func__,
error);
goto parse_out;
}
break;
case IWM_UCODE_TLV_NUM_OF_CPU: {
uint32_t num_cpu;
if (tlv_len != sizeof(uint32_t)) {
device_printf(sc->sc_dev,
"%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
__func__,
(int) tlv_len);
error = EINVAL;
goto parse_out;
}
num_cpu = le32toh(*(const uint32_t *)tlv_data);
if (num_cpu < 1 || num_cpu > 2) {
device_printf(sc->sc_dev,
"%s: Driver supports only 1 or 2 CPUs\n",
__func__);
error = EINVAL;
goto parse_out;
}
break;
}
case IWM_UCODE_TLV_SEC_RT:
if ((error = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
device_printf(sc->sc_dev,
"%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
__func__,
error);
goto parse_out;
}
break;
case IWM_UCODE_TLV_SEC_INIT:
if ((error = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
device_printf(sc->sc_dev,
"%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
__func__,
error);
goto parse_out;
}
break;
case IWM_UCODE_TLV_SEC_WOWLAN:
if ((error = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
device_printf(sc->sc_dev,
"%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
__func__,
error);
goto parse_out;
}
break;
case IWM_UCODE_TLV_DEF_CALIB:
if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
device_printf(sc->sc_dev,
"%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
__func__,
(int) tlv_len,
(int) sizeof(struct iwm_tlv_calib_data));
error = EINVAL;
goto parse_out;
}
if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
device_printf(sc->sc_dev,
"%s: iwm_set_default_calib() failed: %d\n",
__func__,
error);
goto parse_out;
}
break;
case IWM_UCODE_TLV_PHY_SKU:
if (tlv_len != sizeof(uint32_t)) {
error = EINVAL;
device_printf(sc->sc_dev,
"%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
__func__,
(int) tlv_len);
goto parse_out;
}
sc->sc_fw_phy_config =
le32toh(*(const uint32_t *)tlv_data);
break;
case IWM_UCODE_TLV_API_CHANGES_SET: {
const struct iwm_ucode_api *api;
if (tlv_len != sizeof(*api)) {
error = EINVAL;
goto parse_out;
}
api = (const struct iwm_ucode_api *)tlv_data;
/* Flags may exceed 32 bits in future firmware. */
if (le32toh(api->api_index) > 0) {
device_printf(sc->sc_dev,
"unsupported API index %d\n",
le32toh(api->api_index));
goto parse_out;
}
sc->sc_ucode_api = le32toh(api->api_flags);
break;
}
case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
const struct iwm_ucode_capa *capa;
int idx, i;
if (tlv_len != sizeof(*capa)) {
error = EINVAL;
goto parse_out;
}
capa = (const struct iwm_ucode_capa *)tlv_data;
idx = le32toh(capa->api_index);
if (idx > howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
device_printf(sc->sc_dev,
"unsupported API index %d\n", idx);
goto parse_out;
}
for (i = 0; i < 32; i++) {
if ((le32toh(capa->api_capa) & (1U << i)) == 0)
continue;
setbit(sc->sc_enabled_capa, i + (32 * idx));
}
break;
}
case 48: /* undocumented TLV */
case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
case IWM_UCODE_TLV_FW_GSCAN_CAPA:
/* ignore, not used by current driver */
break;
case IWM_UCODE_TLV_SEC_RT_USNIFFER:
if ((error = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
tlv_len)) != 0)
goto parse_out;
break;
case IWM_UCODE_TLV_N_SCAN_CHANNELS:
if (tlv_len != sizeof(uint32_t)) {
error = EINVAL;
goto parse_out;
}
sc->sc_capa_n_scan_channels =
le32toh(*(const uint32_t *)tlv_data);
break;
case IWM_UCODE_TLV_FW_VERSION:
if (tlv_len != sizeof(uint32_t) * 3) {
error = EINVAL;
goto parse_out;
}
snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
"%d.%d.%d",
le32toh(((const uint32_t *)tlv_data)[0]),
le32toh(((const uint32_t *)tlv_data)[1]),
le32toh(((const uint32_t *)tlv_data)[2]));
break;
default:
device_printf(sc->sc_dev,
"%s: unknown firmware section %d, abort\n",
__func__, tlv_type);
error = EINVAL;
goto parse_out;
}
len -= roundup(tlv_len, 4);
data += roundup(tlv_len, 4);
}
KASSERT(error == 0, ("unhandled error"));
parse_out:
if (error) {
device_printf(sc->sc_dev, "firmware parse error %d, "
"section type %d\n", error, tlv_type);
}
if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
device_printf(sc->sc_dev,
"device uses unsupported power ops\n");
error = ENOTSUP;
}
out:
if (error) {
fw->fw_status = IWM_FW_STATUS_NONE;
if (fw->fw_fp != NULL)
iwm_fw_info_free(fw);
} else
fw->fw_status = IWM_FW_STATUS_DONE;
wakeup(&sc->sc_fw);
return error;
}
/*
* DMA resource routines
*/
static void
iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
bus_size_t size, bus_size_t alignment)
{
int error;
dma->tag = NULL;
dma->map = NULL;
dma->size = size;
dma->vaddr = NULL;
error = bus_dma_tag_create(tag, alignment,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1, size, 0, NULL, NULL, &dma->tag);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
if (error != 0)
goto fail;
error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
if (error != 0) {
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
dma->vaddr = NULL;
goto fail;
}
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
return 0;
fail:
iwm_dma_contig_free(dma);
return error;
}
static void
iwm_dma_contig_free(struct iwm_dma_info *dma)
{
if (dma->vaddr != NULL) {
bus_dmamap_sync(dma->tag, dma->map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
dma->vaddr = NULL;
}
if (dma->tag != NULL) {
bus_dma_tag_destroy(dma->tag);
dma->tag = NULL;
}
}
/* fwmem is used to load firmware onto the card */
static int
iwm_alloc_fwmem(struct iwm_softc *sc)
{
/* Must be aligned on a 16-byte boundary. */
return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
sc->sc_fwdmasegsz, 16);
}
static void
iwm_free_fwmem(struct iwm_softc *sc)
{
iwm_dma_contig_free(&sc->fw_dma);
}
/* tx scheduler rings. not used? */
static int
iwm_alloc_sched(struct iwm_softc *sc)
{
/* TX scheduler rings must be aligned on a 1KB boundary. */
return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
}
static void
iwm_free_sched(struct iwm_softc *sc)
{
iwm_dma_contig_free(&sc->sched_dma);
}
/* keep-warm page is used internally by the card. see iwl-fh.h for more info */
static int
iwm_alloc_kw(struct iwm_softc *sc)
{
return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
}
static void
iwm_free_kw(struct iwm_softc *sc)
{
iwm_dma_contig_free(&sc->kw_dma);
}
/* interrupt cause table */
static int
iwm_alloc_ict(struct iwm_softc *sc)
{
return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
}
static void
iwm_free_ict(struct iwm_softc *sc)
{
iwm_dma_contig_free(&sc->ict_dma);
}
static int
iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
{
bus_size_t size;
int i, error;
ring->cur = 0;
/* Allocate RX descriptors (256-byte aligned). */
size = IWM_RX_RING_COUNT * sizeof(uint32_t);
error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate RX ring DMA memory\n");
goto fail;
}
ring->desc = ring->desc_dma.vaddr;
/* Allocate RX status area (16-byte aligned). */
error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
sizeof(*ring->stat), 16);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate RX status DMA memory\n");
goto fail;
}
ring->stat = ring->stat_dma.vaddr;
/* Create RX buffer DMA tag. */
error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not create RX buf DMA tag, error %d\n",
__func__, error);
goto fail;
}
/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not create RX buf DMA map, error %d\n",
__func__, error);
goto fail;
}
/*
* Allocate and map RX buffers.
*/
for (i = 0; i < IWM_RX_RING_COUNT; i++) {
struct iwm_rx_data *data = &ring->data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: could not create RX buf DMA map, error %d\n",
__func__, error);
goto fail;
}
data->m = NULL;
if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
goto fail;
}
}
return 0;
fail: iwm_free_rx_ring(sc, ring);
return error;
}
static void
iwm_disable_rx_dma(struct iwm_softc *sc)
{
/* XXX conditional nic locks are stupid */
/* XXX print out if we can't lock the NIC? */
if (iwm_nic_lock(sc)) {
/* XXX handle if RX stop doesn't finish? */
(void) iwm_pcie_rx_stop(sc);
iwm_nic_unlock(sc);
}
}
static void
iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
{
/* Reset the ring state */
ring->cur = 0;
/*
* The hw rx ring index in shared memory must also be cleared,
* otherwise the discrepancy can cause reprocessing chaos.
*/
memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
}
static void
iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
{
int i;
iwm_dma_contig_free(&ring->desc_dma);
iwm_dma_contig_free(&ring->stat_dma);
for (i = 0; i < IWM_RX_RING_COUNT; i++) {
struct iwm_rx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->map != NULL) {
bus_dmamap_destroy(ring->data_dmat, data->map);
data->map = NULL;
}
}
if (ring->spare_map != NULL) {
bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
ring->spare_map = NULL;
}
if (ring->data_dmat != NULL) {
bus_dma_tag_destroy(ring->data_dmat);
ring->data_dmat = NULL;
}
}
static int
iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
{
bus_addr_t paddr;
bus_size_t size;
size_t maxsize;
int nsegments;
int i, error;
ring->qid = qid;
ring->queued = 0;
ring->cur = 0;
/* Allocate TX descriptors (256-byte aligned). */
size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate TX ring DMA memory\n");
goto fail;
}
ring->desc = ring->desc_dma.vaddr;
/*
* We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
* to allocate commands space for other rings.
*/
if (qid > IWM_MVM_CMD_QUEUE)
return 0;
size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate TX cmd DMA memory\n");
goto fail;
}
ring->cmd = ring->cmd_dma.vaddr;
/* FW commands may require more mapped space than packets. */
if (qid == IWM_MVM_CMD_QUEUE) {
maxsize = IWM_RBUF_SIZE;
nsegments = 1;
} else {
maxsize = MCLBYTES;
nsegments = IWM_MAX_SCATTER - 2;
}
error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
goto fail;
}
paddr = ring->cmd_dma.paddr;
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
struct iwm_tx_data *data = &ring->data[i];
data->cmd_paddr = paddr;
data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
+ offsetof(struct iwm_tx_cmd, scratch);
paddr += sizeof(struct iwm_device_cmd);
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create TX buf DMA map\n");
goto fail;
}
}
KASSERT(paddr == ring->cmd_dma.paddr + size,
("invalid physical address"));
return 0;
fail: iwm_free_tx_ring(sc, ring);
return error;
}
static void
iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
{
int i;
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
struct iwm_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
/* Clear TX descriptors. */
memset(ring->desc, 0, ring->desc_dma.size);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
sc->qfullmsk &= ~(1 << ring->qid);
ring->queued = 0;
ring->cur = 0;
}
static void
iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
{
int i;
iwm_dma_contig_free(&ring->desc_dma);
iwm_dma_contig_free(&ring->cmd_dma);
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
struct iwm_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->map != NULL) {
bus_dmamap_destroy(ring->data_dmat, data->map);
data->map = NULL;
}
}
if (ring->data_dmat != NULL) {
bus_dma_tag_destroy(ring->data_dmat);
ring->data_dmat = NULL;
}
}
/*
* High-level hardware frobbing routines
*/
static void
iwm_enable_interrupts(struct iwm_softc *sc)
{
sc->sc_intmask = IWM_CSR_INI_SET_MASK;
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
}
static void
iwm_restore_interrupts(struct iwm_softc *sc)
{
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
}
static void
iwm_disable_interrupts(struct iwm_softc *sc)
{
/* disable interrupts */
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
/* acknowledge all interrupts */
IWM_WRITE(sc, IWM_CSR_INT, ~0);
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
}
static void
iwm_ict_reset(struct iwm_softc *sc)
{
iwm_disable_interrupts(sc);
/* Reset ICT table. */
memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
sc->ict_cur = 0;
/* Set physical address of ICT table (4KB aligned). */
IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
IWM_CSR_DRAM_INT_TBL_ENABLE
| IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
| IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
| sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
/* Switch to ICT interrupt mode in driver. */
sc->sc_flags |= IWM_FLAG_USE_ICT;
/* Re-enable interrupts. */
IWM_WRITE(sc, IWM_CSR_INT, ~0);
iwm_enable_interrupts(sc);
}
/* iwlwifi pcie/trans.c */
/*
* Since this .. hard-resets things, it's time to actually
* mark the first vap (if any) as having no mac context.
* It's annoying, but since the driver is potentially being
* stop/start'ed whilst active (thanks openbsd port!) we
* have to correctly track this.
*/
static void
iwm_stop_device(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
int chnl, qid;
uint32_t mask = 0;
/* tell the device to stop sending interrupts */
iwm_disable_interrupts(sc);
/*
* FreeBSD-local: mark the first vap as not-uploaded,
* so the next transition through auth/assoc
* will correctly populate the MAC context.
*/
if (vap) {
struct iwm_vap *iv = IWM_VAP(vap);
iv->is_uploaded = 0;
}
/* device going down, Stop using ICT table */
sc->sc_flags &= ~IWM_FLAG_USE_ICT;
/* stop tx and rx. tx and rx bits, as usual, are from if_iwn */
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
if (iwm_nic_lock(sc)) {
/* Stop each Tx DMA channel */
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
IWM_WRITE(sc,
IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
}
/* Wait for DMA channels to be idle */
if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
5000)) {
device_printf(sc->sc_dev,
"Failing on timeout while stopping DMA channel: [0x%08x]\n",
IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
}
iwm_nic_unlock(sc);
}
iwm_disable_rx_dma(sc);
/* Stop RX ring. */
iwm_reset_rx_ring(sc, &sc->rxq);
/* Reset all TX rings. */
for (qid = 0; qid < nitems(sc->txq); qid++)
iwm_reset_tx_ring(sc, &sc->txq[qid]);
/*
* Power-down device's busmaster DMA clocks
*/
iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
DELAY(5);
/* Make sure (redundant) we've released our request to stay awake */
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/* Stop the device, and put it in low power state */
iwm_apm_stop(sc);
/* Upon stop, the APM issues an interrupt if HW RF kill is set.
* Clean again the interrupt here
*/
iwm_disable_interrupts(sc);
/* stop and reset the on-board processor */
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
/*
* Even if we stop the HW, we still want the RF kill
* interrupt
*/
iwm_enable_rfkill_int(sc);
iwm_check_rfkill(sc);
}
/* iwlwifi: mvm/ops.c */
static void
iwm_mvm_nic_config(struct iwm_softc *sc)
{
uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
uint32_t reg_val = 0;
radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
IWM_FW_PHY_CFG_RADIO_TYPE_POS;
radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
IWM_FW_PHY_CFG_RADIO_STEP_POS;
radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
IWM_FW_PHY_CFG_RADIO_DASH_POS;
/* SKU control */
reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
/* radio configuration */
reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
radio_cfg_step, radio_cfg_dash);
/*
* W/A : NIC is stuck in a reset state after Early PCIe power off
* (PCIe power is lost before PERST# is asserted), causing ME FW
* to lose ownership and not being able to obtain it back.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
}
}
static int
iwm_nic_rx_init(struct iwm_softc *sc)
{
if (!iwm_nic_lock(sc))
return EBUSY;
/*
* Initialize RX ring. This is from the iwn driver.
*/
memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
/* stop DMA */
iwm_disable_rx_dma(sc);
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
/* Set physical address of RX ring (256-byte aligned). */
IWM_WRITE(sc,
IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
/* Set physical address of RX status (16-byte aligned). */
IWM_WRITE(sc,
IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
/* Enable RX. */
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */
IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK |
(IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |
IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
/* W/A for interrupt coalescing bug in 7260 and 3160 */
if (sc->host_interrupt_operation_mode)
IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
/*
* Thus sayeth el jefe (iwlwifi) via a comment:
*
* This value should initially be 0 (before preparing any
* RBs), should be 8 after preparing the first 8 RBs (for example)
*/
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
iwm_nic_unlock(sc);
return 0;
}
static int
iwm_nic_tx_init(struct iwm_softc *sc)
{
int qid;
if (!iwm_nic_lock(sc))
return EBUSY;
/* Deactivate TX scheduler. */
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
/* Set physical address of "keep warm" page (16-byte aligned). */
IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
/* Initialize TX rings. */
for (qid = 0; qid < nitems(sc->txq); qid++) {
struct iwm_tx_ring *txq = &sc->txq[qid];
/* Set physical address of TX ring (256-byte aligned). */
IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
txq->desc_dma.paddr >> 8);
IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
"%s: loading ring %d descriptors (%p) at %lx\n",
__func__,
qid, txq->desc,
(unsigned long) (txq->desc_dma.paddr >> 8));
}
iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
iwm_nic_unlock(sc);
return 0;
}
static int
iwm_nic_init(struct iwm_softc *sc)
{
int error;
iwm_apm_init(sc);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
iwm_set_pwr(sc);
iwm_mvm_nic_config(sc);
if ((error = iwm_nic_rx_init(sc)) != 0)
return error;
/*
* Ditto for TX, from iwn
*/
if ((error = iwm_nic_tx_init(sc)) != 0)
return error;
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"%s: shadow registers enabled\n", __func__);
IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
return 0;
}
const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
IWM_MVM_TX_FIFO_VO,
IWM_MVM_TX_FIFO_VI,
IWM_MVM_TX_FIFO_BE,
IWM_MVM_TX_FIFO_BK,
};
static int
iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
{
if (!iwm_nic_lock(sc)) {
device_printf(sc->sc_dev,
"%s: cannot enable txq %d\n",
__func__,
qid);
return EBUSY;
}
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
if (qid == IWM_MVM_CMD_QUEUE) {
/* unactivate before configuration */
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
(0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
| (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
/* Set scheduler window size and frame limit. */
iwm_write_mem32(sc,
sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
sizeof(uint32_t),
((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
(1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
(fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
(1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
IWM_SCD_QUEUE_STTS_REG_MSK);
} else {
struct iwm_scd_txq_cfg_cmd cmd;
int error;
iwm_nic_unlock(sc);
memset(&cmd, 0, sizeof(cmd));
cmd.scd_queue = qid;
cmd.enable = 1;
cmd.sta_id = sta_id;
cmd.tx_fifo = fifo;
cmd.aggregate = 0;
cmd.window = IWM_FRAME_LIMIT;
error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
sizeof(cmd), &cmd);
if (error) {
device_printf(sc->sc_dev,
"cannot enable txq %d\n", qid);
return error;
}
if (!iwm_nic_lock(sc))
return EBUSY;
}
iwm_write_prph(sc, IWM_SCD_EN_CTRL,
iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
iwm_nic_unlock(sc);
IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
__func__, qid, fifo);
return 0;
}
static int
iwm_post_alive(struct iwm_softc *sc)
{
int nwords;
int error, chnl;
uint32_t base;
if (!iwm_nic_lock(sc))
return EBUSY;
base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
if (sc->sched_base != base) {
device_printf(sc->sc_dev,
"%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
__func__, sc->sched_base, base);
}
iwm_ict_reset(sc);
/* Clear TX scheduler state in SRAM. */
nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
/ sizeof(uint32_t);
error = iwm_write_mem(sc,
sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
NULL, nwords);
if (error)
goto out;
/* Set physical address of TX scheduler rings (1KB aligned). */
iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
iwm_nic_unlock(sc);
/* enable command channel */
error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
if (error)
return error;
if (!iwm_nic_lock(sc))
return EBUSY;
iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
/* Enable DMA channels. */
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
}
IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
/* Enable L1-Active */
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
}
out:
iwm_nic_unlock(sc);
return error;
}
/*
* NVM read access and content parsing. We do not support
* external NVM or writing NVM.
* iwlwifi/mvm/nvm.c
*/
/* list of NVM sections we are allowed/need to read */
const int nvm_to_read[] = {
IWM_NVM_SECTION_TYPE_HW,
IWM_NVM_SECTION_TYPE_SW,
IWM_NVM_SECTION_TYPE_REGULATORY,
IWM_NVM_SECTION_TYPE_CALIBRATION,
IWM_NVM_SECTION_TYPE_PRODUCTION,
IWM_NVM_SECTION_TYPE_HW_8000,
IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
IWM_NVM_SECTION_TYPE_PHY_SKU,
};
/* Default NVM size to read */
#define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
#define IWM_MAX_NVM_SECTION_SIZE 8192
#define IWM_NVM_WRITE_OPCODE 1
#define IWM_NVM_READ_OPCODE 0
/* load nvm chunk response */
#define IWM_READ_NVM_CHUNK_SUCCEED 0
#define IWM_READ_NVM_CHUNK_INVALID_ADDRESS 1
static int
iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
{
offset = 0;
struct iwm_nvm_access_cmd nvm_access_cmd = {
.offset = htole16(offset),
.length = htole16(length),
.type = htole16(section),
.op_code = IWM_NVM_READ_OPCODE,
};
struct iwm_nvm_access_resp *nvm_resp;
struct iwm_rx_packet *pkt;
struct iwm_host_cmd cmd = {
.id = IWM_NVM_ACCESS_CMD,
.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
IWM_CMD_SEND_IN_RFKILL,
.data = { &nvm_access_cmd, },
};
int ret, offset_read;
size_t bytes_read;
uint8_t *resp_data;
cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
ret = iwm_send_cmd(sc, &cmd);
if (ret) {
device_printf(sc->sc_dev,
"Could not send NVM_ACCESS command (error=%d)\n", ret);
return ret;
}
pkt = cmd.resp_pkt;
if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
device_printf(sc->sc_dev,
"Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
pkt->hdr.flags);
ret = EIO;
goto exit;
}
/* Extract NVM response */
nvm_resp = (void *)pkt->data;
ret = le16toh(nvm_resp->status);
bytes_read = le16toh(nvm_resp->length);
offset_read = le16toh(nvm_resp->offset);
resp_data = nvm_resp->data;
if (ret) {
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"NVM access command failed with status %d\n", ret);
ret = EINVAL;
goto exit;
}
if (offset_read != offset) {
device_printf(sc->sc_dev,
"NVM ACCESS response with invalid offset %d\n",
offset_read);
ret = EINVAL;
goto exit;
}
if (bytes_read > length) {
device_printf(sc->sc_dev,
"NVM ACCESS response with too much data "
"(%d bytes requested, %zd bytes received)\n",
length, bytes_read);
ret = EINVAL;
goto exit;
}
memcpy(data + offset, resp_data, bytes_read);
*len = bytes_read;
exit:
iwm_free_resp(sc, &cmd);
return ret;
}
/*
* Reads an NVM section completely.
* NICs prior to 7000 family don't have a real NVM, but just read
* section 0 which is the EEPROM. Because the EEPROM reading is unlimited
* by uCode, we need to manually check in this case that we don't
* overflow and try to read more than the EEPROM size.
* For 7000 family NICs, we supply the maximal size we can read, and
* the uCode fills the response with as much data as we can,
* without overflowing, so no check is needed.
*/
static int
iwm_nvm_read_section(struct iwm_softc *sc,
uint16_t section, uint8_t *data, uint16_t *len, size_t max_len)
{
uint16_t chunklen, seglen;
int error = 0;
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"reading NVM section %d\n", section);
chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
*len = 0;
/* Read NVM chunks until exhausted (reading less than requested) */
while (seglen == chunklen && *len < max_len) {
error = iwm_nvm_read_chunk(sc,
section, *len, chunklen, data, &seglen);
if (error) {
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"Cannot read from NVM section "
"%d at offset %d\n", section, *len);
return error;
}
*len += seglen;
}
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"NVM section %d read completed (%d bytes, error=%d)\n",
section, *len, error);
return error;
}
/*
* BEGIN IWM_NVM_PARSE
*/
/* iwlwifi/iwl-nvm-parse.c */
/* NVM offsets (in words) definitions */
enum iwm_nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
IWM_HW_ADDR = 0x15,
/* NVM SW-Section offset (in words) definitions */
IWM_NVM_SW_SECTION = 0x1C0,
IWM_NVM_VERSION = 0,
IWM_RADIO_CFG = 1,
IWM_SKU = 2,
IWM_N_HW_ADDRS = 3,
IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
/* NVM calibration section offset (in words) definitions */
IWM_NVM_CALIB_SECTION = 0x2B8,
IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
};
enum iwm_8000_nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
IWM_HW_ADDR0_WFPM_8000 = 0x12,
IWM_HW_ADDR1_WFPM_8000 = 0x16,
IWM_HW_ADDR0_PCIE_8000 = 0x8A,
IWM_HW_ADDR1_PCIE_8000 = 0x8E,
IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
/* NVM SW-Section offset (in words) definitions */
IWM_NVM_SW_SECTION_8000 = 0x1C0,
IWM_NVM_VERSION_8000 = 0,
IWM_RADIO_CFG_8000 = 0,
IWM_SKU_8000 = 2,
IWM_N_HW_ADDRS_8000 = 3,
/* NVM REGULATORY -Section offset (in words) definitions */
IWM_NVM_CHANNELS_8000 = 0,
IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
IWM_NVM_LAR_OFFSET_8000 = 0x507,
IWM_NVM_LAR_ENABLED_8000 = 0x7,
/* NVM calibration section offset (in words) definitions */
IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
};
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
IWM_NVM_SKU_CAP_BAND_24GHZ = (1 << 0),
IWM_NVM_SKU_CAP_BAND_52GHZ = (1 << 1),
IWM_NVM_SKU_CAP_11N_ENABLE = (1 << 2),
IWM_NVM_SKU_CAP_11AC_ENABLE = (1 << 3),
};
/* radio config bits (actual values from NVM definition) */
#define IWM_NVM_RF_CFG_DASH_MSK(x) (x & 0x3) /* bits 0-1 */
#define IWM_NVM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */
#define IWM_NVM_RF_CFG_TYPE_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */
#define IWM_NVM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */
#define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */
#define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
#define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x) (x & 0xF)
#define IWM_NVM_RF_CFG_DASH_MSK_8000(x) ((x >> 4) & 0xF)
#define IWM_NVM_RF_CFG_STEP_MSK_8000(x) ((x >> 8) & 0xF)
#define IWM_NVM_RF_CFG_TYPE_MSK_8000(x) ((x >> 12) & 0xFFF)
#define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x) ((x >> 24) & 0xF)
#define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x) ((x >> 28) & 0xF)
#define DEFAULT_MAX_TX_POWER 16
/**
* enum iwm_nvm_channel_flags - channel flags in NVM
* @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
* @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
* @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
* @IWM_NVM_CHANNEL_RADAR: radar detection required
* XXX cannot find this (DFS) flag in iwl-nvm-parse.c
* @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
* @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
* @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
* @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
* @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
*/
enum iwm_nvm_channel_flags {
IWM_NVM_CHANNEL_VALID = (1 << 0),
IWM_NVM_CHANNEL_IBSS = (1 << 1),
IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
IWM_NVM_CHANNEL_RADAR = (1 << 4),
IWM_NVM_CHANNEL_DFS = (1 << 7),
IWM_NVM_CHANNEL_WIDE = (1 << 8),
IWM_NVM_CHANNEL_40MHZ = (1 << 9),
IWM_NVM_CHANNEL_80MHZ = (1 << 10),
IWM_NVM_CHANNEL_160MHZ = (1 << 11),
};
/*
* Translate EEPROM flags to net80211.
*/
static uint32_t
iwm_eeprom_channel_flags(uint16_t ch_flags)
{
uint32_t nflags;
nflags = 0;
if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
nflags |= IEEE80211_CHAN_PASSIVE;
if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
nflags |= IEEE80211_CHAN_NOADHOC;
if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
nflags |= IEEE80211_CHAN_DFS;
/* Just in case. */
nflags |= IEEE80211_CHAN_NOADHOC;
}
return (nflags);
}
static void
iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
int maxchans, int *nchans, int ch_idx, size_t ch_num,
const uint8_t bands[])
{
const uint16_t * const nvm_ch_flags = sc->sc_nvm.nvm_ch_flags;
uint32_t nflags;
uint16_t ch_flags;
uint8_t ieee;
int error;
for (; ch_idx < ch_num; ch_idx++) {
ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
ieee = iwm_nvm_channels[ch_idx];
else
ieee = iwm_nvm_channels_8000[ch_idx];
if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
"Ch. %d Flags %x [%sGHz] - No traffic\n",
ieee, ch_flags,
(ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
"5.2" : "2.4");
continue;
}
nflags = iwm_eeprom_channel_flags(ch_flags);
error = ieee80211_add_channel(chans, maxchans, nchans,
ieee, 0, 0, nflags, bands);
if (error != 0)
break;
IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
"Ch. %d Flags %x [%sGHz] - Added\n",
ieee, ch_flags,
(ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
"5.2" : "2.4");
}
}
static void
iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
struct ieee80211_channel chans[])
{
struct iwm_softc *sc = ic->ic_softc;
struct iwm_nvm_data *data = &sc->sc_nvm;
uint8_t bands[IEEE80211_MODE_BYTES];
size_t ch_num;
memset(bands, 0, sizeof(bands));
/* 1-13: 11b/g channels. */
setbit(bands, IEEE80211_MODE_11B);
setbit(bands, IEEE80211_MODE_11G);
iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
IWM_NUM_2GHZ_CHANNELS - 1, bands);
/* 14: 11b channel only. */
clrbit(bands, IEEE80211_MODE_11G);
iwm_add_channel_band(sc, chans, maxchans, nchans,
IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
if (data->sku_cap_band_52GHz_enable) {
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
ch_num = nitems(iwm_nvm_channels);
else
ch_num = nitems(iwm_nvm_channels_8000);
memset(bands, 0, sizeof(bands));
setbit(bands, IEEE80211_MODE_11A);
iwm_add_channel_band(sc, chans, maxchans, nchans,
IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
}
}
static void
iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
const uint16_t *mac_override, const uint16_t *nvm_hw)
{
const uint8_t *hw_addr;
if (mac_override) {
static const uint8_t reserved_mac[] = {
0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
};
hw_addr = (const uint8_t *)(mac_override +
IWM_MAC_ADDRESS_OVERRIDE_8000);
/*
* Store the MAC address from MAO section.
* No byte swapping is required in MAO section
*/
IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
/*
* Force the use of the OTP MAC address in case of reserved MAC
* address in the NVM, or if address is given but invalid.
*/
if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
!IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
iwm_is_valid_ether_addr(data->hw_addr) &&
!IEEE80211_IS_MULTICAST(data->hw_addr))
return;
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"%s: mac address from nvm override section invalid\n",
__func__);
}
if (nvm_hw) {
/* read the mac address from WFMP registers */
uint32_t mac_addr0 =
htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
uint32_t mac_addr1 =
htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
hw_addr = (const uint8_t *)&mac_addr0;
data->hw_addr[0] = hw_addr[3];
data->hw_addr[1] = hw_addr[2];
data->hw_addr[2] = hw_addr[1];
data->hw_addr[3] = hw_addr[0];
hw_addr = (const uint8_t *)&mac_addr1;
data->hw_addr[4] = hw_addr[1];
data->hw_addr[5] = hw_addr[0];
return;
}
device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
memset(data->hw_addr, 0, sizeof(data->hw_addr));
}
static int
iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
const uint16_t *phy_sku)
{
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + IWM_SKU);
return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
}
static int
iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
{
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
else
return le32_to_cpup((const uint32_t *)(nvm_sw +
IWM_NVM_VERSION_8000));
}
static int
iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
const uint16_t *phy_sku)
{
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
}
static int
iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
{
int n_hw_addr;
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
return n_hw_addr & IWM_N_HW_ADDR_MASK;
}
static void
iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
uint32_t radio_cfg)
{
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
return;
}
/* set the radio configuration for family 8000 */
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
}
static int
iwm_parse_nvm_data(struct iwm_softc *sc,
const uint16_t *nvm_hw, const uint16_t *nvm_sw,
const uint16_t *nvm_calib, const uint16_t *mac_override,
const uint16_t *phy_sku, const uint16_t *regulatory)
{
struct iwm_nvm_data *data = &sc->sc_nvm;
uint8_t hw_addr[IEEE80211_ADDR_LEN];
uint32_t sku, radio_cfg;
data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
iwm_set_radio_cfg(sc, data, radio_cfg);
sku = iwm_get_sku(sc, nvm_sw, phy_sku);
data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
data->sku_cap_11n_enable = 0;
data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
/* The byte order is little endian 16 bit, meaning 214365 */
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
} else {
iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
}
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
IWM_NUM_CHANNELS * sizeof(uint16_t));
} else {
memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
}
data->calib_version = 255; /* TODO:
this value will prevent some checks from
failing, we need to check if this
field is still needed, and if it does,
where is it in the NVM */
return 0;
}
/*
* END NVM PARSE
*/
static int
iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
{
const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
/* Checking for required sections */
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
!sections[IWM_NVM_SECTION_TYPE_HW].data) {
device_printf(sc->sc_dev,
"Can't parse empty OTP/NVM sections\n");
return ENOENT;
}
hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
} else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
/* SW and REGULATORY sections are mandatory */
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
!sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
device_printf(sc->sc_dev,
"Can't parse empty OTP/NVM sections\n");
return ENOENT;
}
/* MAC_OVERRIDE or at least HW section must exist */
if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
!sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
device_printf(sc->sc_dev,
"Can't parse mac_address, empty sections\n");
return ENOENT;
}
/* PHY_SKU section is mandatory in B0 */
if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
device_printf(sc->sc_dev,
"Can't parse phy_sku in B0, empty sections\n");
return ENOENT;
}
hw = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
} else {
panic("unknown device family %d\n", sc->sc_device_family);
}
sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
calib = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
regulatory = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
mac_override = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
phy_sku, regulatory);
}
static int
iwm_nvm_init(struct iwm_softc *sc)
{
struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
int i, section, error;
uint16_t len;
uint8_t *buf;
const size_t bufsz = IWM_MAX_NVM_SECTION_SIZE;
memset(nvm_sections, 0 , sizeof(nvm_sections));
buf = malloc(bufsz, M_DEVBUF, M_NOWAIT);
if (buf == NULL)
return ENOMEM;
for (i = 0; i < nitems(nvm_to_read); i++) {
section = nvm_to_read[i];
KASSERT(section <= nitems(nvm_sections),
("too many sections"));
error = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
if (error) {
error = 0;
continue;
}
nvm_sections[section].data = malloc(len, M_DEVBUF, M_NOWAIT);
if (nvm_sections[section].data == NULL) {
error = ENOMEM;
break;
}
memcpy(nvm_sections[section].data, buf, len);
nvm_sections[section].length = len;
}
free(buf, M_DEVBUF);
if (error == 0)
error = iwm_parse_nvm_sections(sc, nvm_sections);
for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
if (nvm_sections[i].data != NULL)
free(nvm_sections[i].data, M_DEVBUF);
}
return error;
}
/*
* Firmware loading gunk. This is kind of a weird hybrid between the
* iwn driver and the Linux iwlwifi driver.
*/
static int
iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
const uint8_t *section, uint32_t byte_cnt)
{
int error = EINVAL;
uint32_t chunk_sz, offset;
chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
uint32_t addr, len;
const uint8_t *data;
addr = dst_addr + offset;
len = MIN(chunk_sz, byte_cnt - offset);
data = section + offset;
error = iwm_firmware_load_chunk(sc, addr, data, len);
if (error)
break;
}
return error;
}
static int
iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
const uint8_t *chunk, uint32_t byte_cnt)
{
struct iwm_dma_info *dma = &sc->fw_dma;
int error;
/* Copy firmware chunk into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, chunk, byte_cnt);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
dst_addr <= IWM_FW_MEM_EXTENDED_END) {
iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
}
sc->sc_fw_chunk_done = 0;
if (!iwm_nic_lock(sc))
return EBUSY;
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
dst_addr);
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
(iwm_get_dma_hi_addr(dma->paddr)
<< IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
iwm_nic_unlock(sc);
/* wait 1s for this segment to load */
while (!sc->sc_fw_chunk_done)
if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
break;
if (!sc->sc_fw_chunk_done) {
device_printf(sc->sc_dev,
"fw chunk addr 0x%x len %d failed to load\n",
dst_addr, byte_cnt);
}
if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
dst_addr <= IWM_FW_MEM_EXTENDED_END && iwm_nic_lock(sc)) {
iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
iwm_nic_unlock(sc);
}
return error;
}
int
iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
int cpu, int *first_ucode_section)
{
int shift_param;
int i, error = 0, sec_num = 0x1;
uint32_t val, last_read_idx = 0;
const void *data;
uint32_t dlen;
uint32_t offset;
if (cpu == 1) {
shift_param = 0;
*first_ucode_section = 0;
} else {
shift_param = 16;
(*first_ucode_section)++;
}
for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
last_read_idx = i;
data = fws->fw_sect[i].fws_data;
dlen = fws->fw_sect[i].fws_len;
offset = fws->fw_sect[i].fws_devoff;
/*
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
* CPU1 to CPU2.
* PAGING_SEPARATOR_SECTION delimiter - separate between
* CPU2 non paged to CPU2 paging sec.
*/
if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
offset == IWM_PAGING_SEPARATOR_SECTION)
break;
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"LOAD FIRMWARE chunk %d offset 0x%x len %d for cpu %d\n",
i, offset, dlen, cpu);
if (dlen > sc->sc_fwdmasegsz) {
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"chunk %d too large (%d bytes)\n", i, dlen);
error = EFBIG;
} else {
error = iwm_firmware_load_sect(sc, offset, data, dlen);
}
if (error) {
device_printf(sc->sc_dev,
"could not load firmware chunk %d (error %d)\n",
i, error);
return error;
}
/* Notify the ucode of the loaded section number and status */
if (iwm_nic_lock(sc)) {
val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
val = val | (sec_num << shift_param);
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
sec_num = (sec_num << 1) | 0x1;
iwm_nic_unlock(sc);
/*
* The firmware won't load correctly without this delay.
*/
DELAY(8000);
}
}
*first_ucode_section = last_read_idx;
if (iwm_nic_lock(sc)) {
if (cpu == 1)
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
else
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
iwm_nic_unlock(sc);
}
return 0;
}
int
iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
struct iwm_fw_sects *fws;
int error = 0;
int first_ucode_section;
IWM_DPRINTF(sc, IWM_DEBUG_RESET, "loading ucode type %d\n",
ucode_type);
fws = &sc->sc_fw.fw_sects[ucode_type];
/* configure the ucode to be ready to get the secured image */
/* release CPU reset */
iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT);
/* load to FW the binary Secured sections of CPU1 */
error = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
if (error)
return error;
/* load to FW the binary sections of CPU2 */
return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
}
static int
iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
struct iwm_fw_sects *fws;
int error, i;
const void *data;
uint32_t dlen;
uint32_t offset;
sc->sc_uc.uc_intr = 0;
fws = &sc->sc_fw.fw_sects[ucode_type];
for (i = 0; i < fws->fw_count; i++) {
data = fws->fw_sect[i].fws_data;
dlen = fws->fw_sect[i].fws_len;
offset = fws->fw_sect[i].fws_devoff;
IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
"LOAD FIRMWARE type %d offset %u len %d\n",
ucode_type, offset, dlen);
if (dlen > sc->sc_fwdmasegsz) {
IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
"chunk %d too large (%d bytes)\n", i, dlen);
error = EFBIG;
} else {
error = iwm_firmware_load_sect(sc, offset, data, dlen);
}
if (error) {
device_printf(sc->sc_dev,
"could not load firmware chunk %u of %u "
"(error=%d)\n", i, fws->fw_count, error);
return error;
}
}
IWM_WRITE(sc, IWM_CSR_RESET, 0);
return 0;
}
static int
iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
int error, w;
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
error = iwm_load_firmware_8000(sc, ucode_type);
else
error = iwm_load_firmware_7000(sc, ucode_type);
if (error)
return error;
/* wait for the firmware to load */
for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
}
if (error || !sc->sc_uc.uc_ok) {
device_printf(sc->sc_dev, "could not load firmware\n");
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
device_printf(sc->sc_dev, "cpu1 status: 0x%x\n",
iwm_read_prph(sc, IWM_SB_CPU_1_STATUS));
device_printf(sc->sc_dev, "cpu2 status: 0x%x\n",
iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
}
}
/*
* Give the firmware some time to initialize.
* Accessing it too early causes errors.
*/
msleep(&w, &sc->sc_mtx, 0, "iwmfwinit", hz);
return error;
}
/* iwlwifi: pcie/trans.c */
static int
iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
int error;
IWM_WRITE(sc, IWM_CSR_INT, ~0);
if ((error = iwm_nic_init(sc)) != 0) {
device_printf(sc->sc_dev, "unable to init nic\n");
return error;
}
/* make sure rfkill handshake bits are cleared */
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
/* clear (again), then enable host interrupts */
IWM_WRITE(sc, IWM_CSR_INT, ~0);
iwm_enable_interrupts(sc);
/* really make sure rfkill handshake bits are cleared */
/* maybe we should write a few times more? just to make sure */
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
/* Load the given image to the HW */
return iwm_load_firmware(sc, ucode_type);
}
static int
iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
{
struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
.valid = htole32(valid_tx_ant),
};
return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
}
/* iwlwifi: mvm/fw.c */
static int
iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
{
struct iwm_phy_cfg_cmd phy_cfg_cmd;
enum iwm_ucode_type ucode_type = sc->sc_uc_current;
/* Set parameters */
phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
phy_cfg_cmd.calib_control.event_trigger =
sc->sc_default_calib[ucode_type].event_trigger;
phy_cfg_cmd.calib_control.flow_trigger =
sc->sc_default_calib[ucode_type].flow_trigger;
IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
"Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
sizeof(phy_cfg_cmd), &phy_cfg_cmd);
}
static int
iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
enum iwm_ucode_type ucode_type)
{
enum iwm_ucode_type old_type = sc->sc_uc_current;
int error;
if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
error);
return error;
}
sc->sc_uc_current = ucode_type;
error = iwm_start_fw(sc, ucode_type);
if (error) {
device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
sc->sc_uc_current = old_type;
return error;
}
error = iwm_post_alive(sc);
if (error) {
device_printf(sc->sc_dev, "iwm_fw_alive: failed %d\n", error);
}
return error;
}
/*
* mvm misc bits
*/
/*
* follows iwlwifi/fw.c
*/
static int
iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
{
int error;
/* do not operate with rfkill switch turned on */
if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
device_printf(sc->sc_dev,
"radio is disabled by hardware switch\n");
return EPERM;
}
sc->sc_init_complete = 0;
if ((error = iwm_mvm_load_ucode_wait_alive(sc,
IWM_UCODE_TYPE_INIT)) != 0) {
device_printf(sc->sc_dev, "failed to load init firmware\n");
return error;
}
if (justnvm) {
if ((error = iwm_nvm_init(sc)) != 0) {
device_printf(sc->sc_dev, "failed to read nvm\n");
return error;
}
IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
return 0;
}
if ((error = iwm_send_bt_init_conf(sc)) != 0) {
device_printf(sc->sc_dev,
"failed to send bt coex configuration: %d\n", error);
return error;
}
/* Init Smart FIFO. */
error = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
if (error != 0)
return error;
/* Send TX valid antennas before triggering calibrations */
if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
device_printf(sc->sc_dev,
"failed to send antennas before calibration: %d\n", error);
return error;
}
/*
* Send phy configurations command to init uCode
* to start the 16.0 uCode init image internal calibrations.
*/
if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
device_printf(sc->sc_dev,
"%s: failed to run internal calibration: %d\n",
__func__, error);
return error;
}
/*
* Nothing to do but wait for the init complete notification
* from the firmware
*/
while (!sc->sc_init_complete) {
error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
0, "iwminit", 2*hz);
if (error) {
device_printf(sc->sc_dev, "init complete failed: %d\n",
sc->sc_init_complete);
break;
}
}
IWM_DPRINTF(sc, IWM_DEBUG_RESET, "init %scomplete\n",
sc->sc_init_complete ? "" : "not ");
return error;
}
/*
* receive side
*/
/* (re)stock rx ring, called at init-time and at runtime */
static int
iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
{
struct iwm_rx_ring *ring = &sc->rxq;
struct iwm_rx_data *data = &ring->data[idx];
struct mbuf *m;
bus_dmamap_t dmamap = NULL;
bus_dma_segment_t seg;
int nsegs, error;
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
if (m == NULL)
return ENOBUFS;
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
&seg, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: can't map mbuf, error %d\n", __func__, error);
goto fail;
}
if (data->m != NULL)
bus_dmamap_unload(ring->data_dmat, data->map);
/* Swap ring->spare_map with data->map */
dmamap = data->map;
data->map = ring->spare_map;
ring->spare_map = dmamap;
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
data->m = m;
/* Update RX descriptor. */
KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
ring->desc[idx] = htole32(seg.ds_addr >> 8);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
return 0;
fail:
m_freem(m);
return error;
}
/* iwlwifi: mvm/rx.c */
#define IWM_RSSI_OFFSET 50
static int
iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
{
int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
uint32_t agc_a, agc_b;
uint32_t val;
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
/*
* dBm = rssi dB - agc dB - constant.
* Higher AGC (higher radio gain) means lower signal.
*/
rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
IWM_DPRINTF(sc, IWM_DEBUG_RECV,
"Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
return max_rssi_dbm;
}
/* iwlwifi: mvm/rx.c */
/*
* iwm_mvm_get_signal_strength - use new rx PHY INFO API
* values are reported by the fw as positive values - need to negate
* to obtain their dBM. Account for missing antennas by replacing 0
* values by -256dBm: practically 0 power and a non-feasible 8 bit value.
*/
static int
iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
{
int energy_a, energy_b, energy_c, max_energy;
uint32_t val;
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
IWM_RX_INFO_ENERGY_ANT_A_POS;
energy_a = energy_a ? -energy_a : -256;
energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
IWM_RX_INFO_ENERGY_ANT_B_POS;
energy_b = energy_b ? -energy_b : -256;
energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
IWM_RX_INFO_ENERGY_ANT_C_POS;
energy_c = energy_c ? -energy_c : -256;
max_energy = MAX(energy_a, energy_b);
max_energy = MAX(max_energy, energy_c);
IWM_DPRINTF(sc, IWM_DEBUG_RECV,
"energy In A %d B %d C %d , and max %d\n",
energy_a, energy_b, energy_c, max_energy);
return max_energy;
}
static void
iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
{
struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
}
/*
* Retrieve the average noise (in dBm) among receivers.
*/
static int
iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *stats)
{
int i, total, nbant, noise;
total = nbant = noise = 0;
for (i = 0; i < 3; i++) {
noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
if (noise) {
total += noise;
nbant++;
}
}
/* There should be at least one antenna but check anyway. */
return (nbant == 0) ? -127 : (total / nbant) - 107;
}
/*
* iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
*
* Handles the actual data of the Rx packet from the fw
*/
static void
iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct ieee80211_rx_stats rxs;
struct mbuf *m;
struct iwm_rx_phy_info *phy_info;
struct iwm_rx_mpdu_res_start *rx_res;
uint32_t len;
uint32_t rx_pkt_status;
int rssi;
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
phy_info = &sc->sc_last_phy_info;
rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
len = le16toh(rx_res->byte_count);
rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
m = data->m;
m->m_data = pkt->data + sizeof(*rx_res);
m->m_pkthdr.len = m->m_len = len;
if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
device_printf(sc->sc_dev,
"dsp size out of range [0,20]: %d\n",
phy_info->cfg_phy_cnt);
return;
}
if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
IWM_DPRINTF(sc, IWM_DEBUG_RECV,
"Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
return; /* drop */
}
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
rssi = iwm_mvm_get_signal_strength(sc, phy_info);
} else {
rssi = iwm_mvm_calc_rssi(sc, phy_info);
}
rssi = (0 - IWM_MIN_DBM) + rssi; /* normalize */
rssi = MIN(rssi, sc->sc_max_rssi); /* clip to max. 100% */
/* replenish ring for the buffer we're going to feed to the sharks */
if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
__func__);
return;
}
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
IWM_DPRINTF(sc, IWM_DEBUG_RECV,
"%s: phy_info: channel=%d, flags=0x%08x\n",
__func__,
le16toh(phy_info->channel),
le16toh(phy_info->phy_flags));
/*
* Populate an RX state struct with the provided information.
*/
bzero(&rxs, sizeof(rxs));
rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
rxs.c_ieee = le16toh(phy_info->channel);
if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
} else {
rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
}
rxs.rssi = rssi - sc->sc_noise;
rxs.nf = sc->sc_noise;
if (ieee80211_radiotap_active_vap(vap)) {
struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
tap->wr_chan_freq = htole16(rxs.c_freq);
/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_dbm_antsignal = (int8_t)rssi;
tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
tap->wr_tsft = phy_info->system_timestamp;
switch (phy_info->rate) {
/* CCK rates. */
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
/* OFDM rates. */
case 0xd: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0x5: tap->wr_rate = 24; break;
case 0x7: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xb: tap->wr_rate = 72; break;
case 0x1: tap->wr_rate = 96; break;
case 0x3: tap->wr_rate = 108; break;
/* Unknown rate: should not happen. */
default: tap->wr_rate = 0;
}
}
IWM_UNLOCK(sc);
if (ni != NULL) {
IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
ieee80211_input_mimo(ni, m, &rxs);
ieee80211_free_node(ni);
} else {
IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
ieee80211_input_mimo_all(ic, m, &rxs);
}
IWM_LOCK(sc);
}
static int
iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
struct iwm_node *in)
{
struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
struct ieee80211_node *ni = &in->in_ni;
struct ieee80211vap *vap = ni->ni_vap;
int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
int failack = tx_resp->failure_frame;
KASSERT(tx_resp->frame_count == 1, ("too many frames"));
/* Update rate control statistics. */
IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
__func__,
(int) le16toh(tx_resp->status.status),
(int) le16toh(tx_resp->status.sequence),
tx_resp->frame_count,
tx_resp->bt_kill_count,
tx_resp->failure_rts,
tx_resp->failure_frame,
le32toh(tx_resp->initial_rate),
(int) le16toh(tx_resp->wireless_media_time));
if (status != IWM_TX_STATUS_SUCCESS &&
status != IWM_TX_STATUS_DIRECT_DONE) {
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
return (1);
} else {
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
return (0);
}
}
static void
iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
{
struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
int idx = cmd_hdr->idx;
int qid = cmd_hdr->qid;
struct iwm_tx_ring *ring = &sc->txq[qid];
struct iwm_tx_data *txd = &ring->data[idx];
struct iwm_node *in = txd->in;
struct mbuf *m = txd->m;
int status;
KASSERT(txd->done == 0, ("txd not done"));
KASSERT(txd->in != NULL, ("txd without node"));
KASSERT(txd->m != NULL, ("txd without mbuf"));
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
sc->sc_tx_timer = 0;
status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
/* Unmap and free mbuf. */
bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, txd->map);
IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
"free txd %p, in %p\n", txd, txd->in);
txd->done = 1;
txd->m = NULL;
txd->in = NULL;
ieee80211_tx_complete(&in->in_ni, m, status);
if (--ring->queued < IWM_TX_RING_LOMARK) {
sc->qfullmsk &= ~(1 << ring->qid);
if (sc->qfullmsk == 0) {
/*
* Well, we're in interrupt context, but then again
* I guess net80211 does all sorts of stunts in
* interrupt context, so maybe this is no biggie.
*/
iwm_start(sc);
}
}
}
/*
* transmit side
*/
/*
* Process a "command done" firmware notification. This is where we wakeup
* processes waiting for a synchronous command completion.
* from if_iwn
*/
static void
iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
{
struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
struct iwm_tx_data *data;
if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
return; /* Not a command ack. */
}
/* XXX wide commands? */
IWM_DPRINTF(sc, IWM_DEBUG_CMD,
"cmd notification type 0x%x qid %d idx %d\n",
pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
data = &ring->data[pkt->hdr.idx];
/* If the command was mapped in an mbuf, free it. */
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
wakeup(&ring->desc[pkt->hdr.idx]);
}
#if 0
/*
* necessary only for block ack mode
*/
void
iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
uint16_t len)
{
struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
uint16_t w_val;
scd_bc_tbl = sc->sched_dma.vaddr;
len += 8; /* magic numbers came naturally from paris */
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
len = roundup(len, 4) / 4;
w_val = htole16(sta_id << 12 | len);
/* Update TX scheduler. */
scd_bc_tbl[qid].tfd_offset[idx] = w_val;
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
BUS_DMASYNC_PREWRITE);
/* I really wonder what this is ?!? */
if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
BUS_DMASYNC_PREWRITE);
}
}
#endif
/*
* Take an 802.11 (non-n) rate, find the relevant rate
* table entry. return the index into in_ridx[].
*
* The caller then uses that index back into in_ridx
* to figure out the rate index programmed /into/
* the firmware for this given node.
*/
static int
iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
uint8_t rate)
{
int i;
uint8_t r;
for (i = 0; i < nitems(in->in_ridx); i++) {
r = iwm_rates[in->in_ridx[i]].rate;
if (rate == r)
return (i);
}
/* XXX Return the first */
/* XXX TODO: have it return the /lowest/ */
return (0);
}
/*
* Fill in the rate related information for a transmit command.
*/
static const struct iwm_rate *
iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = &in->in_ni;
const struct iwm_rate *rinfo;
int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
int ridx, rate_flags;
tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
/*
* XXX TODO: everything about the rate selection here is terrible!
*/
if (type == IEEE80211_FC0_TYPE_DATA) {
int i;
/* for data frames, use RS table */
(void) ieee80211_ratectl_rate(ni, NULL, 0);
i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
ridx = in->in_ridx[i];
/* This is the index into the programmed table */
tx->initial_rate_index = i;
tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
"%s: start with i=%d, txrate %d\n",
__func__, i, iwm_rates[ridx].rate);
} else {
/*
* For non-data, use the lowest supported rate for the given
* operational mode.
*
* Note: there may not be any rate control information available.
* This driver currently assumes if we're transmitting data
* frames, use the rate control table. Grr.
*
* XXX TODO: use the configured rate for the traffic type!
* XXX TODO: this should be per-vap, not curmode; as we later
* on we'll want to handle off-channel stuff (eg TDLS).
*/
if (ic->ic_curmode == IEEE80211_MODE_11A) {
/*
* XXX this assumes the mode is either 11a or not 11a;
* definitely won't work for 11n.
*/
ridx = IWM_RIDX_OFDM;
} else {
ridx = IWM_RIDX_CCK;
}
}
rinfo = &iwm_rates[ridx];
IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
__func__, ridx,
rinfo->rate,
!! (IWM_RIDX_IS_CCK(ridx))
);
/* XXX TODO: hard-coded TX antenna? */
rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
if (IWM_RIDX_IS_CCK(ridx))
rate_flags |= IWM_RATE_MCS_CCK_MSK;
tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
return rinfo;
}
#define TB0_SIZE 16
static int
iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct iwm_node *in = IWM_NODE(ni);
struct iwm_tx_ring *ring;
struct iwm_tx_data *data;
struct iwm_tfd *desc;
struct iwm_device_cmd *cmd;
struct iwm_tx_cmd *tx;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
struct mbuf *m1;
const struct iwm_rate *rinfo;
uint32_t flags;
u_int hdrlen;
bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
int nsegs;
uint8_t tid, type;
int i, totlen, error, pad;
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_anyhdrsize(wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
tid = 0;
ring = &sc->txq[ac];
desc = &ring->desc[ring->cur];
memset(desc, 0, sizeof(*desc));
data = &ring->data[ring->cur];
/* Fill out iwm_tx_cmd to send to the firmware */
cmd = &ring->cmd[ring->cur];
cmd->hdr.code = IWM_TX_CMD;
cmd->hdr.flags = 0;
cmd->hdr.qid = ring->qid;
cmd->hdr.idx = ring->cur;
tx = (void *)cmd->data;
memset(tx, 0, sizeof(*tx));
rinfo = iwm_tx_fill_cmd(sc, in, wh, tx);
/* Encrypt the frame if need be. */
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
/* Retrieve key for TX && do software encryption. */
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
m_freem(m);
return (ENOBUFS);
}
/* 802.11 header may have moved. */
wh = mtod(m, struct ieee80211_frame *);
}
if (ieee80211_radiotap_active_vap(vap)) {
struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
tap->wt_rate = rinfo->rate;
if (k != NULL)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
ieee80211_radiotap_tx(vap, m);
}
totlen = m->m_pkthdr.len;
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= IWM_TX_CMD_FLG_ACK;
}
if (type == IEEE80211_FC0_TYPE_DATA
&& (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
&& !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
}
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA)
tx->sta_id = sc->sc_aux_sta.sta_id;
else
tx->sta_id = IWM_STATION_ID;
if (type == IEEE80211_FC0_TYPE_MGT) {
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
} else {
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
}
} else {
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
}
if (hdrlen & 3) {
/* First segment length must be a multiple of 4. */
flags |= IWM_TX_CMD_FLG_MH_PAD;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
tx->driver_txop = 0;
tx->next_frame_len = 0;
tx->len = htole16(totlen);
tx->tid_tspec = tid;
tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
/* Set physical address of "scratch area". */
tx->dram_lsb_ptr = htole32(data->scratch_paddr);
tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
/* Copy 802.11 header in TX command. */
memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
tx->sec_ctl = 0;
tx->tx_flags |= htole32(flags);
/* Trim 802.11 header. */
m_adj(m, hdrlen);
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
if (error != EFBIG) {
device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
error);
m_freem(m);
return error;
}
/* Too many DMA segments, linearize mbuf. */
m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
if (m1 == NULL) {
device_printf(sc->sc_dev,
"%s: could not defrag mbuf\n", __func__);
m_freem(m);
return (ENOBUFS);
}
m = m1;
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
error);
m_freem(m);
return error;
}
}
data->m = m;
data->in = in;
data->done = 0;
IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
"sending txd %p, in %p\n", data, data->in);
KASSERT(data->in != NULL, ("node is NULL"));
IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
"sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
ring->qid, ring->cur, totlen, nsegs,
le32toh(tx->tx_flags),
le32toh(tx->rate_n_flags),
tx->initial_rate_index
);
/* Fill TX descriptor. */
desc->num_tbs = 2 + nsegs;
desc->tbs[0].lo = htole32(data->cmd_paddr);
desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
(TB0_SIZE << 4);
desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
((sizeof(struct iwm_cmd_header) + sizeof(*tx)
+ hdrlen + pad - TB0_SIZE) << 4);
/* Other DMA segments are for data payload. */
for (i = 0; i < nsegs; i++) {
seg = &segs[i];
desc->tbs[i+2].lo = htole32(seg->ds_addr);
desc->tbs[i+2].hi_n_len = \
htole16(iwm_get_dma_hi_addr(seg->ds_addr))
| ((seg->ds_len) << 4);
}
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
BUS_DMASYNC_PREWRITE);
#if 0
iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
#endif
/* Kick TX ring. */
ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
/* Mark TX ring as full if we reach a certain threshold. */
if (++ring->queued > IWM_TX_RING_HIMARK) {
sc->qfullmsk |= 1 << ring->qid;
}
return 0;
}
static int
iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct iwm_softc *sc = ic->ic_softc;
int error = 0;
IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
"->%s begin\n", __func__);
if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
m_freem(m);
IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
"<-%s not RUNNING\n", __func__);
return (ENETDOWN);
}
IWM_LOCK(sc);
/* XXX fix this */
if (params == NULL) {
error = iwm_tx(sc, m, ni, 0);
} else {
error = iwm_tx(sc, m, ni, 0);
}
sc->sc_tx_timer = 5;
IWM_UNLOCK(sc);
return (error);
}
/*
* mvm/tx.c
*/
#if 0
/*
* Note that there are transports that buffer frames before they reach
* the firmware. This means that after flush_tx_path is called, the
* queue might not be empty. The race-free way to handle this is to:
* 1) set the station as draining
* 2) flush the Tx path
* 3) wait for the transport queues to be empty
*/
int
iwm_mvm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync)
{
struct iwm_tx_path_flush_cmd flush_cmd = {
.queues_ctl = htole32(tfd_msk),
.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
};
int ret;
ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH,
sync ? IWM_CMD_SYNC : IWM_CMD_ASYNC,
sizeof(flush_cmd), &flush_cmd);
if (ret)
device_printf(sc->sc_dev,
"Flushing tx queue failed: %d\n", ret);
return ret;
}
#endif
/*
* BEGIN mvm/sta.c
*/
static int
iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
struct iwm_mvm_add_sta_cmd_v7 *cmd, int *status)
{
return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd),
cmd, status);
}
/* send station add/update command to firmware */
static int
iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
{
struct iwm_mvm_add_sta_cmd_v7 add_sta_cmd;
int ret;
uint32_t status;
memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
add_sta_cmd.sta_id = IWM_STATION_ID;
add_sta_cmd.mac_id_n_color
= htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
IWM_DEFAULT_COLOR));
if (!update) {
int ac;
for (ac = 0; ac < WME_NUM_AC; ac++) {
add_sta_cmd.tfd_queue_msk |=
htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]);
}
IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
}
add_sta_cmd.add_modify = update ? 1 : 0;
add_sta_cmd.station_flags_msk
|= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
add_sta_cmd.tid_disable_tx = htole16(0xffff);
if (update)
add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
status = IWM_ADD_STA_SUCCESS;
ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
if (ret)
return ret;
switch (status) {
case IWM_ADD_STA_SUCCESS:
break;
default:
ret = EIO;
device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
break;
}
return ret;
}
static int
iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
{
return iwm_mvm_sta_send_to_fw(sc, in, 0);
}
static int
iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
{
return iwm_mvm_sta_send_to_fw(sc, in, 1);
}
static int
iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
const uint8_t *addr, uint16_t mac_id, uint16_t color)
{
struct iwm_mvm_add_sta_cmd_v7 cmd;
int ret;
uint32_t status;
memset(&cmd, 0, sizeof(cmd));
cmd.sta_id = sta->sta_id;
cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
cmd.tid_disable_tx = htole16(0xffff);
if (addr)
IEEE80211_ADDR_COPY(cmd.addr, addr);
ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
if (ret)
return ret;
switch (status) {
case IWM_ADD_STA_SUCCESS:
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"%s: Internal station added.\n", __func__);
return 0;
default:
device_printf(sc->sc_dev,
"%s: Add internal station failed, status=0x%x\n",
__func__, status);
ret = EIO;
break;
}
return ret;
}
static int
iwm_mvm_add_aux_sta(struct iwm_softc *sc)
{
int ret;
sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID;
sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE);
ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST);
if (ret)
return ret;
ret = iwm_mvm_add_int_sta_common(sc,
&sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
if (ret)
memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
return ret;
}
/*
* END mvm/sta.c
*/
/*
* BEGIN mvm/quota.c
*/
static int
iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
{
struct iwm_time_quota_cmd cmd;
int i, idx, ret, num_active_macs, quota, quota_rem;
int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
int n_ifs[IWM_MAX_BINDINGS] = {0, };
uint16_t id;
memset(&cmd, 0, sizeof(cmd));
/* currently, PHY ID == binding ID */
if (in) {
id = in->in_phyctxt->id;
KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
colors[id] = in->in_phyctxt->color;
if (1)
n_ifs[id] = 1;
}
/*
* The FW's scheduling session consists of
* IWM_MVM_MAX_QUOTA fragments. Divide these fragments
* equally between all the bindings that require quota
*/
num_active_macs = 0;
for (i = 0; i < IWM_MAX_BINDINGS; i++) {
cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
num_active_macs += n_ifs[i];
}
quota = 0;
quota_rem = 0;
if (num_active_macs) {
quota = IWM_MVM_MAX_QUOTA / num_active_macs;
quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
}
for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
if (colors[i] < 0)
continue;
cmd.quotas[idx].id_and_color =
htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
if (n_ifs[i] <= 0) {
cmd.quotas[idx].quota = htole32(0);
cmd.quotas[idx].max_duration = htole32(0);
} else {
cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
cmd.quotas[idx].max_duration = htole32(0);
}
idx++;
}
/* Give the remainder of the session to the first binding */
cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
sizeof(cmd), &cmd);
if (ret)
device_printf(sc->sc_dev,
"%s: Failed to send quota: %d\n", __func__, ret);
return ret;
}
/*
* END mvm/quota.c
*/
/*
* ieee80211 routines
*/
/*
* Change to AUTH state in 80211 state machine. Roughly matches what
* Linux does in bss_info_changed().
*/
static int
iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
{
struct ieee80211_node *ni;
struct iwm_node *in;
struct iwm_vap *iv = IWM_VAP(vap);
uint32_t duration;
int error;
/*
* XXX i have a feeling that the vap node is being
* freed from underneath us. Grr.
*/
ni = ieee80211_ref_node(vap->iv_bss);
in = IWM_NODE(ni);
IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
"%s: called; vap=%p, bss ni=%p\n",
__func__,
vap,
ni);
in->in_assoc = 0;
error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
if (error != 0)
return error;
error = iwm_allow_mcast(vap, sc);
if (error) {
device_printf(sc->sc_dev,
"%s: failed to set multicast\n", __func__);
goto out;
}
/*
* This is where it deviates from what Linux does.
*
* Linux iwlwifi doesn't reset the nic each time, nor does it
* call ctxt_add() here. Instead, it adds it during vap creation,
* and always does a mac_ctx_changed().
*
* The openbsd port doesn't attempt to do that - it reset things
* at odd states and does the add here.
*
* So, until the state handling is fixed (ie, we never reset
* the NIC except for a firmware failure, which should drag
* the NIC back to IDLE, re-setup and re-add all the mac/phy
* contexts that are required), let's do a dirty hack here.
*/
if (iv->is_uploaded) {
if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
device_printf(sc->sc_dev,
"%s: failed to update MAC\n", __func__);
goto out;
}
if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
in->in_ni.ni_chan, 1, 1)) != 0) {
device_printf(sc->sc_dev,
"%s: failed update phy ctxt\n", __func__);
goto out;
}
in->in_phyctxt = &sc->sc_phyctxt[0];
if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
device_printf(sc->sc_dev,
"%s: binding update cmd\n", __func__);
goto out;
}
if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
device_printf(sc->sc_dev,
"%s: failed to update sta\n", __func__);
goto out;
}
} else {
if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
device_printf(sc->sc_dev,
"%s: failed to add MAC\n", __func__);
goto out;
}
if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
in->in_ni.ni_chan, 1, 1)) != 0) {
device_printf(sc->sc_dev,
"%s: failed add phy ctxt!\n", __func__);
error = ETIMEDOUT;
goto out;
}
in->in_phyctxt = &sc->sc_phyctxt[0];
if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
device_printf(sc->sc_dev,
"%s: binding add cmd\n", __func__);
goto out;
}
if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
device_printf(sc->sc_dev,
"%s: failed to add sta\n", __func__);
goto out;
}
}
/*
* Prevent the FW from wandering off channel during association
* by "protecting" the session with a time event.
*/
/* XXX duration is in units of TU, not MS */
duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
DELAY(100);
error = 0;
out:
ieee80211_free_node(ni);
return (error);
}
static int
iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
{
struct iwm_node *in = IWM_NODE(vap->iv_bss);
int error;
if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
device_printf(sc->sc_dev,
"%s: failed to update STA\n", __func__);
return error;
}
in->in_assoc = 1;
if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
device_printf(sc->sc_dev,
"%s: failed to update MAC\n", __func__);
return error;
}
return 0;
}
static int
iwm_release(struct iwm_softc *sc, struct iwm_node *in)
{
/*
* Ok, so *technically* the proper set of calls for going
* from RUN back to SCAN is:
*
* iwm_mvm_power_mac_disable(sc, in);
* iwm_mvm_mac_ctxt_changed(sc, in);
* iwm_mvm_rm_sta(sc, in);
* iwm_mvm_update_quotas(sc, NULL);
* iwm_mvm_mac_ctxt_changed(sc, in);
* iwm_mvm_binding_remove_vif(sc, in);
* iwm_mvm_mac_ctxt_remove(sc, in);
*
* However, that freezes the device not matter which permutations
* and modifications are attempted. Obviously, this driver is missing
* something since it works in the Linux driver, but figuring out what
* is missing is a little more complicated. Now, since we're going
* back to nothing anyway, we'll just do a complete device reset.
* Up your's, device!
*/
/* iwm_mvm_flush_tx_path(sc, 0xf, 1); */
iwm_stop_device(sc);
iwm_init_hw(sc);
if (in)
in->in_assoc = 0;
return 0;
#if 0
int error;
iwm_mvm_power_mac_disable(sc, in);
if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
return error;
}
if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
device_printf(sc->sc_dev, "sta remove fail %d\n", error);
return error;
}
error = iwm_mvm_rm_sta(sc, in);
in->in_assoc = 0;
iwm_mvm_update_quotas(sc, NULL);
if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
return error;
}
iwm_mvm_binding_remove_vif(sc, in);
iwm_mvm_mac_ctxt_remove(sc, in);
return error;
#endif
}
static struct ieee80211_node *
iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
return malloc(sizeof (struct iwm_node), M_80211_NODE,
M_NOWAIT | M_ZERO);
}
static void
iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
{
struct ieee80211_node *ni = &in->in_ni;
struct iwm_lq_cmd *lq = &in->in_lq;
int nrates = ni->ni_rates.rs_nrates;
int i, ridx, tab = 0;
int txant = 0;
if (nrates > nitems(lq->rs_table)) {
device_printf(sc->sc_dev,
"%s: node supports %d rates, driver handles "
"only %zu\n", __func__, nrates, nitems(lq->rs_table));
return;
}
if (nrates == 0) {
device_printf(sc->sc_dev,
"%s: node supports 0 rates, odd!\n", __func__);
return;
}
/*
* XXX .. and most of iwm_node is not initialised explicitly;
* it's all just 0x0 passed to the firmware.
*/
/* first figure out which rates we should support */
/* XXX TODO: this isn't 11n aware /at all/ */
memset(&in->in_ridx, -1, sizeof(in->in_ridx));
IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
"%s: nrates=%d\n", __func__, nrates);
/*
* Loop over nrates and populate in_ridx from the highest
* rate to the lowest rate. Remember, in_ridx[] has
* IEEE80211_RATE_MAXSIZE entries!
*/
for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
if (iwm_rates[ridx].rate == rate)
break;
if (ridx > IWM_RIDX_MAX) {
device_printf(sc->sc_dev,
"%s: WARNING: device rate for %d not found!\n",
__func__, rate);
} else {
IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
"%s: rate: i: %d, rate=%d, ridx=%d\n",
__func__,
i,
rate,
ridx);
in->in_ridx[i] = ridx;
}
}
/* then construct a lq_cmd based on those */
memset(lq, 0, sizeof(*lq));
lq->sta_id = IWM_STATION_ID;
/* For HT, always enable RTS/CTS to avoid excessive retries. */
if (ni->ni_flags & IEEE80211_NODE_HT)
lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
/*
* are these used? (we don't do SISO or MIMO)
* need to set them to non-zero, though, or we get an error.
*/
lq->single_stream_ant_msk = 1;
lq->dual_stream_ant_msk = 1;
/*
* Build the actual rate selection table.
* The lowest bits are the rates. Additionally,
* CCK needs bit 9 to be set. The rest of the bits
* we add to the table select the tx antenna
* Note that we add the rates in the highest rate first
* (opposite of ni_rates).
*/
/*
* XXX TODO: this should be looping over the min of nrates
* and LQ_MAX_RETRY_NUM. Sigh.
*/
for (i = 0; i < nrates; i++) {
int nextant;
if (txant == 0)
txant = iwm_fw_valid_tx_ant(sc);
nextant = 1<<(ffs(txant)-1);
txant &= ~nextant;
/*
* Map the rate id into a rate index into
* our hardware table containing the
* configuration to use for this rate.
*/
ridx = in->in_ridx[i];
tab = iwm_rates[ridx].plcp;
tab |= nextant << IWM_RATE_MCS_ANT_POS;
if (IWM_RIDX_IS_CCK(ridx))
tab |= IWM_RATE_MCS_CCK_MSK;
IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
"station rate i=%d, rate=%d, hw=%x\n",
i, iwm_rates[ridx].rate, tab);
lq->rs_table[i] = htole32(tab);
}
/* then fill the rest with the lowest possible rate */
for (i = nrates; i < nitems(lq->rs_table); i++) {
KASSERT(tab != 0, ("invalid tab"));
lq->rs_table[i] = htole32(tab);
}
}
static int
iwm_media_change(struct ifnet *ifp)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
struct iwm_softc *sc = ic->ic_softc;
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
IWM_LOCK(sc);
if (ic->ic_nrunning > 0) {
iwm_stop(sc);
iwm_init(sc);
}
IWM_UNLOCK(sc);
return error;
}
static int
iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct iwm_vap *ivp = IWM_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct iwm_softc *sc = ic->ic_softc;
struct iwm_node *in;
int error;
IWM_DPRINTF(sc, IWM_DEBUG_STATE,
"switching state %s -> %s\n",
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
IWM_LOCK(sc);
if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
iwm_led_blink_stop(sc);
/* disable beacon filtering if we're hopping out of RUN */
if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
iwm_mvm_disable_beacon_filter(sc);
if (((in = IWM_NODE(vap->iv_bss)) != NULL))
in->in_assoc = 0;
iwm_release(sc, NULL);
/*
* It's impossible to directly go RUN->SCAN. If we iwm_release()
* above then the card will be completely reinitialized,
* so the driver must do everything necessary to bring the card
* from INIT to SCAN.
*
* Additionally, upon receiving deauth frame from AP,
* OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
* state. This will also fail with this driver, so bring the FSM
* from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
*
* XXX TODO: fix this for FreeBSD!
*/
if (nstate == IEEE80211_S_SCAN ||
nstate == IEEE80211_S_AUTH ||
nstate == IEEE80211_S_ASSOC) {
IWM_DPRINTF(sc, IWM_DEBUG_STATE,
"Force transition to INIT; MGT=%d\n", arg);
IWM_UNLOCK(sc);
IEEE80211_LOCK(ic);
/* Always pass arg as -1 since we can't Tx right now. */
/*
* XXX arg is just ignored anyway when transitioning
* to IEEE80211_S_INIT.
*/
vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
IWM_DPRINTF(sc, IWM_DEBUG_STATE,
"Going INIT->SCAN\n");
nstate = IEEE80211_S_SCAN;
IEEE80211_UNLOCK(ic);
IWM_LOCK(sc);
}
}
switch (nstate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_AUTH:
if ((error = iwm_auth(vap, sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not move to auth state: %d\n",
__func__, error);
break;
}
break;
case IEEE80211_S_ASSOC:
if ((error = iwm_assoc(vap, sc)) != 0) {
device_printf(sc->sc_dev,
"%s: failed to associate: %d\n", __func__,
error);
break;
}
break;
case IEEE80211_S_RUN:
{
struct iwm_host_cmd cmd = {
.id = IWM_LQ_CMD,
.len = { sizeof(in->in_lq), },
.flags = IWM_CMD_SYNC,
};
/* Update the association state, now we have it all */
/* (eg associd comes in at this point */
error = iwm_assoc(vap, sc);
if (error != 0) {
device_printf(sc->sc_dev,
"%s: failed to update association state: %d\n",
__func__,
error);
break;
}
in = IWM_NODE(vap->iv_bss);
iwm_mvm_power_mac_update_mode(sc, in);
iwm_mvm_enable_beacon_filter(sc, in);
iwm_mvm_update_quotas(sc, in);
iwm_setrates(sc, in);
cmd.data[0] = &in->in_lq;
if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
device_printf(sc->sc_dev,
"%s: IWM_LQ_CMD failed\n", __func__);
}
iwm_mvm_led_enable(sc);
break;
}
default:
break;
}
IWM_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (ivp->iv_newstate(vap, nstate, arg));
}
void
iwm_endscan_cb(void *arg, int pending)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
"%s: scan ended\n",
__func__);
ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
}
/*
* Aging and idle timeouts for the different possible scenarios
* in default configuration
*/
static const uint32_t
iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
{
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_BA_AGING_TIMER_DEF),
htole32(IWM_SF_BA_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
},
};
/*
* Aging and idle timeouts for the different possible scenarios
* in single BSS MAC configuration.
*/
static const uint32_t
iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
{
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
},
{
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
},
{
htole32(IWM_SF_MCAST_AGING_TIMER),
htole32(IWM_SF_MCAST_IDLE_TIMER)
},
{
htole32(IWM_SF_BA_AGING_TIMER),
htole32(IWM_SF_BA_IDLE_TIMER)
},
{
htole32(IWM_SF_TX_RE_AGING_TIMER),
htole32(IWM_SF_TX_RE_IDLE_TIMER)
},
};
static void
iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
struct ieee80211_node *ni)
{
int i, j, watermark;
sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
/*
* If we are in association flow - check antenna configuration
* capabilities of the AP station, and choose the watermark accordingly.
*/
if (ni) {
if (ni->ni_flags & IEEE80211_NODE_HT) {
#ifdef notyet
if (ni->ni_rxmcs[2] != 0)
watermark = IWM_SF_W_MARK_MIMO3;
else if (ni->ni_rxmcs[1] != 0)
watermark = IWM_SF_W_MARK_MIMO2;
else
#endif
watermark = IWM_SF_W_MARK_SISO;
} else {
watermark = IWM_SF_W_MARK_LEGACY;
}
/* default watermark value for unassociated mode. */
} else {
watermark = IWM_SF_W_MARK_MIMO2;
}
sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
sf_cmd->long_delay_timeouts[i][j] =
htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
}
}
if (ni) {
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
sizeof(iwm_sf_full_timeout));
} else {
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
sizeof(iwm_sf_full_timeout_def));
}
}
static int
iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct iwm_sf_cfg_cmd sf_cmd = {
.state = htole32(IWM_SF_FULL_ON),
};
int ret = 0;
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
switch (new_state) {
case IWM_SF_UNINIT:
case IWM_SF_INIT_OFF:
iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
break;
case IWM_SF_FULL_ON:
iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
break;
default:
IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
"Invalid state: %d. not sending Smart Fifo cmd\n",
new_state);
return EINVAL;
}
ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
sizeof(sf_cmd), &sf_cmd);
return ret;
}
static int
iwm_send_bt_init_conf(struct iwm_softc *sc)
{
struct iwm_bt_coex_cmd bt_cmd;
bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
&bt_cmd);
}
static int
iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
{
struct iwm_mcc_update_cmd mcc_cmd;
struct iwm_host_cmd hcmd = {
.id = IWM_MCC_UPDATE_CMD,
.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
.data = { &mcc_cmd },
};
int ret;
#ifdef IWM_DEBUG
struct iwm_rx_packet *pkt;
struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
struct iwm_mcc_update_resp *mcc_resp;
int n_channels;
uint16_t mcc;
#endif
int resp_v2 = isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
memset(&mcc_cmd, 0, sizeof(mcc_cmd));
mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
if ((sc->sc_ucode_api & IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
else
mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
if (resp_v2)
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
else
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
IWM_DPRINTF(sc, IWM_DEBUG_NODE,
"send MCC update to FW with '%c%c' src = %d\n",
alpha2[0], alpha2[1], mcc_cmd.source_id);
ret = iwm_send_cmd(sc, &hcmd);
if (ret)
return ret;
#ifdef IWM_DEBUG
pkt = hcmd.resp_pkt;
/* Extract MCC response */
if (resp_v2) {
mcc_resp = (void *)pkt->data;
mcc = mcc_resp->mcc;
n_channels = le32toh(mcc_resp->n_channels);
} else {
mcc_resp_v1 = (void *)pkt->data;
mcc = mcc_resp_v1->mcc;
n_channels = le32toh(mcc_resp_v1->n_channels);
}
/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
if (mcc == 0)
mcc = 0x3030; /* "00" - world */
IWM_DPRINTF(sc, IWM_DEBUG_NODE,
"regulatory domain '%c%c' (%d channels available)\n",
mcc >> 8, mcc & 0xff, n_channels);
#endif
iwm_free_resp(sc, &hcmd);
return 0;
}
static void
iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
{
struct iwm_host_cmd cmd = {
.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
.len = { sizeof(uint32_t), },
.data = { &backoff, },
};
if (iwm_send_cmd(sc, &cmd) != 0) {
device_printf(sc->sc_dev,
"failed to change thermal tx backoff\n");
}
}
static int
iwm_init_hw(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int error, i, ac;
if ((error = iwm_start_hw(sc)) != 0) {
printf("iwm_start_hw: failed %d\n", error);
return error;
}
if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
printf("iwm_run_init_mvm_ucode: failed %d\n", error);
return error;
}
/*
* should stop and start HW since that INIT
* image just loaded
*/
iwm_stop_device(sc);
if ((error = iwm_start_hw(sc)) != 0) {
device_printf(sc->sc_dev, "could not initialize hardware\n");
return error;
}
/* omstart, this time with the regular firmware */
error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
if (error) {
device_printf(sc->sc_dev, "could not load firmware\n");
goto error;
}
if ((error = iwm_send_bt_init_conf(sc)) != 0) {
device_printf(sc->sc_dev, "bt init conf failed\n");
goto error;
}
if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
device_printf(sc->sc_dev, "antenna config failed\n");
goto error;
}
/* Send phy db control command and then phy db calibration*/
if ((error = iwm_send_phy_db_data(sc)) != 0) {
device_printf(sc->sc_dev, "phy_db_data failed\n");
goto error;
}
if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
goto error;
}
/* Add auxiliary station for scanning */
if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
device_printf(sc->sc_dev, "add_aux_sta failed\n");
goto error;
}
for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
/*
* The channel used here isn't relevant as it's
* going to be overwritten in the other flows.
* For now use the first channel we have.
*/
if ((error = iwm_mvm_phy_ctxt_add(sc,
&sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
goto error;
}
/* Initialize tx backoffs to the minimum. */
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
iwm_mvm_tt_tx_backoff(sc, 0);
error = iwm_mvm_power_update_device(sc);
if (error)
goto error;
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
goto error;
}
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
goto error;
}
/* Enable Tx queues. */
for (ac = 0; ac < WME_NUM_AC; ac++) {
error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
iwm_mvm_ac_to_tx_fifo[ac]);
if (error)
goto error;
}
if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
device_printf(sc->sc_dev, "failed to disable beacon filter\n");
goto error;
}
return 0;
error:
iwm_stop_device(sc);
return error;
}
/* Allow multicast from our BSSID. */
static int
iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
{
struct ieee80211_node *ni = vap->iv_bss;
struct iwm_mcast_filter_cmd *cmd;
size_t size;
int error;
size = roundup(sizeof(*cmd), 4);
cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
if (cmd == NULL)
return ENOMEM;
cmd->filter_own = 1;
cmd->port_id = 0;
cmd->count = 0;
cmd->pass_all = 1;
IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
IWM_CMD_SYNC, size, cmd);
free(cmd, M_DEVBUF);
return (error);
}
/*
* ifnet interfaces
*/
static void
iwm_init(struct iwm_softc *sc)
{
int error;
if (sc->sc_flags & IWM_FLAG_HW_INITED) {
return;
}
sc->sc_generation++;
sc->sc_flags &= ~IWM_FLAG_STOPPED;
if ((error = iwm_init_hw(sc)) != 0) {
printf("iwm_init_hw failed %d\n", error);
iwm_stop(sc);
return;
}
/*
* Ok, firmware loaded and we are jogging
*/
sc->sc_flags |= IWM_FLAG_HW_INITED;
callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
}
static int
iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
{
struct iwm_softc *sc;
int error;
sc = ic->ic_softc;
IWM_LOCK(sc);
if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
IWM_UNLOCK(sc);
return (ENXIO);
}
error = mbufq_enqueue(&sc->sc_snd, m);
if (error) {
IWM_UNLOCK(sc);
return (error);
}
iwm_start(sc);
IWM_UNLOCK(sc);
return (0);
}
/*
* Dequeue packets from sendq and call send.
*/
static void
iwm_start(struct iwm_softc *sc)
{
struct ieee80211_node *ni;
struct mbuf *m;
int ac = 0;
IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
while (sc->qfullmsk == 0 &&
(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
if (iwm_tx(sc, m, ni, ac) != 0) {
if_inc_counter(ni->ni_vap->iv_ifp,
IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
continue;
}
sc->sc_tx_timer = 15;
}
IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
}
static void
iwm_stop(struct iwm_softc *sc)
{
sc->sc_flags &= ~IWM_FLAG_HW_INITED;
sc->sc_flags |= IWM_FLAG_STOPPED;
sc->sc_generation++;
iwm_led_blink_stop(sc);
sc->sc_tx_timer = 0;
iwm_stop_device(sc);
}
static void
iwm_watchdog(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
#ifdef IWM_DEBUG
iwm_nic_error(sc);
#endif
ieee80211_restart_all(ic);
counter_u64_add(sc->sc_ic.ic_oerrors, 1);
return;
}
}
callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
}
static void
iwm_parent(struct ieee80211com *ic)
{
struct iwm_softc *sc = ic->ic_softc;
int startall = 0;
IWM_LOCK(sc);
if (ic->ic_nrunning > 0) {
if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
iwm_init(sc);
startall = 1;
}
} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
iwm_stop(sc);
IWM_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
}
/*
* The interrupt side of things
*/
/*
* error dumping routines are from iwlwifi/mvm/utils.c
*/
/*
* Note: This structure is read from the device with IO accesses,
* and the reading already does the endian conversion. As it is
* read with uint32_t-sized accesses, any members with a different size
* need to be ordered correctly though!
*/
struct iwm_error_event_table {
uint32_t valid; /* (nonzero) valid, (0) log is empty */
uint32_t error_id; /* type of error */
uint32_t trm_hw_status0; /* TRM HW status */
uint32_t trm_hw_status1; /* TRM HW status */
uint32_t blink2; /* branch link */
uint32_t ilink1; /* interrupt link */
uint32_t ilink2; /* interrupt link */
uint32_t data1; /* error-specific data */
uint32_t data2; /* error-specific data */
uint32_t data3; /* error-specific data */
uint32_t bcon_time; /* beacon timer */
uint32_t tsf_low; /* network timestamp function timer */
uint32_t tsf_hi; /* network timestamp function timer */
uint32_t gp1; /* GP1 timer register */
uint32_t gp2; /* GP2 timer register */
uint32_t fw_rev_type; /* firmware revision type */
uint32_t major; /* uCode version major */
uint32_t minor; /* uCode version minor */
uint32_t hw_ver; /* HW Silicon version */
uint32_t brd_ver; /* HW board version */
uint32_t log_pc; /* log program counter */
uint32_t frame_ptr; /* frame pointer */
uint32_t stack_ptr; /* stack pointer */
uint32_t hcmd; /* last host command header */
uint32_t isr0; /* isr status register LMPM_NIC_ISR0:
* rxtx_flag */
uint32_t isr1; /* isr status register LMPM_NIC_ISR1:
* host_flag */
uint32_t isr2; /* isr status register LMPM_NIC_ISR2:
* enc_flag */
uint32_t isr3; /* isr status register LMPM_NIC_ISR3:
* time_flag */
uint32_t isr4; /* isr status register LMPM_NIC_ISR4:
* wico interrupt */
uint32_t last_cmd_id; /* last HCMD id handled by the firmware */
uint32_t wait_event; /* wait event() caller address */
uint32_t l2p_control; /* L2pControlField */
uint32_t l2p_duration; /* L2pDurationField */
uint32_t l2p_mhvalid; /* L2pMhValidBits */
uint32_t l2p_addr_match; /* L2pAddrMatchStat */
uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on
* (LMPM_PMG_SEL) */
uint32_t u_timestamp; /* indicate when the date and time of the
* compilation */
uint32_t flow_handler; /* FH read/write pointers, RX credit */
} __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
/*
* UMAC error struct - relevant starting from family 8000 chip.
* Note: This structure is read from the device with IO accesses,
* and the reading already does the endian conversion. As it is
* read with u32-sized accesses, any members with a different size
* need to be ordered correctly though!
*/
struct iwm_umac_error_event_table {
uint32_t valid; /* (nonzero) valid, (0) log is empty */
uint32_t error_id; /* type of error */
uint32_t blink1; /* branch link */
uint32_t blink2; /* branch link */
uint32_t ilink1; /* interrupt link */
uint32_t ilink2; /* interrupt link */
uint32_t data1; /* error-specific data */
uint32_t data2; /* error-specific data */
uint32_t data3; /* error-specific data */
uint32_t umac_major;
uint32_t umac_minor;
uint32_t frame_pointer; /* core register 27*/
uint32_t stack_pointer; /* core register 28 */
uint32_t cmd_header; /* latest host cmd sent to UMAC */
uint32_t nic_isr_pref; /* ISR status register */
} __packed;
#define ERROR_START_OFFSET (1 * sizeof(uint32_t))
#define ERROR_ELEM_SIZE (7 * sizeof(uint32_t))
#ifdef IWM_DEBUG
struct {
const char *name;
uint8_t num;
} advanced_lookup[] = {
{ "NMI_INTERRUPT_WDG", 0x34 },
{ "SYSASSERT", 0x35 },
{ "UCODE_VERSION_MISMATCH", 0x37 },
{ "BAD_COMMAND", 0x38 },
{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
{ "FATAL_ERROR", 0x3D },
{ "NMI_TRM_HW_ERR", 0x46 },
{ "NMI_INTERRUPT_TRM", 0x4C },
{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
{ "NMI_INTERRUPT_HOST", 0x66 },
{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
{ "ADVANCED_SYSASSERT", 0 },
};
static const char *
iwm_desc_lookup(uint32_t num)
{
int i;
for (i = 0; i < nitems(advanced_lookup) - 1; i++)
if (advanced_lookup[i].num == num)
return advanced_lookup[i].name;
/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
return advanced_lookup[i].name;
}
static void
iwm_nic_umac_error(struct iwm_softc *sc)
{
struct iwm_umac_error_event_table table;
uint32_t base;
base = sc->sc_uc.uc_umac_error_event_table;
if (base < 0x800000) {
device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
base);
return;
}
if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
device_printf(sc->sc_dev, "reading errlog failed\n");
return;
}
if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
sc->sc_flags, table.valid);
}
device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
iwm_desc_lookup(table.error_id));
device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
table.ilink1);
device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
table.ilink2);
device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
table.frame_pointer);
device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
table.stack_pointer);
device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
table.nic_isr_pref);
}
/*
* Support for dumping the error log seemed like a good idea ...
* but it's mostly hex junk and the only sensible thing is the
* hw/ucode revision (which we know anyway). Since it's here,
* I'll just leave it in, just in case e.g. the Intel guys want to
* help us decipher some "ADVANCED_SYSASSERT" later.
*/
static void
iwm_nic_error(struct iwm_softc *sc)
{
struct iwm_error_event_table table;
uint32_t base;
device_printf(sc->sc_dev, "dumping device error log\n");
base = sc->sc_uc.uc_error_event_table;
if (base < 0x800000) {
device_printf(sc->sc_dev,
"Invalid error log pointer 0x%08x\n", base);
return;
}
if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
device_printf(sc->sc_dev, "reading errlog failed\n");
return;
}
if (!table.valid) {
device_printf(sc->sc_dev, "errlog not found, skipping\n");
return;
}
if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
device_printf(sc->sc_dev, "Start Error Log Dump:\n");
device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
sc->sc_flags, table.valid);
}
device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
iwm_desc_lookup(table.error_id));
device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
table.trm_hw_status0);
device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
table.trm_hw_status1);
device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
device_printf(sc->sc_dev, "%08X | uCode revision type\n",
table.fw_rev_type);
device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
if (sc->sc_uc.uc_umac_error_event_table)
iwm_nic_umac_error(sc);
}
#endif
#define SYNC_RESP_STRUCT(_var_, _pkt_) \
do { \
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
_var_ = (void *)((_pkt_)+1); \
} while (/*CONSTCOND*/0)
#define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \
do { \
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
_ptr_ = (void *)((_pkt_)+1); \
} while (/*CONSTCOND*/0)
#define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
/*
* Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
* Basic structure from if_iwn
*/
static void
iwm_notif_intr(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t hw;
bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
BUS_DMASYNC_POSTREAD);
hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
/*
* Process responses
*/
while (sc->rxq.cur != hw) {
struct iwm_rx_ring *ring = &sc->rxq;
struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct iwm_rx_packet *pkt;
struct iwm_cmd_response *cresp;
int qid, idx, code;
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
pkt = mtod(data->m, struct iwm_rx_packet *);
qid = pkt->hdr.qid & ~0x80;
idx = pkt->hdr.idx;
code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
IWM_DPRINTF(sc, IWM_DEBUG_INTR,
"rx packet qid=%d idx=%d type=%x %d %d\n",
pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, sc->rxq.cur, hw);
/*
* randomly get these from the firmware, no idea why.
* they at least seem harmless, so just ignore them for now
*/
if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
|| pkt->len_n_flags == htole32(0x55550000))) {
ADVANCE_RXQ(sc);
continue;
}
switch (code) {
case IWM_REPLY_RX_PHY_CMD:
iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
break;
case IWM_REPLY_RX_MPDU_CMD:
iwm_mvm_rx_rx_mpdu(sc, pkt, data);
break;
case IWM_TX_CMD:
iwm_mvm_rx_tx_cmd(sc, pkt, data);
break;
case IWM_MISSED_BEACONS_NOTIFICATION: {
struct iwm_missed_beacons_notif *resp;
int missed;
/* XXX look at mac_id to determine interface ID */
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
SYNC_RESP_STRUCT(resp, pkt);
missed = le32toh(resp->consec_missed_beacons);
IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
"%s: MISSED_BEACON: mac_id=%d, "
"consec_since_last_rx=%d, consec=%d, num_expect=%d "
"num_rx=%d\n",
__func__,
le32toh(resp->mac_id),
le32toh(resp->consec_missed_beacons_since_last_rx),
le32toh(resp->consec_missed_beacons),
le32toh(resp->num_expected_beacons),
le32toh(resp->num_recvd_beacons));
/* Be paranoid */
if (vap == NULL)
break;
/* XXX no net80211 locking? */
if (vap->iv_state == IEEE80211_S_RUN &&
(ic->ic_flags & IEEE80211_F_SCAN) == 0) {
if (missed > vap->iv_bmissthreshold) {
/* XXX bad locking; turn into task */
IWM_UNLOCK(sc);
ieee80211_beacon_miss(ic);
IWM_LOCK(sc);
}
}
break; }
case IWM_MFUART_LOAD_NOTIFICATION:
break;
case IWM_MVM_ALIVE: {
struct iwm_mvm_alive_resp_v1 *resp1;
struct iwm_mvm_alive_resp_v2 *resp2;
struct iwm_mvm_alive_resp_v3 *resp3;
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
SYNC_RESP_STRUCT(resp1, pkt);
sc->sc_uc.uc_error_event_table
= le32toh(resp1->error_event_table_ptr);
sc->sc_uc.uc_log_event_table
= le32toh(resp1->log_event_table_ptr);
sc->sched_base = le32toh(resp1->scd_base_ptr);
if (resp1->status == IWM_ALIVE_STATUS_OK)
sc->sc_uc.uc_ok = 1;
else
sc->sc_uc.uc_ok = 0;
}
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
SYNC_RESP_STRUCT(resp2, pkt);
sc->sc_uc.uc_error_event_table
= le32toh(resp2->error_event_table_ptr);
sc->sc_uc.uc_log_event_table
= le32toh(resp2->log_event_table_ptr);
sc->sched_base = le32toh(resp2->scd_base_ptr);
sc->sc_uc.uc_umac_error_event_table
= le32toh(resp2->error_info_addr);
if (resp2->status == IWM_ALIVE_STATUS_OK)
sc->sc_uc.uc_ok = 1;
else
sc->sc_uc.uc_ok = 0;
}
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
SYNC_RESP_STRUCT(resp3, pkt);
sc->sc_uc.uc_error_event_table
= le32toh(resp3->error_event_table_ptr);
sc->sc_uc.uc_log_event_table
= le32toh(resp3->log_event_table_ptr);
sc->sched_base = le32toh(resp3->scd_base_ptr);
sc->sc_uc.uc_umac_error_event_table
= le32toh(resp3->error_info_addr);
if (resp3->status == IWM_ALIVE_STATUS_OK)
sc->sc_uc.uc_ok = 1;
else
sc->sc_uc.uc_ok = 0;
}
sc->sc_uc.uc_intr = 1;
wakeup(&sc->sc_uc);
break; }
case IWM_CALIB_RES_NOTIF_PHY_DB: {
struct iwm_calib_res_notif_phy_db *phy_db_notif;
SYNC_RESP_STRUCT(phy_db_notif, pkt);
iwm_phy_db_set_section(sc, phy_db_notif);
break; }
case IWM_STATISTICS_NOTIFICATION: {
struct iwm_notif_statistics *stats;
SYNC_RESP_STRUCT(stats, pkt);
memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
sc->sc_noise = iwm_get_noise(&stats->rx.general);
break; }
case IWM_NVM_ACCESS_CMD:
case IWM_MCC_UPDATE_CMD:
if (sc->sc_wantresp == ((qid << 16) | idx)) {
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
memcpy(sc->sc_cmd_resp,
pkt, sizeof(sc->sc_cmd_resp));
}
break;
case IWM_MCC_CHUB_UPDATE_CMD: {
struct iwm_mcc_chub_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
sc->sc_fw_mcc[1] = notif->mcc & 0xff;
sc->sc_fw_mcc[2] = '\0';
IWM_DPRINTF(sc, IWM_DEBUG_RESET,
"fw source %d sent CC '%s'\n",
notif->source_id, sc->sc_fw_mcc);
break; }
case IWM_DTS_MEASUREMENT_NOTIFICATION:
break;
case IWM_PHY_CONFIGURATION_CMD:
case IWM_TX_ANT_CONFIGURATION_CMD:
case IWM_ADD_STA:
case IWM_MAC_CONTEXT_CMD:
case IWM_REPLY_SF_CFG_CMD:
case IWM_POWER_TABLE_CMD:
case IWM_PHY_CONTEXT_CMD:
case IWM_BINDING_CONTEXT_CMD:
case IWM_TIME_EVENT_CMD:
case IWM_SCAN_REQUEST_CMD:
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
case IWM_SCAN_OFFLOAD_REQUEST_CMD:
case IWM_REPLY_BEACON_FILTERING_CMD:
case IWM_MAC_PM_POWER_TABLE:
case IWM_TIME_QUOTA_CMD:
case IWM_REMOVE_STA:
case IWM_TXPATH_FLUSH:
case IWM_LQ_CMD:
case IWM_BT_CONFIG:
case IWM_REPLY_THERMAL_MNG_BACKOFF:
SYNC_RESP_STRUCT(cresp, pkt);
if (sc->sc_wantresp == ((qid << 16) | idx)) {
memcpy(sc->sc_cmd_resp,
pkt, sizeof(*pkt)+sizeof(*cresp));
}
break;
/* ignore */
case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
break;
case IWM_INIT_COMPLETE_NOTIF:
sc->sc_init_complete = 1;
wakeup(&sc->sc_init_complete);
break;
case IWM_SCAN_OFFLOAD_COMPLETE: {
struct iwm_periodic_scan_complete *notif;
SYNC_RESP_STRUCT(notif, pkt);
break;
}
case IWM_SCAN_ITERATION_COMPLETE: {
struct iwm_lmac_scan_complete_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
break;
}
case IWM_SCAN_COMPLETE_UMAC: {
struct iwm_umac_scan_complete *notif;
SYNC_RESP_STRUCT(notif, pkt);
IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
"UMAC scan complete, status=0x%x\n",
notif->status);
#if 0 /* XXX This would be a duplicate scan end call */
taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
#endif
break;
}
case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
struct iwm_umac_scan_iter_complete_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
"complete, status=0x%x, %d channels scanned\n",
notif->status, notif->scanned_channels);
ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
break;
}
case IWM_REPLY_ERROR: {
struct iwm_error_resp *resp;
SYNC_RESP_STRUCT(resp, pkt);
device_printf(sc->sc_dev,
"firmware error 0x%x, cmd 0x%x\n",
le32toh(resp->error_type),
resp->cmd_id);
break;
}
case IWM_TIME_EVENT_NOTIFICATION: {
struct iwm_time_event_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
IWM_DPRINTF(sc, IWM_DEBUG_INTR,
"TE notif status = 0x%x action = 0x%x\n",
notif->status, notif->action);
break;
}
case IWM_MCAST_FILTER_CMD:
break;
case IWM_SCD_QUEUE_CFG: {
struct iwm_scd_txq_cfg_rsp *rsp;
SYNC_RESP_STRUCT(rsp, pkt);
IWM_DPRINTF(sc, IWM_DEBUG_CMD,
"queue cfg token=0x%x sta_id=%d "
"tid=%d scd_queue=%d\n",
rsp->token, rsp->sta_id, rsp->tid,
rsp->scd_queue);
break;
}
default:
device_printf(sc->sc_dev,
"frame %d/%d %x UNHANDLED (this should "
"not happen)\n", qid, idx,
pkt->len_n_flags);
break;
}
/*
* Why test bit 0x80? The Linux driver:
*
* There is one exception: uCode sets bit 15 when it
* originates the response/notification, i.e. when the
* response/notification is not a direct response to a
* command sent by the driver. For example, uCode issues
* IWM_REPLY_RX when it sends a received frame to the driver;
* it is not a direct response to any driver command.
*
* Ok, so since when is 7 == 15? Well, the Linux driver
* uses a slightly different format for pkt->hdr, and "qid"
* is actually the upper byte of a two-byte field.
*/
if (!(pkt->hdr.qid & (1 << 7))) {
iwm_cmd_done(sc, pkt);
}
ADVANCE_RXQ(sc);
}
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/*
* Tell the firmware what we have processed.
* Seems like the hardware gets upset unless we align
* the write by 8??
*/
hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
}
static void
iwm_intr(void *arg)
{
struct iwm_softc *sc = arg;
int handled = 0;
int r1, r2, rv = 0;
int isperiodic = 0;
IWM_LOCK(sc);
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
if (sc->sc_flags & IWM_FLAG_USE_ICT) {
uint32_t *ict = sc->ict_dma.vaddr;
int tmp;
tmp = htole32(ict[sc->ict_cur]);
if (!tmp)
goto out_ena;
/*
* ok, there was something. keep plowing until we have all.
*/
r1 = r2 = 0;
while (tmp) {
r1 |= tmp;
ict[sc->ict_cur] = 0;
sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
tmp = htole32(ict[sc->ict_cur]);
}
/* this is where the fun begins. don't ask */
if (r1 == 0xffffffff)
r1 = 0;
/* i am not expected to understand this */
if (r1 & 0xc0000)
r1 |= 0x8000;
r1 = (0xff & r1) | ((0xff00 & r1) << 16);
} else {
r1 = IWM_READ(sc, IWM_CSR_INT);
/* "hardware gone" (where, fishing?) */
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
goto out;
r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
}
if (r1 == 0 && r2 == 0) {
goto out_ena;
}
IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
/* ignored */
handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
int i;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
#ifdef IWM_DEBUG
iwm_nic_error(sc);
#endif
/* Dump driver status (TX and RX rings) while we're here. */
device_printf(sc->sc_dev, "driver status:\n");
for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
struct iwm_tx_ring *ring = &sc->txq[i];
device_printf(sc->sc_dev,
" tx ring %2d: qid=%-2d cur=%-3d "
"queued=%-3d\n",
i, ring->qid, ring->cur, ring->queued);
}
device_printf(sc->sc_dev,
" rx ring: cur=%d\n", sc->rxq.cur);
device_printf(sc->sc_dev,
" 802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
/* Don't stop the device; just do a VAP restart */
IWM_UNLOCK(sc);
if (vap == NULL) {
printf("%s: null vap\n", __func__);
return;
}
device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
"restarting\n", __func__, vap->iv_state);
/* XXX TODO: turn this into a callout/taskqueue */
ieee80211_restart_all(ic);
return;
}
if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
handled |= IWM_CSR_INT_BIT_HW_ERR;
device_printf(sc->sc_dev, "hardware error, stopping device\n");
iwm_stop(sc);
rv = 1;
goto out;
}
/* firmware chunk loaded */
if (r1 & IWM_CSR_INT_BIT_FH_TX) {
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
handled |= IWM_CSR_INT_BIT_FH_TX;
sc->sc_fw_chunk_done = 1;
wakeup(&sc->sc_fw);
}
if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
handled |= IWM_CSR_INT_BIT_RF_KILL;
if (iwm_check_rfkill(sc)) {
device_printf(sc->sc_dev,
"%s: rfkill switch, disabling interface\n",
__func__);
iwm_stop(sc);
}
}
/*
* The Linux driver uses periodic interrupts to avoid races.
* We cargo-cult like it's going out of fashion.
*/
if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
IWM_WRITE_1(sc,
IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
isperiodic = 1;
}
if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
iwm_notif_intr(sc);
/* enable periodic interrupt, see above */
if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
IWM_CSR_INT_PERIODIC_ENA);
}
if (__predict_false(r1 & ~handled))
IWM_DPRINTF(sc, IWM_DEBUG_INTR,
"%s: unhandled interrupts: %x\n", __func__, r1);
rv = 1;
out_ena:
iwm_restore_interrupts(sc);
out:
IWM_UNLOCK(sc);
return;
}
/*
* Autoconf glue-sniffing
*/
#define PCI_VENDOR_INTEL 0x8086
#define PCI_PRODUCT_INTEL_WL_3160_1 0x08b3
#define PCI_PRODUCT_INTEL_WL_3160_2 0x08b4
#define PCI_PRODUCT_INTEL_WL_3165_1 0x3165
#define PCI_PRODUCT_INTEL_WL_3165_2 0x3166
#define PCI_PRODUCT_INTEL_WL_7260_1 0x08b1
#define PCI_PRODUCT_INTEL_WL_7260_2 0x08b2
#define PCI_PRODUCT_INTEL_WL_7265_1 0x095a
#define PCI_PRODUCT_INTEL_WL_7265_2 0x095b
#define PCI_PRODUCT_INTEL_WL_8260_1 0x24f3
#define PCI_PRODUCT_INTEL_WL_8260_2 0x24f4
static const struct iwm_devices {
uint16_t device;
const char *name;
} iwm_devices[] = {
{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
{ PCI_PRODUCT_INTEL_WL_3165_1, "Intel Dual Band Wireless AC 3165" },
{ PCI_PRODUCT_INTEL_WL_3165_2, "Intel Dual Band Wireless AC 3165" },
{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
{ PCI_PRODUCT_INTEL_WL_8260_1, "Intel Dual Band Wireless AC 8260" },
{ PCI_PRODUCT_INTEL_WL_8260_2, "Intel Dual Band Wireless AC 8260" },
};
static int
iwm_probe(device_t dev)
{
int i;
for (i = 0; i < nitems(iwm_devices); i++) {
if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
pci_get_device(dev) == iwm_devices[i].device) {
device_set_desc(dev, iwm_devices[i].name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
iwm_dev_check(device_t dev)
{
struct iwm_softc *sc;
sc = device_get_softc(dev);
sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
switch (pci_get_device(dev)) {
case PCI_PRODUCT_INTEL_WL_3160_1:
case PCI_PRODUCT_INTEL_WL_3160_2:
sc->sc_fwname = "iwm3160fw";
sc->host_interrupt_operation_mode = 1;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
return (0);
case PCI_PRODUCT_INTEL_WL_3165_1:
case PCI_PRODUCT_INTEL_WL_3165_2:
sc->sc_fwname = "iwm7265fw";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
return (0);
case PCI_PRODUCT_INTEL_WL_7260_1:
case PCI_PRODUCT_INTEL_WL_7260_2:
sc->sc_fwname = "iwm7260fw";
sc->host_interrupt_operation_mode = 1;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
return (0);
case PCI_PRODUCT_INTEL_WL_7265_1:
case PCI_PRODUCT_INTEL_WL_7265_2:
sc->sc_fwname = "iwm7265fw";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
return (0);
case PCI_PRODUCT_INTEL_WL_8260_1:
case PCI_PRODUCT_INTEL_WL_8260_2:
sc->sc_fwname = "iwm8000Cfw";
sc->host_interrupt_operation_mode = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
return (0);
default:
device_printf(dev, "unknown adapter type\n");
return ENXIO;
}
}
static int
iwm_pci_attach(device_t dev)
{
struct iwm_softc *sc;
int count, error, rid;
uint16_t reg;
sc = device_get_softc(dev);
/* Clear device-specific "PCI retry timeout" register (41h). */
reg = pci_read_config(dev, 0x40, sizeof(reg));
pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
/* Enable bus-mastering and hardware bug workaround. */
pci_enable_busmaster(dev);
reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
/* if !MSI */
if (reg & PCIM_STATUS_INTxSTATE) {
reg &= ~PCIM_STATUS_INTxSTATE;
}
pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
rid = PCIR_BAR(0);
sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->sc_mem == NULL) {
device_printf(sc->sc_dev, "can't map mem space\n");
return (ENXIO);
}
sc->sc_st = rman_get_bustag(sc->sc_mem);
sc->sc_sh = rman_get_bushandle(sc->sc_mem);
/* Install interrupt handler. */
count = 1;
rid = 0;
if (pci_alloc_msi(dev, &count) == 0)
rid = 1;
sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
(rid != 0 ? 0 : RF_SHAREABLE));
if (sc->sc_irq == NULL) {
device_printf(dev, "can't map interrupt\n");
return (ENXIO);
}
error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, iwm_intr, sc, &sc->sc_ih);
if (sc->sc_ih == NULL) {
device_printf(dev, "can't establish interrupt");
return (ENXIO);
}
sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
return (0);
}
static void
iwm_pci_detach(device_t dev)
{
struct iwm_softc *sc = device_get_softc(dev);
if (sc->sc_irq != NULL) {
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->sc_irq), sc->sc_irq);
pci_release_msi(dev);
}
if (sc->sc_mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->sc_mem), sc->sc_mem);
}
static int
iwm_attach(device_t dev)
{
struct iwm_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
int error;
int txq_i, i;
sc->sc_dev = dev;
IWM_LOCK_INIT(sc);
mbufq_init(&sc->sc_snd, ifqmaxlen);
callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
/* PCI attach */
error = iwm_pci_attach(dev);
if (error != 0)
goto fail;
sc->sc_wantresp = -1;
/* Check device type */
error = iwm_dev_check(dev);
if (error != 0)
goto fail;
/*
* We now start fiddling with the hardware
*/
/*
* In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
* changed, and now the revision step also includes bit 0-1 (no more
* "dash" value). To keep hw_rev backwards compatible - we'll store it
* in the old format.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
if (iwm_prepare_card_hw(sc) != 0) {
device_printf(dev, "could not initialize hardware\n");
goto fail;
}
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
int ret;
uint32_t hw_step;
/*
* In order to recognize C step the driver should read the
* chip version id located at the AUX bus MISC address.
*/
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
DELAY(2);
ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
25000);
if (ret < 0) {
device_printf(sc->sc_dev,
"Failed to wake up the nic\n");
goto fail;
}
if (iwm_nic_lock(sc)) {
hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
hw_step |= IWM_ENABLE_WFPM;
iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
if (hw_step == 0x3)
sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
(IWM_SILICON_C_STEP << 2);
iwm_nic_unlock(sc);
} else {
device_printf(sc->sc_dev, "Failed to lock the nic\n");
goto fail;
}
}
/* Allocate DMA memory for firmware transfers. */
if ((error = iwm_alloc_fwmem(sc)) != 0) {
device_printf(dev, "could not allocate memory for firmware\n");
goto fail;
}
/* Allocate "Keep Warm" page. */
if ((error = iwm_alloc_kw(sc)) != 0) {
device_printf(dev, "could not allocate keep warm page\n");
goto fail;
}
/* We use ICT interrupts */
if ((error = iwm_alloc_ict(sc)) != 0) {
device_printf(dev, "could not allocate ICT table\n");
goto fail;
}
/* Allocate TX scheduler "rings". */
if ((error = iwm_alloc_sched(sc)) != 0) {
device_printf(dev, "could not allocate TX scheduler rings\n");
goto fail;
}
/* Allocate TX rings */
for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
if ((error = iwm_alloc_tx_ring(sc,
&sc->txq[txq_i], txq_i)) != 0) {
device_printf(dev,
"could not allocate TX ring %d\n",
txq_i);
goto fail;
}
}
/* Allocate RX ring. */
if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
device_printf(dev, "could not allocate RX ring\n");
goto fail;
}
/* Clear pending interrupts. */
IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(sc->sc_dev);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_STA |
IEEE80211_C_WPA | /* WPA/RSN */
IEEE80211_C_WME |
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE /* short preamble supported */
// IEEE80211_C_BGSCAN /* capable of bg scanning */
;
for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
sc->sc_phyctxt[i].id = i;
sc->sc_phyctxt[i].color = 0;
sc->sc_phyctxt[i].ref = 0;
sc->sc_phyctxt[i].channel = NULL;
}
/* Max RSSI */
sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
sc->sc_preinit_hook.ich_func = iwm_preinit;
sc->sc_preinit_hook.ich_arg = sc;
if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
device_printf(dev, "config_intrhook_establish failed\n");
goto fail;
}
#ifdef IWM_DEBUG
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
#endif
IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
"<-%s\n", __func__);
return 0;
/* Free allocated memory if something failed during attachment. */
fail:
iwm_detach_local(sc, 0);
return ENXIO;
}
static int
iwm_is_valid_ether_addr(uint8_t *addr)
{
char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
return (FALSE);
return (TRUE);
}
static int
iwm_update_edca(struct ieee80211com *ic)
{
struct iwm_softc *sc = ic->ic_softc;
device_printf(sc->sc_dev, "%s: called\n", __func__);
return (0);
}
static void
iwm_preinit(void *arg)
{
struct iwm_softc *sc = arg;
device_t dev = sc->sc_dev;
struct ieee80211com *ic = &sc->sc_ic;
int error;
IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
"->%s\n", __func__);
IWM_LOCK(sc);
if ((error = iwm_start_hw(sc)) != 0) {
device_printf(dev, "could not initialize hardware\n");
IWM_UNLOCK(sc);
goto fail;
}
error = iwm_run_init_mvm_ucode(sc, 1);
iwm_stop_device(sc);
if (error) {
IWM_UNLOCK(sc);
goto fail;
}
device_printf(dev,
"hw rev 0x%x, fw ver %s, address %s\n",
sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr));
/* not all hardware can do 5GHz band */
if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
IWM_UNLOCK(sc);
iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
ic->ic_channels);
/*
* At this point we've committed - if we fail to do setup,
* we now also have to tear down the net80211 state.
*/
ieee80211_ifattach(ic);
ic->ic_vap_create = iwm_vap_create;
ic->ic_vap_delete = iwm_vap_delete;
ic->ic_raw_xmit = iwm_raw_xmit;
ic->ic_node_alloc = iwm_node_alloc;
ic->ic_scan_start = iwm_scan_start;
ic->ic_scan_end = iwm_scan_end;
ic->ic_update_mcast = iwm_update_mcast;
ic->ic_getradiocaps = iwm_init_channel_map;
ic->ic_set_channel = iwm_set_channel;
ic->ic_scan_curchan = iwm_scan_curchan;
ic->ic_scan_mindwell = iwm_scan_mindwell;
ic->ic_wme.wme_update = iwm_update_edca;
ic->ic_parent = iwm_parent;
ic->ic_transmit = iwm_transmit;
iwm_radiotap_attach(sc);
if (bootverbose)
ieee80211_announce(ic);
IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
"<-%s\n", __func__);
config_intrhook_disestablish(&sc->sc_preinit_hook);
return;
fail:
config_intrhook_disestablish(&sc->sc_preinit_hook);
iwm_detach_local(sc, 0);
}
/*
* Attach the interface to 802.11 radiotap.
*/
static void
iwm_radiotap_attach(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
"->%s begin\n", __func__);
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
IWM_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
IWM_RX_RADIOTAP_PRESENT);
IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
"->%s end\n", __func__);
}
static struct ieee80211vap *
iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct iwm_vap *ivp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
vap = &ivp->iv_vap;
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
vap->iv_bmissthreshold = 10; /* override default */
/* Override with driver methods. */
ivp->iv_newstate = vap->iv_newstate;
vap->iv_newstate = iwm_newstate;
ieee80211_ratectl_init(vap);
/* Complete setup. */
ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
mac);
ic->ic_opmode = opmode;
return vap;
}
static void
iwm_vap_delete(struct ieee80211vap *vap)
{
struct iwm_vap *ivp = IWM_VAP(vap);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(ivp, M_80211_VAP);
}
static void
iwm_scan_start(struct ieee80211com *ic)
{
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct iwm_softc *sc = ic->ic_softc;
int error;
IWM_LOCK(sc);
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
error = iwm_mvm_umac_scan(sc);
else
error = iwm_mvm_lmac_scan(sc);
if (error != 0) {
device_printf(sc->sc_dev, "could not initiate 2 GHz scan\n");
IWM_UNLOCK(sc);
ieee80211_cancel_scan(vap);
} else {
iwm_led_blink_start(sc);
IWM_UNLOCK(sc);
}
}
static void
iwm_scan_end(struct ieee80211com *ic)
{
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct iwm_softc *sc = ic->ic_softc;
IWM_LOCK(sc);
iwm_led_blink_stop(sc);
if (vap->iv_state == IEEE80211_S_RUN)
iwm_mvm_led_enable(sc);
IWM_UNLOCK(sc);
}
static void
iwm_update_mcast(struct ieee80211com *ic)
{
}
static void
iwm_set_channel(struct ieee80211com *ic)
{
}
static void
iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
{
}
static void
iwm_scan_mindwell(struct ieee80211_scan_state *ss)
{
return;
}
void
iwm_init_task(void *arg1)
{
struct iwm_softc *sc = arg1;
IWM_LOCK(sc);
while (sc->sc_flags & IWM_FLAG_BUSY)
msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
sc->sc_flags |= IWM_FLAG_BUSY;
iwm_stop(sc);
if (sc->sc_ic.ic_nrunning > 0)
iwm_init(sc);
sc->sc_flags &= ~IWM_FLAG_BUSY;
wakeup(&sc->sc_flags);
IWM_UNLOCK(sc);
}
static int
iwm_resume(device_t dev)
{
struct iwm_softc *sc = device_get_softc(dev);
int do_reinit = 0;
uint16_t reg;
/* Clear device-specific "PCI retry timeout" register (41h). */
reg = pci_read_config(dev, 0x40, sizeof(reg));
pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
iwm_init_task(device_get_softc(dev));
IWM_LOCK(sc);
if (sc->sc_flags & IWM_FLAG_SCANNING) {
sc->sc_flags &= ~IWM_FLAG_SCANNING;
do_reinit = 1;
}
IWM_UNLOCK(sc);
if (do_reinit)
ieee80211_resume_all(&sc->sc_ic);
return 0;
}
static int
iwm_suspend(device_t dev)
{
int do_stop = 0;
struct iwm_softc *sc = device_get_softc(dev);
do_stop = !! (sc->sc_ic.ic_nrunning > 0);
ieee80211_suspend_all(&sc->sc_ic);
if (do_stop) {
IWM_LOCK(sc);
iwm_stop(sc);
sc->sc_flags |= IWM_FLAG_SCANNING;
IWM_UNLOCK(sc);
}
return (0);
}
static int
iwm_detach_local(struct iwm_softc *sc, int do_net80211)
{
struct iwm_fw_info *fw = &sc->sc_fw;
device_t dev = sc->sc_dev;
int i;
ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
callout_drain(&sc->sc_led_blink_to);
callout_drain(&sc->sc_watchdog_to);
iwm_stop_device(sc);
if (do_net80211) {
ieee80211_ifdetach(&sc->sc_ic);
}
iwm_phy_db_free(sc);
/* Free descriptor rings */
iwm_free_rx_ring(sc, &sc->rxq);
for (i = 0; i < nitems(sc->txq); i++)
iwm_free_tx_ring(sc, &sc->txq[i]);
/* Free firmware */
if (fw->fw_fp != NULL)
iwm_fw_info_free(fw);
/* Free scheduler */
iwm_free_sched(sc);
if (sc->ict_dma.vaddr != NULL)
iwm_free_ict(sc);
if (sc->kw_dma.vaddr != NULL)
iwm_free_kw(sc);
if (sc->fw_dma.vaddr != NULL)
iwm_free_fwmem(sc);
/* Finished with the hardware - detach things */
iwm_pci_detach(dev);
mbufq_drain(&sc->sc_snd);
IWM_LOCK_DESTROY(sc);
return (0);
}
static int
iwm_detach(device_t dev)
{
struct iwm_softc *sc = device_get_softc(dev);
return (iwm_detach_local(sc, 1));
}
static device_method_t iwm_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, iwm_probe),
DEVMETHOD(device_attach, iwm_attach),
DEVMETHOD(device_detach, iwm_detach),
DEVMETHOD(device_suspend, iwm_suspend),
DEVMETHOD(device_resume, iwm_resume),
DEVMETHOD_END
};
static driver_t iwm_pci_driver = {
"iwm",
iwm_pci_methods,
sizeof (struct iwm_softc)
};
static devclass_t iwm_devclass;
DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
MODULE_DEPEND(iwm, firmware, 1, 1, 1);
MODULE_DEPEND(iwm, pci, 1, 1, 1);
MODULE_DEPEND(iwm, wlan, 1, 1, 1);