freebsd-skq/sys/pc98/i386/machdep.c
phk 36c3965ff9 Separate the struct bio related stuff out of <sys/buf.h> into
<sys/bio.h>.

<sys/bio.h> is now a prerequisite for <sys/buf.h> but it shall
not be made a nested include according to bdes teachings on the
subject of nested includes.

Diskdrivers and similar stuff below specfs::strategy() should no
longer need to include <sys/buf.> unless they need caching of data.

Still a few bogus uses of struct buf to track down.

Repocopy by:    peter
2000-05-05 09:59:14 +00:00

2737 lines
74 KiB
C

/*-
* Copyright (c) 1992 Terrence R. Lambert.
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
* $FreeBSD$
*/
#include "apm.h"
#include "ether.h"
#include "npx.h"
#include "opt_atalk.h"
#include "opt_compat.h"
#include "opt_cpu.h"
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_ipx.h"
#include "opt_maxmem.h"
#include "opt_msgbuf.h"
#include "opt_perfmon.h"
#include "opt_smp.h"
#include "opt_user_ldt.h"
#include "opt_userconfig.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/sysent.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/bus.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
#include <sys/user.h>
#include <sys/exec.h>
#include <sys/cons.h>
#include <ddb/ddb.h>
#include <net/netisr.h>
#include <machine/cpu.h>
#include <machine/reg.h>
#include <machine/clock.h>
#include <machine/specialreg.h>
#include <machine/bootinfo.h>
#include <machine/ipl.h>
#include <machine/md_var.h>
#include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
#ifdef SMP
#include <machine/smp.h>
#include <machine/globaldata.h>
#endif
#ifdef PERFMON
#include <machine/perfmon.h>
#endif
#ifdef OLD_BUS_ARCH
#include <i386/isa/isa_device.h>
#endif
#include <i386/isa/intr_machdep.h>
#ifdef PC98
#include <pc98/pc98/pc98_machdep.h>
#include <pc98/pc98/pc98.h>
#else
#include <isa/rtc.h>
#endif
#include <machine/vm86.h>
#include <sys/random.h>
#include <sys/ptrace.h>
#include <machine/sigframe.h>
extern void init386 __P((int first));
extern void dblfault_handler __P((void));
extern void printcpuinfo(void); /* XXX header file */
extern void earlysetcpuclass(void); /* same header file */
extern void finishidentcpu(void);
extern void panicifcpuunsupported(void);
extern void initializecpu(void);
static void cpu_startup __P((void *));
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
#ifdef PC98
int need_pre_dma_flush; /* If 1, use wbinvd befor DMA transfer. */
int need_post_dma_flush; /* If 1, use invd after DMA transfer. */
#endif
int _udatasel, _ucodesel;
u_int atdevbase;
#if defined(SWTCH_OPTIM_STATS)
extern int swtch_optim_stats;
SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
CTLFLAG_RD, &swtch_optim_stats, 0, "");
SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
CTLFLAG_RD, &tlb_flush_count, 0, "");
#endif
#ifdef PC98
static int ispc98 = 1;
#else
static int ispc98 = 0;
#endif
SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
int physmem = 0;
int cold = 1;
static int
sysctl_hw_physmem SYSCTL_HANDLER_ARGS
{
int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
return (error);
}
SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
0, 0, sysctl_hw_physmem, "I", "");
static int
sysctl_hw_usermem SYSCTL_HANDLER_ARGS
{
int error = sysctl_handle_int(oidp, 0,
ctob(physmem - cnt.v_wire_count), req);
return (error);
}
SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
0, 0, sysctl_hw_usermem, "I", "");
static int
sysctl_hw_availpages SYSCTL_HANDLER_ARGS
{
int error = sysctl_handle_int(oidp, 0,
i386_btop(avail_end - avail_start), req);
return (error);
}
SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
0, 0, sysctl_hw_availpages, "I", "");
static int
sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS
{
int error;
/* Unwind the buffer, so that it's linear (possibly starting with
* some initial nulls).
*/
error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
msgbufp->msg_size-msgbufp->msg_bufr,req);
if(error) return(error);
if(msgbufp->msg_bufr>0) {
error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
msgbufp->msg_bufr,req);
}
return(error);
}
SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
static int msgbuf_clear;
static int
sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS
{
int error;
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
req);
if (!error && req->newptr) {
/* Clear the buffer and reset write pointer */
bzero(msgbufp->msg_ptr,msgbufp->msg_size);
msgbufp->msg_bufr=msgbufp->msg_bufx=0;
msgbuf_clear=0;
}
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
"Clear kernel message buffer");
int bootverbose = 0, Maxmem = 0;
#ifdef PC98
int Maxmem_under16M = 0;
#endif
long dumplo;
vm_offset_t phys_avail[10];
/* must be 2 less so 0 0 can signal end of chunks */
#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
static vm_offset_t buffer_sva, buffer_eva;
vm_offset_t clean_sva, clean_eva;
static vm_offset_t pager_sva, pager_eva;
#define offsetof(type, member) ((size_t)(&((type *)0)->member))
static void
cpu_startup(dummy)
void *dummy;
{
register unsigned i;
register caddr_t v;
vm_offset_t maxaddr;
vm_size_t size = 0;
int firstaddr;
vm_offset_t minaddr;
if (boothowto & RB_VERBOSE)
bootverbose++;
/*
* Good {morning,afternoon,evening,night}.
*/
printf(version);
earlysetcpuclass();
startrtclock();
printcpuinfo();
panicifcpuunsupported();
#ifdef PERFMON
perfmon_init();
#endif
printf("real memory = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
int size1 = phys_avail[indx + 1] - phys_avail[indx];
printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
phys_avail[indx], phys_avail[indx + 1] - 1, size1,
size1 / PAGE_SIZE);
}
}
/*
* Calculate callout wheel size
*/
for (callwheelsize = 1, callwheelbits = 0;
callwheelsize < ncallout;
callwheelsize <<= 1, ++callwheelbits)
;
callwheelmask = callwheelsize - 1;
/*
* Allocate space for system data structures.
* The first available kernel virtual address is in "v".
* As pages of kernel virtual memory are allocated, "v" is incremented.
* As pages of memory are allocated and cleared,
* "firstaddr" is incremented.
* An index into the kernel page table corresponding to the
* virtual memory address maintained in "v" is kept in "mapaddr".
*/
/*
* Make two passes. The first pass calculates how much memory is
* needed and allocates it. The second pass assigns virtual
* addresses to the various data structures.
*/
firstaddr = 0;
again:
v = (caddr_t)firstaddr;
#define valloc(name, type, num) \
(name) = (type *)v; v = (caddr_t)((name)+(num))
#define valloclim(name, type, num, lim) \
(name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
valloc(callout, struct callout, ncallout);
valloc(callwheel, struct callout_tailq, callwheelsize);
/*
* The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
* For the first 64MB of ram nominally allocate sufficient buffers to
* cover 1/4 of our ram. Beyond the first 64MB allocate additional
* buffers to cover 1/20 of our ram over 64MB.
*
* factor represents the 1/4 x ram conversion.
*/
if (nbuf == 0) {
int factor = 4 * BKVASIZE / PAGE_SIZE;
nbuf = 50;
if (physmem > 1024)
nbuf += min((physmem - 1024) / factor, 16384 / factor);
if (physmem > 16384)
nbuf += (physmem - 16384) * 2 / (factor * 5);
}
/*
* Do not allow the buffer_map to be more then 1/2 the size of the
* kernel_map.
*/
if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
(BKVASIZE * 2)) {
nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
(BKVASIZE * 2);
printf("Warning: nbufs capped at %d\n", nbuf);
}
nswbuf = max(min(nbuf/4, 256), 16);
valloc(swbuf, struct buf, nswbuf);
valloc(buf, struct buf, nbuf);
v = bufhashinit(v);
/*
* End of first pass, size has been calculated so allocate memory
*/
if (firstaddr == 0) {
size = (vm_size_t)(v - firstaddr);
firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
if (firstaddr == 0)
panic("startup: no room for tables");
goto again;
}
/*
* End of second pass, addresses have been assigned
*/
if ((vm_size_t)(v - firstaddr) != size)
panic("startup: table size inconsistency");
clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
(nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
(nbuf*BKVASIZE));
pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
(nswbuf*MAXPHYS) + pager_map_size);
pager_map->system_map = 1;
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
(16*(ARG_MAX+(PAGE_SIZE*3))));
/*
* Finally, allocate mbuf pool. Since mclrefcnt is an off-size
* we use the more space efficient malloc in place of kmem_alloc.
*/
{
vm_offset_t mb_map_size;
mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES;
mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE));
mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT);
bzero(mclrefcnt, mb_map_size / MCLBYTES);
mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
mb_map_size);
mb_map->system_map = 1;
}
/*
* Initialize callouts
*/
SLIST_INIT(&callfree);
for (i = 0; i < ncallout; i++) {
callout_init(&callout[i]);
callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
}
for (i = 0; i < callwheelsize; i++) {
TAILQ_INIT(&callwheel[i]);
}
#if defined(USERCONFIG)
userconfig();
cninit(); /* the preferred console may have changed */
#endif
printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
ptoa(cnt.v_free_count) / 1024);
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
vm_pager_bufferinit();
#ifdef SMP
/*
* OK, enough kmem_alloc/malloc state should be up, lets get on with it!
*/
mp_start(); /* fire up the APs and APICs */
mp_announce();
#endif /* SMP */
}
int
register_netisr(num, handler)
int num;
netisr_t *handler;
{
if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
printf("register_netisr: bad isr number: %d\n", num);
return (EINVAL);
}
netisrs[num] = handler;
return (0);
}
/*
* Send an interrupt to process.
*
* Stack is set up to allow sigcode stored
* at top to call routine, followed by kcall
* to sigreturn routine below. After sigreturn
* resets the signal mask, the stack, and the
* frame pointer, it returns to the user
* specified pc, psl.
*/
static void
osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
{
register struct proc *p = curproc;
register struct trapframe *regs;
register struct osigframe *fp;
struct osigframe sf;
struct sigacts *psp = p->p_sigacts;
int oonstack;
regs = p->p_md.md_regs;
oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
/* Allocate and validate space for the signal handler context. */
if ((p->p_flag & P_ALTSTACK) && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
fp = (struct osigframe *)(p->p_sigstk.ss_sp +
p->p_sigstk.ss_size - sizeof(struct osigframe));
p->p_sigstk.ss_flags |= SS_ONSTACK;
}
else
fp = (struct osigframe *)regs->tf_esp - 1;
/*
* grow() will return FALSE if the fp will not fit inside the stack
* and the stack can not be grown. useracc will return FALSE
* if access is denied.
*/
if (grow_stack(p, (int)fp) == FALSE ||
!useracc((caddr_t)fp, sizeof(struct osigframe), VM_PROT_WRITE)) {
/*
* Process has trashed its stack; give it an illegal
* instruction to halt it in its tracks.
*/
SIGACTION(p, SIGILL) = SIG_DFL;
SIGDELSET(p->p_sigignore, SIGILL);
SIGDELSET(p->p_sigcatch, SIGILL);
SIGDELSET(p->p_sigmask, SIGILL);
psignal(p, SIGILL);
return;
}
/* Translate the signal if appropriate */
if (p->p_sysent->sv_sigtbl) {
if (sig <= p->p_sysent->sv_sigsize)
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
}
/* Build the argument list for the signal handler. */
sf.sf_signum = sig;
sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
/* Signal handler installed with SA_SIGINFO. */
sf.sf_arg2 = (register_t)&fp->sf_siginfo;
sf.sf_siginfo.si_signo = sig;
sf.sf_siginfo.si_code = code;
sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
}
else {
/* Old FreeBSD-style arguments. */
sf.sf_arg2 = code;
sf.sf_addr = regs->tf_err;
sf.sf_ahu.sf_handler = catcher;
}
/* save scratch registers */
sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
sf.sf_siginfo.si_sc.sc_gs = rgs();
sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
/* Build the signal context to be used by sigreturn. */
sf.sf_siginfo.si_sc.sc_onstack = oonstack;
SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
/*
* If we're a vm86 process, we want to save the segment registers.
* We also change eflags to be our emulated eflags, not the actual
* eflags.
*/
if (regs->tf_eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
if (vm86->vm86_has_vme == 0)
sf.sf_siginfo.si_sc.sc_ps =
(tf->tf_eflags & ~(PSL_VIF | PSL_VIP))
| (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
/* see sendsig for comment */
tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
}
/* Copy the sigframe out to the user's stack. */
if (copyout(&sf, fp, sizeof(struct osigframe)) != 0) {
/*
* Something is wrong with the stack pointer.
* ...Kill the process.
*/
sigexit(p, SIGILL);
}
regs->tf_esp = (int)fp;
regs->tf_eip = PS_STRINGS - szosigcode;
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _udatasel;
load_gs(_udatasel);
regs->tf_ss = _udatasel;
}
void
sendsig(catcher, sig, mask, code)
sig_t catcher;
int sig;
sigset_t *mask;
u_long code;
{
struct proc *p = curproc;
struct trapframe *regs;
struct sigacts *psp = p->p_sigacts;
struct sigframe sf, *sfp;
int oonstack;
if (SIGISMEMBER(psp->ps_osigset, sig)) {
osendsig(catcher, sig, mask, code);
return;
}
regs = p->p_md.md_regs;
oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
/* save user context */
bzero(&sf, sizeof(struct sigframe));
sf.sf_uc.uc_sigmask = *mask;
sf.sf_uc.uc_stack = p->p_sigstk;
sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
sf.sf_uc.uc_mcontext.mc_gs = rgs();
bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(struct trapframe));
/* Allocate and validate space for the signal handler context. */
if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
p->p_sigstk.ss_size - sizeof(struct sigframe));
p->p_sigstk.ss_flags |= SS_ONSTACK;
}
else
sfp = (struct sigframe *)regs->tf_esp - 1;
/*
* grow() will return FALSE if the sfp will not fit inside the stack
* and the stack can not be grown. useracc will return FALSE if
* access is denied.
*/
if (grow_stack(p, (int)sfp) == FALSE ||
!useracc((caddr_t)sfp, sizeof(struct sigframe), VM_PROT_WRITE)) {
/*
* Process has trashed its stack; give it an illegal
* instruction to halt it in its tracks.
*/
#ifdef DEBUG
printf("process %d has trashed its stack\n", p->p_pid);
#endif
SIGACTION(p, SIGILL) = SIG_DFL;
SIGDELSET(p->p_sigignore, SIGILL);
SIGDELSET(p->p_sigcatch, SIGILL);
SIGDELSET(p->p_sigmask, SIGILL);
psignal(p, SIGILL);
return;
}
/* Translate the signal is appropriate */
if (p->p_sysent->sv_sigtbl) {
if (sig <= p->p_sysent->sv_sigsize)
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
}
/* Build the argument list for the signal handler. */
sf.sf_signum = sig;
sf.sf_ucontext = (register_t)&sfp->sf_uc;
if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
/* Signal handler installed with SA_SIGINFO. */
sf.sf_siginfo = (register_t)&sfp->sf_si;
sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
/* fill siginfo structure */
sf.sf_si.si_signo = sig;
sf.sf_si.si_code = code;
sf.sf_si.si_addr = (void*)regs->tf_err;
}
else {
/* Old FreeBSD-style arguments. */
sf.sf_siginfo = code;
sf.sf_addr = regs->tf_err;
sf.sf_ahu.sf_handler = catcher;
}
/*
* If we're a vm86 process, we want to save the segment registers.
* We also change eflags to be our emulated eflags, not the actual
* eflags.
*/
if (regs->tf_eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
if (vm86->vm86_has_vme == 0)
sf.sf_uc.uc_mcontext.mc_eflags =
(tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
(vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
/*
* We should never have PSL_T set when returning from vm86
* mode. It may be set here if we deliver a signal before
* getting to vm86 mode, so turn it off.
*
* Clear PSL_NT to inhibit T_TSSFLT faults on return from
* syscalls made by the signal handler. This just avoids
* wasting time for our lazy fixup of such faults. PSL_NT
* does nothing in vm86 mode, but vm86 programs can set it
* almost legitimately in probes for old cpu types.
*/
tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP);
}
/*
* Copy the sigframe out to the user's stack.
*/
if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
/*
* Something is wrong with the stack pointer.
* ...Kill the process.
*/
sigexit(p, SIGILL);
}
regs->tf_esp = (int)sfp;
regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _udatasel;
load_gs(_udatasel);
regs->tf_ss = _udatasel;
}
/*
* System call to cleanup state after a signal
* has been taken. Reset signal mask and
* stack state from context left by sendsig (above).
* Return to previous pc and psl as specified by
* context left by sendsig. Check carefully to
* make sure that the user has not modified the
* state to gain improper privileges.
*/
#define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
int
osigreturn(p, uap)
struct proc *p;
struct osigreturn_args /* {
struct osigcontext *sigcntxp;
} */ *uap;
{
register struct osigcontext *scp;
register struct trapframe *regs = p->p_md.md_regs;
int eflags;
scp = uap->sigcntxp;
if (!useracc((caddr_t)scp, sizeof (struct osigcontext), VM_PROT_READ))
return(EFAULT);
eflags = scp->sc_ps;
if (eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86;
/*
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
* set up the vm86 area, and we can't enter vm86 mode.
*/
if (p->p_addr->u_pcb.pcb_ext == 0)
return (EINVAL);
vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
if (vm86->vm86_inited == 0)
return (EINVAL);
/* go back to user mode if both flags are set */
if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
trapsignal(p, SIGBUS, 0);
if (vm86->vm86_has_vme) {
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
(eflags & VME_USERCHANGE) | PSL_VM;
} else {
vm86->vm86_eflags = eflags; /* save VIF, VIP */
eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
}
tf->tf_vm86_ds = scp->sc_ds;
tf->tf_vm86_es = scp->sc_es;
tf->tf_vm86_fs = scp->sc_fs;
tf->tf_vm86_gs = scp->sc_gs;
tf->tf_ds = _udatasel;
tf->tf_es = _udatasel;
tf->tf_fs = _udatasel;
} else {
/*
* Don't allow users to change privileged or reserved flags.
*/
/*
* XXX do allow users to change the privileged flag PSL_RF.
* The cpu sets PSL_RF in tf_eflags for faults. Debuggers
* should sometimes set it there too. tf_eflags is kept in
* the signal context during signal handling and there is no
* other place to remember it, so the PSL_RF bit may be
* corrupted by the signal handler without us knowing.
* Corruption of the PSL_RF bit at worst causes one more or
* one less debugger trap, so allowing it is fairly harmless.
*/
if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
return(EINVAL);
}
/*
* Don't allow users to load a valid privileged %cs. Let the
* hardware check for invalid selectors, excess privilege in
* other selectors, invalid %eip's and invalid %esp's.
*/
if (!CS_SECURE(scp->sc_cs)) {
trapsignal(p, SIGBUS, T_PROTFLT);
return(EINVAL);
}
regs->tf_ds = scp->sc_ds;
regs->tf_es = scp->sc_es;
regs->tf_fs = scp->sc_fs;
}
/* restore scratch registers */
regs->tf_eax = scp->sc_eax;
regs->tf_ebx = scp->sc_ebx;
regs->tf_ecx = scp->sc_ecx;
regs->tf_edx = scp->sc_edx;
regs->tf_esi = scp->sc_esi;
regs->tf_edi = scp->sc_edi;
regs->tf_cs = scp->sc_cs;
regs->tf_ss = scp->sc_ss;
regs->tf_isp = scp->sc_isp;
if (scp->sc_onstack & 01)
p->p_sigstk.ss_flags |= SS_ONSTACK;
else
p->p_sigstk.ss_flags &= ~SS_ONSTACK;
SIGSETOLD(p->p_sigmask, scp->sc_mask);
SIG_CANTMASK(p->p_sigmask);
regs->tf_ebp = scp->sc_fp;
regs->tf_esp = scp->sc_sp;
regs->tf_eip = scp->sc_pc;
regs->tf_eflags = eflags;
return(EJUSTRETURN);
}
int
sigreturn(p, uap)
struct proc *p;
struct sigreturn_args /* {
ucontext_t *sigcntxp;
} */ *uap;
{
struct trapframe *regs;
ucontext_t *ucp;
int cs, eflags;
ucp = uap->sigcntxp;
if (!useracc((caddr_t)ucp, sizeof(struct osigcontext), VM_PROT_READ))
return (EFAULT);
if (((struct osigcontext *)ucp)->sc_trapno == 0x01d516)
return (osigreturn(p, (struct osigreturn_args *)uap));
/*
* Since ucp is not an osigcontext but a ucontext_t, we have to
* check again if all of it is accessible. A ucontext_t is
* much larger, so instead of just checking for the pointer
* being valid for the size of an osigcontext, now check for
* it being valid for a whole, new-style ucontext_t.
*/
if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ))
return (EFAULT);
regs = p->p_md.md_regs;
eflags = ucp->uc_mcontext.mc_eflags;
if (eflags & PSL_VM) {
struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
struct vm86_kernel *vm86;
/*
* if pcb_ext == 0 or vm86_inited == 0, the user hasn't
* set up the vm86 area, and we can't enter vm86 mode.
*/
if (p->p_addr->u_pcb.pcb_ext == 0)
return (EINVAL);
vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86;
if (vm86->vm86_inited == 0)
return (EINVAL);
/* go back to user mode if both flags are set */
if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
trapsignal(p, SIGBUS, 0);
if (vm86->vm86_has_vme) {
eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
(eflags & VME_USERCHANGE) | PSL_VM;
} else {
vm86->vm86_eflags = eflags; /* save VIF, VIP */
eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
}
bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
tf->tf_eflags = eflags;
tf->tf_vm86_ds = tf->tf_ds;
tf->tf_vm86_es = tf->tf_es;
tf->tf_vm86_fs = tf->tf_fs;
tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
tf->tf_ds = _udatasel;
tf->tf_es = _udatasel;
tf->tf_fs = _udatasel;
} else {
/*
* Don't allow users to change privileged or reserved flags.
*/
/*
* XXX do allow users to change the privileged flag PSL_RF.
* The cpu sets PSL_RF in tf_eflags for faults. Debuggers
* should sometimes set it there too. tf_eflags is kept in
* the signal context during signal handling and there is no
* other place to remember it, so the PSL_RF bit may be
* corrupted by the signal handler without us knowing.
* Corruption of the PSL_RF bit at worst causes one more or
* one less debugger trap, so allowing it is fairly harmless.
*/
if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
printf("sigreturn: eflags = 0x%x\n", eflags);
return(EINVAL);
}
/*
* Don't allow users to load a valid privileged %cs. Let the
* hardware check for invalid selectors, excess privilege in
* other selectors, invalid %eip's and invalid %esp's.
*/
cs = ucp->uc_mcontext.mc_cs;
if (!CS_SECURE(cs)) {
printf("sigreturn: cs = 0x%x\n", cs);
trapsignal(p, SIGBUS, T_PROTFLT);
return(EINVAL);
}
bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(struct trapframe));
}
if (ucp->uc_mcontext.mc_onstack & 1)
p->p_sigstk.ss_flags |= SS_ONSTACK;
else
p->p_sigstk.ss_flags &= ~SS_ONSTACK;
p->p_sigmask = ucp->uc_sigmask;
SIG_CANTMASK(p->p_sigmask);
return(EJUSTRETURN);
}
/*
* Machine dependent boot() routine
*
* I haven't seen anything to put here yet
* Possibly some stuff might be grafted back here from boot()
*/
void
cpu_boot(int howto)
{
}
/*
* Shutdown the CPU as much as possible
*/
void
cpu_halt(void)
{
for (;;)
__asm__ ("hlt");
}
/*
* Clear registers on exec
*/
void
setregs(p, entry, stack, ps_strings)
struct proc *p;
u_long entry;
u_long stack;
u_long ps_strings;
{
struct trapframe *regs = p->p_md.md_regs;
struct pcb *pcb = &p->p_addr->u_pcb;
#ifdef USER_LDT
/* was i386_user_cleanup() in NetBSD */
user_ldt_free(pcb);
#endif
bzero((char *)regs, sizeof(struct trapframe));
regs->tf_eip = entry;
regs->tf_esp = stack;
regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
regs->tf_ss = _udatasel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _udatasel;
regs->tf_cs = _ucodesel;
/* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
regs->tf_ebx = ps_strings;
/* reset %gs as well */
if (pcb == curpcb)
load_gs(_udatasel);
else
pcb->pcb_gs = _udatasel;
/*
* Reset the hardware debug registers if they were in use.
* They won't have any meaning for the newly exec'd process.
*/
if (pcb->pcb_flags & PCB_DBREGS) {
pcb->pcb_dr0 = 0;
pcb->pcb_dr1 = 0;
pcb->pcb_dr2 = 0;
pcb->pcb_dr3 = 0;
pcb->pcb_dr6 = 0;
pcb->pcb_dr7 = 0;
if (pcb == curpcb) {
/*
* Clear the debug registers on the running
* CPU, otherwise they will end up affecting
* the next process we switch to.
*/
reset_dbregs();
}
pcb->pcb_flags &= ~PCB_DBREGS;
}
/*
* Initialize the math emulator (if any) for the current process.
* Actually, just clear the bit that says that the emulator has
* been initialized. Initialization is delayed until the process
* traps to the emulator (if it is done at all) mainly because
* emulators don't provide an entry point for initialization.
*/
p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP;
/*
* Arrange to trap the next npx or `fwait' instruction (see npx.c
* for why fwait must be trapped at least if there is an npx or an
* emulator). This is mainly to handle the case where npx0 is not
* configured, since the npx routines normally set up the trap
* otherwise. It should be done only at boot time, but doing it
* here allows modifying `npx_exists' for testing the emulator on
* systems with an npx.
*/
load_cr0(rcr0() | CR0_MP | CR0_TS);
#if NNPX > 0
/* Initialize the npx (if any) for the current process. */
npxinit(__INITIAL_NPXCW__);
#endif
/*
* XXX - Linux emulator
* Make sure sure edx is 0x0 on entry. Linux binaries depend
* on it.
*/
p->p_retval[1] = 0;
}
static int
sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
{
int error;
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
req);
if (!error && req->newptr)
resettodr();
return (error);
}
SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
CTLFLAG_RW, &disable_rtc_set, 0, "");
SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
CTLFLAG_RD, &bootinfo, bootinfo, "");
SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
CTLFLAG_RW, &wall_cmos_clock, 0, "");
/*
* Initialize 386 and configure to run kernel
*/
/*
* Initialize segments & interrupt table
*/
int _default_ldt;
#ifdef SMP
union descriptor gdt[NGDT * NCPU]; /* global descriptor table */
#else
union descriptor gdt[NGDT]; /* global descriptor table */
#endif
static struct gate_descriptor idt0[NIDT];
struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
union descriptor ldt[NLDT]; /* local descriptor table */
#ifdef SMP
/* table descriptors - used to load tables by microp */
struct region_descriptor r_gdt, r_idt;
#endif
#ifndef SMP
extern struct segment_descriptor common_tssd, *tss_gdt;
#endif
int private_tss; /* flag indicating private tss */
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
extern int has_f00f_bug;
#endif
static struct i386tss dblfault_tss;
static char dblfault_stack[PAGE_SIZE];
extern struct user *proc0paddr;
/* software prototypes -- in more palatable form */
struct soft_segment_descriptor gdt_segs[] = {
/* GNULL_SEL 0 Null Descriptor */
{ 0x0, /* segment base address */
0x0, /* length */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GCODE_SEL 1 Code Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GDATA_SEL 2 Data Descriptor for kernel */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GPROC0_SEL 4 Proc 0 Tss Descriptor */
{
0x0, /* segment base address */
sizeof(struct i386tss)-1,/* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GLDT_SEL 5 LDT Descriptor */
{ (int) ldt, /* segment base address */
sizeof(ldt)-1, /* length - all address space */
SDT_SYSLDT, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GUSERLDT_SEL 6 User LDT Descriptor per process */
{ (int) ldt, /* segment base address */
(512 * sizeof(union descriptor)-1), /* length */
SDT_SYSLDT, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GTGATE_SEL 7 Null Descriptor - Placeholder */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
{ 0x400, /* segment base address */
0xfffff, /* length */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GPANIC_SEL 9 Panic Tss Descriptor */
{ (int) &dblfault_tss, /* segment base address */
sizeof(struct i386tss)-1,/* length - all address space */
SDT_SYS386TSS, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* unused - default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
{ 0, /* segment base address (overwritten) */
0xfffff, /* length */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
{ 0, /* segment base address (overwritten) */
0xfffff, /* length */
SDT_MEMERA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
{ 0, /* segment base address (overwritten) */
0xfffff, /* length */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
{ 0, /* segment base address (overwritten) */
0xfffff, /* length */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
{ 0, /* segment base address (overwritten) */
0xfffff, /* length */
SDT_MEMRWA, /* segment type */
0, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
};
static struct soft_segment_descriptor ldt_segs[] = {
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Code Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMERA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
/* Null Descriptor - overwritten by call gate */
{ 0x0, /* segment base address */
0x0, /* length - all address space */
0, /* segment type */
0, /* segment descriptor priority level */
0, /* segment descriptor present */
0, 0,
0, /* default 32 vs 16 bit size */
0 /* limit granularity (byte/page units)*/ },
/* Data Descriptor for user */
{ 0x0, /* segment base address */
0xfffff, /* length - all address space */
SDT_MEMRWA, /* segment type */
SEL_UPL, /* segment descriptor priority level */
1, /* segment descriptor present */
0, 0,
1, /* default 32 vs 16 bit size */
1 /* limit granularity (byte/page units)*/ },
};
void
setidt(idx, func, typ, dpl, selec)
int idx;
inthand_t *func;
int typ;
int dpl;
int selec;
{
struct gate_descriptor *ip;
ip = idt + idx;
ip->gd_looffset = (int)func;
ip->gd_selector = selec;
ip->gd_stkcpy = 0;
ip->gd_xx = 0;
ip->gd_type = typ;
ip->gd_dpl = dpl;
ip->gd_p = 1;
ip->gd_hioffset = ((int)func)>>16 ;
}
#define IDTVEC(name) __CONCAT(X,name)
extern inthand_t
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
IDTVEC(syscall), IDTVEC(int0x80_syscall);
void
sdtossd(sd, ssd)
struct segment_descriptor *sd;
struct soft_segment_descriptor *ssd;
{
ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
ssd->ssd_type = sd->sd_type;
ssd->ssd_dpl = sd->sd_dpl;
ssd->ssd_p = sd->sd_p;
ssd->ssd_def32 = sd->sd_def32;
ssd->ssd_gran = sd->sd_gran;
}
#define PHYSMAP_SIZE (2 * 8)
/*
* Populate the (physmap) array with base/bound pairs describing the
* available physical memory in the system, then test this memory and
* build the phys_avail array describing the actually-available memory.
*
* If we cannot accurately determine the physical memory map, then use
* value from the 0xE801 call, and failing that, the RTC.
*
* Total memory size may be set by the kernel environment variable
* hw.physmem or the compile-time define MAXMEM.
*/
#ifdef PC98
static void
getmemsize(int first)
{
u_int biosbasemem, biosextmem;
u_int pagesinbase, pagesinext;
int pa_indx;
int pg_n;
int speculative_mprobe;
#if NNPX > 0
int msize;
#endif
unsigned under16;
vm_offset_t target_page;
pc98_getmemsize(&biosbasemem, &biosextmem, &under16);
#ifdef SMP
/* make hole for AP bootstrap code */
pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE;
#else
pagesinbase = biosbasemem * 1024 / PAGE_SIZE;
#endif
pagesinext = biosextmem * 1024 / PAGE_SIZE;
Maxmem_under16M = under16 * 1024 / PAGE_SIZE;
#ifndef MAXMEM
/*
* Maxmem isn't the "maximum memory", it's one larger than the
* highest page of the physical address space. It should be
* called something like "Maxphyspage".
*/
Maxmem = pagesinext + 0x100000/PAGE_SIZE;
/*
* Indicate that we wish to do a speculative search for memory beyond
* the end of the reported size if the indicated amount is 64MB (0x4000
* pages) - which is the largest amount that the BIOS/bootblocks can
* currently report. If a specific amount of memory is indicated via
* the MAXMEM option or the npx0 "msize", then don't do the speculative
* memory probe.
*/
if (Maxmem >= 0x4000)
speculative_mprobe = TRUE;
else
speculative_mprobe = FALSE;
#else
Maxmem = MAXMEM/4;
speculative_mprobe = FALSE;
#endif
#if NNPX > 0
if (resource_int_value("npx", 0, "msize", &msize) == 0) {
if (msize != 0) {
Maxmem = msize / 4;
speculative_mprobe = FALSE;
}
}
#endif
#ifdef SMP
/* look for the MP hardware - needed for apic addresses */
mp_probe();
#endif
/* call pmap initialization to make new kernel address space */
pmap_bootstrap (first, 0);
/*
* Size up each available chunk of physical memory.
*/
/*
* We currently don't bother testing base memory.
* XXX ...but we probably should.
*/
pa_indx = 0;
if (pagesinbase > 1) {
phys_avail[pa_indx++] = PAGE_SIZE; /* skip first page of memory */
phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
physmem = pagesinbase - 1;
} else {
/* point at first chunk end */
pa_indx++;
}
/* XXX - some of EPSON machines can't use PG_N */
pg_n = PG_N;
if (pc98_machine_type & M_EPSON_PC98) {
switch (epson_machine_id) {
#ifdef WB_CACHE
default:
#endif
case 0x34: /* PC-486HX */
case 0x35: /* PC-486HG */
case 0x3B: /* PC-486HA */
pg_n = 0;
break;
}
}
speculative_mprobe = FALSE;
#ifdef notdef /* XXX - see below */
/*
* Certain 'CPU accelerator' supports over 16MB memory on the machines
* whose BIOS doesn't store true size.
* To support this, we don't trust BIOS values if Maxmem < 16MB (0x1000
* pages) - which is the largest amount that the OLD PC-98 can report.
*
* OK: PC-9801NS/R(9.6M)
* OK: PC-9801DA(5.6M)+EUD-H(32M)+Cyrix 5x86
* OK: PC-9821Ap(14.6M)+EUA-T(8M)+Cyrix 5x86-100
* NG: PC-9821Ap(14.6M)+EUA-T(8M)+AMD DX4-100 -> freeze
*/
if (Maxmem < 0x1000) {
int tmp, page_bad;
page_bad = FALSE;
/*
* For Max14.6MB machines, the 0x10f0 page is same as 0x00f0,
* which is BIOS ROM, by overlapping.
* So, we check that page's ability of writing.
*/
target_page = ptoa(0x10f0);
/*
* map page into kernel: valid, read/write, non-cacheable
*/
*(int *)CMAP1 = PG_V | PG_RW | pg_n | target_page;
invltlb();
tmp = *(int *)CADDR1;
/*
* Test for alternating 1's and 0's
*/
*(volatile int *)CADDR1 = 0xaaaaaaaa;
if (*(volatile int *)CADDR1 != 0xaaaaaaaa)
page_bad = TRUE;
/*
* Test for alternating 0's and 1's
*/
*(volatile int *)CADDR1 = 0x55555555;
if (*(volatile int *)CADDR1 != 0x55555555)
page_bad = TRUE;
/*
* Test for all 1's
*/
*(volatile int *)CADDR1 = 0xffffffff;
if (*(volatile int *)CADDR1 != 0xffffffff)
page_bad = TRUE;
/*
* Test for all 0's
*/
*(volatile int *)CADDR1 = 0x0;
if (*(volatile int *)CADDR1 != 0x0) {
/*
* test of page failed
*/
page_bad = TRUE;
}
/*
* Restore original value.
*/
*(int *)CADDR1 = tmp;
/*
* Adjust Maxmem if valid/good page.
*/
if (page_bad == FALSE) {
/* '+ 2' is needed to make speculative_mprobe sure */
Maxmem = 0x1000 + 2;
speculative_mprobe = TRUE;
}
}
#endif
for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
int tmp, page_bad;
page_bad = FALSE;
/* skip system area */
if (target_page >= ptoa(Maxmem_under16M) &&
target_page < ptoa(4096))
continue;
/*
* map page into kernel: valid, read/write, non-cacheable
*/
*(int *)CMAP1 = PG_V | PG_RW | pg_n | target_page;
invltlb();
tmp = *(int *)CADDR1;
/*
* Test for alternating 1's and 0's
*/
*(volatile int *)CADDR1 = 0xaaaaaaaa;
if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
page_bad = TRUE;
}
/*
* Test for alternating 0's and 1's
*/
*(volatile int *)CADDR1 = 0x55555555;
if (*(volatile int *)CADDR1 != 0x55555555) {
page_bad = TRUE;
}
/*
* Test for all 1's
*/
*(volatile int *)CADDR1 = 0xffffffff;
if (*(volatile int *)CADDR1 != 0xffffffff) {
page_bad = TRUE;
}
/*
* Test for all 0's
*/
*(volatile int *)CADDR1 = 0x0;
if (*(volatile int *)CADDR1 != 0x0) {
/*
* test of page failed
*/
page_bad = TRUE;
}
/*
* Restore original value.
*/
*(int *)CADDR1 = tmp;
/*
* Adjust array of valid/good pages.
*/
if (page_bad == FALSE) {
/*
* If this good page is a continuation of the
* previous set of good pages, then just increase
* the end pointer. Otherwise start a new chunk.
* Note that "end" points one higher than end,
* making the range >= start and < end.
* If we're also doing a speculative memory
* test and we at or past the end, bump up Maxmem
* so that we keep going. The first bad page
* will terminate the loop.
*/
if (phys_avail[pa_indx] == target_page) {
phys_avail[pa_indx] += PAGE_SIZE;
if (speculative_mprobe == TRUE &&
phys_avail[pa_indx] >= (16*1024*1024))
Maxmem++;
} else {
pa_indx++;
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
printf("Too many holes in the physical address space, giving up\n");
pa_indx--;
break;
}
phys_avail[pa_indx++] = target_page; /* start */
phys_avail[pa_indx] = target_page + PAGE_SIZE; /* end */
}
physmem++;
}
}
*(int *)CMAP1 = 0;
invltlb();
/*
* XXX
* The last chunk must contain at least one page plus the message
* buffer to avoid complicating other code (message buffer address
* calculation, etc.).
*/
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
phys_avail[pa_indx--] = 0;
phys_avail[pa_indx--] = 0;
}
Maxmem = atop(phys_avail[pa_indx]);
/* Trim off space for the message buffer. */
phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
avail_end = phys_avail[pa_indx];
}
#else
static void
getmemsize(int first)
{
int i, physmap_idx, pa_indx;
u_int basemem, extmem;
struct vm86frame vmf;
struct vm86context vmc;
vm_offset_t pa, physmap[PHYSMAP_SIZE];
pt_entry_t pte;
const char *cp;
struct {
u_int64_t base;
u_int64_t length;
u_int32_t type;
} *smap;
bzero(&vmf, sizeof(struct vm86frame));
bzero(physmap, sizeof(physmap));
/*
* Perform "base memory" related probes & setup
*/
vm86_intcall(0x12, &vmf);
basemem = vmf.vmf_ax;
if (basemem > 640) {
printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
basemem);
basemem = 640;
}
/*
* XXX if biosbasemem is now < 640, there is a `hole'
* between the end of base memory and the start of
* ISA memory. The hole may be empty or it may
* contain BIOS code or data. Map it read/write so
* that the BIOS can write to it. (Memory from 0 to
* the physical end of the kernel is mapped read-only
* to begin with and then parts of it are remapped.
* The parts that aren't remapped form holes that
* remain read-only and are unused by the kernel.
* The base memory area is below the physical end of
* the kernel and right now forms a read-only hole.
* The part of it from PAGE_SIZE to
* (trunc_page(biosbasemem * 1024) - 1) will be
* remapped and used by the kernel later.)
*
* This code is similar to the code used in
* pmap_mapdev, but since no memory needs to be
* allocated we simply change the mapping.
*/
for (pa = trunc_page(basemem * 1024);
pa < ISA_HOLE_START; pa += PAGE_SIZE) {
pte = (pt_entry_t)vtopte(pa + KERNBASE);
*pte = pa | PG_RW | PG_V;
}
/*
* if basemem != 640, map pages r/w into vm86 page table so
* that the bios can scribble on it.
*/
pte = (pt_entry_t)vm86paddr;
for (i = basemem / 4; i < 160; i++)
pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
/*
* map page 1 R/W into the kernel page table so we can use it
* as a buffer. The kernel will unmap this page later.
*/
pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT));
*pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
/*
* get memory map with INT 15:E820
*/
#define SMAPSIZ sizeof(*smap)
#define SMAP_SIG 0x534D4150 /* 'SMAP' */
vmc.npages = 0;
smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
physmap_idx = 0;
vmf.vmf_ebx = 0;
do {
vmf.vmf_eax = 0xE820;
vmf.vmf_edx = SMAP_SIG;
vmf.vmf_ecx = SMAPSIZ;
i = vm86_datacall(0x15, &vmf, &vmc);
if (i || vmf.vmf_eax != SMAP_SIG)
break;
if (boothowto & RB_VERBOSE)
printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
smap->type,
*(u_int32_t *)((char *)&smap->base + 4),
(u_int32_t)smap->base,
*(u_int32_t *)((char *)&smap->length + 4),
(u_int32_t)smap->length);
if (smap->type != 0x01)
goto next_run;
if (smap->length == 0)
goto next_run;
if (smap->base >= 0xffffffff) {
printf("%uK of memory above 4GB ignored\n",
(u_int)(smap->length / 1024));
goto next_run;
}
for (i = 0; i <= physmap_idx; i += 2) {
if (smap->base < physmap[i + 1]) {
if (boothowto & RB_VERBOSE)
printf(
"Overlapping or non-montonic memory region, ignoring second region\n");
goto next_run;
}
}
if (smap->base == physmap[physmap_idx + 1]) {
physmap[physmap_idx + 1] += smap->length;
goto next_run;
}
physmap_idx += 2;
if (physmap_idx == PHYSMAP_SIZE) {
printf(
"Too many segments in the physical address map, giving up\n");
break;
}
physmap[physmap_idx] = smap->base;
physmap[physmap_idx + 1] = smap->base + smap->length;
next_run:
} while (vmf.vmf_ebx != 0);
if (physmap[1] != 0)
goto physmap_done;
/*
* If we failed above, try memory map with INT 15:E801
*/
vmf.vmf_ax = 0xE801;
if (vm86_intcall(0x15, &vmf) == 0) {
extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
} else {
#if 0
vmf.vmf_ah = 0x88;
vm86_intcall(0x15, &vmf);
extmem = vmf.vmf_ax;
#else
/*
* Prefer the RTC value for extended memory.
*/
extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
#endif
}
/*
* Special hack for chipsets that still remap the 384k hole when
* there's 16MB of memory - this really confuses people that
* are trying to use bus mastering ISA controllers with the
* "16MB limit"; they only have 16MB, but the remapping puts
* them beyond the limit.
*
* If extended memory is between 15-16MB (16-17MB phys address range),
* chop it to 15MB.
*/
if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
extmem = 15 * 1024;
physmap[0] = 0;
physmap[1] = basemem * 1024;
physmap_idx = 2;
physmap[physmap_idx] = 0x100000;
physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
physmap_done:
/*
* Now, physmap contains a map of physical memory.
*/
#ifdef SMP
/* make hole for AP bootstrap code */
physmap[1] = mp_bootaddress(physmap[1] / 1024);
/* look for the MP hardware - needed for apic addresses */
mp_probe();
#endif
/*
* Maxmem isn't the "maximum memory", it's one larger than the
* highest page of the physical address space. It should be
* called something like "Maxphyspage". We may adjust this
* based on ``hw.physmem'' and the results of the memory test.
*/
Maxmem = atop(physmap[physmap_idx + 1]);
#ifdef MAXMEM
Maxmem = MAXMEM / 4;
#endif
/*
* hw.maxmem is a size in bytes; we also allow k, m, and g suffixes
* for the appropriate modifiers. This overrides MAXMEM.
*/
if ((cp = getenv("hw.physmem")) != NULL) {
u_int64_t AllowMem, sanity;
char *ep;
sanity = AllowMem = strtouq(cp, &ep, 0);
if ((ep != cp) && (*ep != 0)) {
switch(*ep) {
case 'g':
case 'G':
AllowMem <<= 10;
case 'm':
case 'M':
AllowMem <<= 10;
case 'k':
case 'K':
AllowMem <<= 10;
break;
default:
AllowMem = sanity = 0;
}
if (AllowMem < sanity)
AllowMem = 0;
}
if (AllowMem == 0)
printf("Ignoring invalid memory size of '%s'\n", cp);
else
Maxmem = atop(AllowMem);
}
if (atop(physmap[physmap_idx + 1]) != Maxmem &&
(boothowto & RB_VERBOSE))
printf("Physical memory use set to %uK\n", Maxmem * 4);
/*
* If Maxmem has been increased beyond what the system has detected,
* extend the last memory segment to the new limit.
*/
if (atop(physmap[physmap_idx + 1]) < Maxmem)
physmap[physmap_idx + 1] = ptoa(Maxmem);
/* call pmap initialization to make new kernel address space */
pmap_bootstrap(first, 0);
/*
* Size up each available chunk of physical memory.
*/
physmap[0] = PAGE_SIZE; /* mask off page 0 */
pa_indx = 0;
phys_avail[pa_indx++] = physmap[0];
phys_avail[pa_indx] = physmap[0];
#if 0
pte = (pt_entry_t)vtopte(KERNBASE);
#else
pte = (pt_entry_t)CMAP1;
#endif
/*
* physmap is in bytes, so when converting to page boundaries,
* round up the start address and round down the end address.
*/
for (i = 0; i <= physmap_idx; i += 2) {
vm_offset_t end;
end = ptoa(Maxmem);
if (physmap[i + 1] < end)
end = trunc_page(physmap[i + 1]);
for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
int tmp, page_bad;
#if 0
int *ptr = 0;
#else
int *ptr = (int *)CADDR1;
#endif
/*
* block out kernel memory as not available.
*/
if (pa >= 0x100000 && pa < first)
continue;
page_bad = FALSE;
/*
* map page into kernel: valid, read/write,non-cacheable
*/
*pte = pa | PG_V | PG_RW | PG_N;
invltlb();
tmp = *(int *)ptr;
/*
* Test for alternating 1's and 0's
*/
*(volatile int *)ptr = 0xaaaaaaaa;
if (*(volatile int *)ptr != 0xaaaaaaaa) {
page_bad = TRUE;
}
/*
* Test for alternating 0's and 1's
*/
*(volatile int *)ptr = 0x55555555;
if (*(volatile int *)ptr != 0x55555555) {
page_bad = TRUE;
}
/*
* Test for all 1's
*/
*(volatile int *)ptr = 0xffffffff;
if (*(volatile int *)ptr != 0xffffffff) {
page_bad = TRUE;
}
/*
* Test for all 0's
*/
*(volatile int *)ptr = 0x0;
if (*(volatile int *)ptr != 0x0) {
page_bad = TRUE;
}
/*
* Restore original value.
*/
*(int *)ptr = tmp;
/*
* Adjust array of valid/good pages.
*/
if (page_bad == TRUE) {
continue;
}
/*
* If this good page is a continuation of the
* previous set of good pages, then just increase
* the end pointer. Otherwise start a new chunk.
* Note that "end" points one higher than end,
* making the range >= start and < end.
* If we're also doing a speculative memory
* test and we at or past the end, bump up Maxmem
* so that we keep going. The first bad page
* will terminate the loop.
*/
if (phys_avail[pa_indx] == pa) {
phys_avail[pa_indx] += PAGE_SIZE;
} else {
pa_indx++;
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
printf("Too many holes in the physical address space, giving up\n");
pa_indx--;
break;
}
phys_avail[pa_indx++] = pa; /* start */
phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
}
physmem++;
}
}
*pte = 0;
invltlb();
/*
* XXX
* The last chunk must contain at least one page plus the message
* buffer to avoid complicating other code (message buffer address
* calculation, etc.).
*/
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
phys_avail[pa_indx--] = 0;
phys_avail[pa_indx--] = 0;
}
Maxmem = atop(phys_avail[pa_indx]);
/* Trim off space for the message buffer. */
phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
avail_end = phys_avail[pa_indx];
}
#endif
void
init386(first)
int first;
{
int x;
struct gate_descriptor *gdp;
int gsel_tss;
#ifndef SMP
/* table descriptors - used to load tables by microp */
struct region_descriptor r_gdt, r_idt;
#endif
int off;
/*
* Prevent lowering of the ipl if we call tsleep() early.
*/
safepri = cpl;
proc0.p_addr = proc0paddr;
atdevbase = ISA_HOLE_START + KERNBASE;
#ifdef PC98
/*
* Initialize DMAC
*/
pc98_init_dmac();
#endif
if (bootinfo.bi_modulep) {
preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
preload_bootstrap_relocate(KERNBASE);
}
if (bootinfo.bi_envp)
kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
/*
* make gdt memory segments, the code segment goes up to end of the
* page with etext in it, the data segment goes to the end of
* the address space
*/
/*
* XXX text protection is temporarily (?) disabled. The limit was
* i386_btop(round_page(etext)) - 1.
*/
gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
#ifdef SMP
gdt_segs[GPRIV_SEL].ssd_limit =
i386_btop(sizeof(struct privatespace)) - 1;
gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0];
gdt_segs[GPROC0_SEL].ssd_base =
(int) &SMP_prvspace[0].globaldata.gd_common_tss;
SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0];
#else
gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1;
gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss;
#endif
for (x = 0; x < NGDT; x++) {
#ifdef BDE_DEBUGGER
/* avoid overwriting db entries with APM ones */
if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
continue;
#endif
ssdtosd(&gdt_segs[x], &gdt[x].sd);
}
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
r_gdt.rd_base = (int) gdt;
lgdt(&r_gdt);
/* make ldt memory segments */
/*
* The data segment limit must not cover the user area because we
* don't want the user area to be writable in copyout() etc. (page
* level protection is lost in kernel mode on 386's). Also, we
* don't want the user area to be writable directly (page level
* protection of the user area is not available on 486's with
* CR0_WP set, because there is no user-read/kernel-write mode).
*
* XXX - VM_MAXUSER_ADDRESS is an end address, not a max. And it
* should be spelled ...MAX_USER...
*/
#define VM_END_USER_RW_ADDRESS VM_MAXUSER_ADDRESS
/*
* The code segment limit has to cover the user area until we move
* the signal trampoline out of the user area. This is safe because
* the code segment cannot be written to directly.
*/
#define VM_END_USER_R_ADDRESS (VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE)
ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
ssdtosd(&ldt_segs[x], &ldt[x].sd);
_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
lldt(_default_ldt);
#ifdef USER_LDT
currentldt = _default_ldt;
#endif
/* exceptions */
for (x = 0; x < NIDT; x++)
setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(15, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(0x80, &IDTVEC(int0x80_syscall),
SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
r_idt.rd_limit = sizeof(idt0) - 1;
r_idt.rd_base = (int) idt;
lidt(&r_idt);
/*
* Initialize the console before we print anything out.
*/
cninit();
#include "isa.h"
#if NISA >0
isa_defaultirq();
#endif
rand_initialize();
#ifdef DDB
kdb_init();
if (boothowto & RB_KDB)
Debugger("Boot flags requested debugger");
#endif
finishidentcpu(); /* Final stage of CPU initialization */
setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
initializecpu(); /* Initialize CPU registers */
/* make an initial tss so cpu can get interrupt stack on syscall! */
common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16;
common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
private_tss = 0;
tss_gdt = &gdt[GPROC0_SEL].sd;
common_tssd = *tss_gdt;
common_tss.tss_ioopt = (sizeof common_tss) << 16;
ltr(gsel_tss);
dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
dblfault_tss.tss_cr3 = (int)IdlePTD;
dblfault_tss.tss_eip = (int) dblfault_handler;
dblfault_tss.tss_eflags = PSL_KERNEL;
dblfault_tss.tss_ds = dblfault_tss.tss_es =
dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
vm86_initialize();
getmemsize(first);
/* now running on new page tables, configured,and u/iom is accessible */
/* Map the message buffer. */
for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
msgbufinit(msgbufp, MSGBUF_SIZE);
/* make a call gate to reenter kernel with */
gdp = &ldt[LSYS5CALLS_SEL].gd;
x = (int) &IDTVEC(syscall);
gdp->gd_looffset = x++;
gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
gdp->gd_stkcpy = 1;
gdp->gd_type = SDT_SYS386CGT;
gdp->gd_dpl = SEL_UPL;
gdp->gd_p = 1;
gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
/* XXX does this work? */
ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
/* transfer to user mode */
_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
/* setup proc 0's pcb */
proc0.p_addr->u_pcb.pcb_flags = 0;
proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD;
#ifdef SMP
proc0.p_addr->u_pcb.pcb_mpnest = 1;
#endif
proc0.p_addr->u_pcb.pcb_ext = 0;
}
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
static void f00f_hack(void *unused);
SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
static void
f00f_hack(void *unused) {
struct gate_descriptor *new_idt;
#ifndef SMP
struct region_descriptor r_idt;
#endif
vm_offset_t tmp;
if (!has_f00f_bug)
return;
printf("Intel Pentium detected, installing workaround for F00F bug\n");
r_idt.rd_limit = sizeof(idt0) - 1;
tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
if (tmp == 0)
panic("kmem_alloc returned 0");
if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
panic("kmem_alloc returned non-page-aligned memory");
/* Put the first seven entries in the lower page */
new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
bcopy(idt, new_idt, sizeof(idt0));
r_idt.rd_base = (int)new_idt;
lidt(&r_idt);
idt = new_idt;
if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
VM_PROT_READ, FALSE) != KERN_SUCCESS)
panic("vm_map_protect failed");
return;
}
#endif /* defined(I586_CPU) && !NO_F00F_HACK */
int
ptrace_set_pc(p, addr)
struct proc *p;
unsigned long addr;
{
p->p_md.md_regs->tf_eip = addr;
return (0);
}
int
ptrace_single_step(p)
struct proc *p;
{
p->p_md.md_regs->tf_eflags |= PSL_T;
return (0);
}
int ptrace_read_u_check(p, addr, len)
struct proc *p;
vm_offset_t addr;
size_t len;
{
vm_offset_t gap;
if ((vm_offset_t) (addr + len) < addr)
return EPERM;
if ((vm_offset_t) (addr + len) <= sizeof(struct user))
return 0;
gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
if ((vm_offset_t) addr < gap)
return EPERM;
if ((vm_offset_t) (addr + len) <=
(vm_offset_t) (gap + sizeof(struct trapframe)))
return 0;
return EPERM;
}
int ptrace_write_u(p, off, data)
struct proc *p;
vm_offset_t off;
long data;
{
struct trapframe frame_copy;
vm_offset_t min;
struct trapframe *tp;
/*
* Privileged kernel state is scattered all over the user area.
* Only allow write access to parts of regs and to fpregs.
*/
min = (char *)p->p_md.md_regs - (char *)p->p_addr;
if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
tp = p->p_md.md_regs;
frame_copy = *tp;
*(int *)((char *)&frame_copy + (off - min)) = data;
if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
!CS_SECURE(frame_copy.tf_cs))
return (EINVAL);
*(int*)((char *)p->p_addr + off) = data;
return (0);
}
min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
*(int*)((char *)p->p_addr + off) = data;
return (0);
}
return (EFAULT);
}
int
fill_regs(p, regs)
struct proc *p;
struct reg *regs;
{
struct pcb *pcb;
struct trapframe *tp;
tp = p->p_md.md_regs;
regs->r_fs = tp->tf_fs;
regs->r_es = tp->tf_es;
regs->r_ds = tp->tf_ds;
regs->r_edi = tp->tf_edi;
regs->r_esi = tp->tf_esi;
regs->r_ebp = tp->tf_ebp;
regs->r_ebx = tp->tf_ebx;
regs->r_edx = tp->tf_edx;
regs->r_ecx = tp->tf_ecx;
regs->r_eax = tp->tf_eax;
regs->r_eip = tp->tf_eip;
regs->r_cs = tp->tf_cs;
regs->r_eflags = tp->tf_eflags;
regs->r_esp = tp->tf_esp;
regs->r_ss = tp->tf_ss;
pcb = &p->p_addr->u_pcb;
regs->r_gs = pcb->pcb_gs;
return (0);
}
int
set_regs(p, regs)
struct proc *p;
struct reg *regs;
{
struct pcb *pcb;
struct trapframe *tp;
tp = p->p_md.md_regs;
if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
!CS_SECURE(regs->r_cs))
return (EINVAL);
tp->tf_fs = regs->r_fs;
tp->tf_es = regs->r_es;
tp->tf_ds = regs->r_ds;
tp->tf_edi = regs->r_edi;
tp->tf_esi = regs->r_esi;
tp->tf_ebp = regs->r_ebp;
tp->tf_ebx = regs->r_ebx;
tp->tf_edx = regs->r_edx;
tp->tf_ecx = regs->r_ecx;
tp->tf_eax = regs->r_eax;
tp->tf_eip = regs->r_eip;
tp->tf_cs = regs->r_cs;
tp->tf_eflags = regs->r_eflags;
tp->tf_esp = regs->r_esp;
tp->tf_ss = regs->r_ss;
pcb = &p->p_addr->u_pcb;
pcb->pcb_gs = regs->r_gs;
return (0);
}
int
fill_fpregs(p, fpregs)
struct proc *p;
struct fpreg *fpregs;
{
bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs);
return (0);
}
int
set_fpregs(p, fpregs)
struct proc *p;
struct fpreg *fpregs;
{
bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs);
return (0);
}
int
fill_dbregs(p, dbregs)
struct proc *p;
struct dbreg *dbregs;
{
struct pcb *pcb;
pcb = &p->p_addr->u_pcb;
dbregs->dr0 = pcb->pcb_dr0;
dbregs->dr1 = pcb->pcb_dr1;
dbregs->dr2 = pcb->pcb_dr2;
dbregs->dr3 = pcb->pcb_dr3;
dbregs->dr4 = 0;
dbregs->dr5 = 0;
dbregs->dr6 = pcb->pcb_dr6;
dbregs->dr7 = pcb->pcb_dr7;
return (0);
}
int
set_dbregs(p, dbregs)
struct proc *p;
struct dbreg *dbregs;
{
struct pcb *pcb;
pcb = &p->p_addr->u_pcb;
/*
* Don't let a process set a breakpoint that is not within the
* process's address space. If a process could do this, it
* could halt the system by setting a breakpoint in the kernel
* (if ddb was enabled). Thus, we need to check to make sure
* that no breakpoints are being enabled for addresses outside
* process's address space, unless, perhaps, we were called by
* uid 0.
*
* XXX - what about when the watched area of the user's
* address space is written into from within the kernel
* ... wouldn't that still cause a breakpoint to be generated
* from within kernel mode?
*/
if (p->p_ucred->cr_uid != 0) {
if (dbregs->dr7 & 0x3) {
/* dr0 is enabled */
if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<2)) {
/* dr1 is enabled */
if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<4)) {
/* dr2 is enabled */
if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (dbregs->dr7 & (0x3<<6)) {
/* dr3 is enabled */
if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
}
pcb->pcb_dr0 = dbregs->dr0;
pcb->pcb_dr1 = dbregs->dr1;
pcb->pcb_dr2 = dbregs->dr2;
pcb->pcb_dr3 = dbregs->dr3;
pcb->pcb_dr6 = dbregs->dr6;
pcb->pcb_dr7 = dbregs->dr7;
pcb->pcb_flags |= PCB_DBREGS;
return (0);
}
/*
* Return > 0 if a hardware breakpoint has been hit, and the
* breakpoint was in user space. Return 0, otherwise.
*/
int
user_dbreg_trap(void)
{
u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
u_int32_t bp; /* breakpoint bits extracted from dr6 */
int nbp; /* number of breakpoints that triggered */
caddr_t addr[4]; /* breakpoint addresses */
int i;
dr7 = rdr7();
if ((dr7 & 0x000000ff) == 0) {
/*
* all GE and LE bits in the dr7 register are zero,
* thus the trap couldn't have been caused by the
* hardware debug registers
*/
return 0;
}
nbp = 0;
dr6 = rdr6();
bp = dr6 & 0x0000000f;
if (!bp) {
/*
* None of the breakpoint bits are set meaning this
* trap was not caused by any of the debug registers
*/
return 0;
}
/*
* at least one of the breakpoints were hit, check to see
* which ones and if any of them are user space addresses
*/
if (bp & 0x01) {
addr[nbp++] = (caddr_t)rdr0();
}
if (bp & 0x02) {
addr[nbp++] = (caddr_t)rdr1();
}
if (bp & 0x04) {
addr[nbp++] = (caddr_t)rdr2();
}
if (bp & 0x08) {
addr[nbp++] = (caddr_t)rdr3();
}
for (i=0; i<nbp; i++) {
if (addr[i] <
(caddr_t)VM_MAXUSER_ADDRESS) {
/*
* addr[i] is in user space
*/
return nbp;
}
}
/*
* None of the breakpoints are in user space.
*/
return 0;
}
#ifndef DDB
void
Debugger(const char *msg)
{
printf("Debugger(\"%s\") called.\n", msg);
}
#endif /* no DDB */
#include <sys/disklabel.h>
/*
* Determine the size of the transfer, and make sure it is
* within the boundaries of the partition. Adjust transfer
* if needed, and signal errors or early completion.
*/
int
bounds_check_with_label(struct bio *bp, struct disklabel *lp, int wlabel)
{
struct partition *p = lp->d_partitions + dkpart(bp->bio_dev);
int labelsect = lp->d_partitions[0].p_offset;
int maxsz = p->p_size,
sz = (bp->bio_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
/* overwriting disk label ? */
/* XXX should also protect bootstrap in first 8K */
if (bp->bio_blkno + p->p_offset <= LABELSECTOR + labelsect &&
#if LABELSECTOR != 0
bp->bio_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
#endif
(bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
bp->bio_error = EROFS;
goto bad;
}
#if defined(DOSBBSECTOR) && defined(notyet)
/* overwriting master boot record? */
if (bp->bio_blkno + p->p_offset <= DOSBBSECTOR &&
(bp->bio_cmd == BIO_WRITE) && wlabel == 0) {
bp->bio_error = EROFS;
goto bad;
}
#endif
/* beyond partition? */
if (bp->bio_blkno < 0 || bp->bio_blkno + sz > maxsz) {
/* if exactly at end of disk, return an EOF */
if (bp->bio_blkno == maxsz) {
bp->bio_resid = bp->bio_bcount;
return(0);
}
/* or truncate if part of it fits */
sz = maxsz - bp->bio_blkno;
if (sz <= 0) {
bp->bio_error = EINVAL;
goto bad;
}
bp->bio_bcount = sz << DEV_BSHIFT;
}
bp->bio_pblkno = bp->bio_blkno + p->p_offset;
return(1);
bad:
bp->bio_flags |= BIO_ERROR;
return(-1);
}
#ifdef DDB
/*
* Provide inb() and outb() as functions. They are normally only
* available as macros calling inlined functions, thus cannot be
* called inside DDB.
*
* The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
*/
#undef inb
#undef outb
/* silence compiler warnings */
u_char inb(u_int);
void outb(u_int, u_char);
u_char
inb(u_int port)
{
u_char data;
/*
* We use %%dx and not %1 here because i/o is done at %dx and not at
* %edx, while gcc generates inferior code (movw instead of movl)
* if we tell it to load (u_short) port.
*/
__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
void
outb(u_int port, u_char data)
{
u_char al;
/*
* Use an unnecessary assignment to help gcc's register allocator.
* This make a large difference for gcc-1.40 and a tiny difference
* for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
* best results. gcc-2.6.0 can't handle this.
*/
al = data;
__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
}
#endif /* DDB */