freebsd-skq/sys/dev/wi/if_wireg.h
Bill Paul 6f76cb1e28 Add support for WEP (encryption) for silver and gold WaveLAN/IEEE turbo cards.
Also update wicontrol to enable/disable encryption, set WEP keys and set the
TX key index. Silver cards only have 40-bit keys. This is something of a quick
hack, but it works well enough for me to commit this from the LinuxWorld
exhibit floor.

The WEP support only shows up if you have a card that supports it.

Would have been approved by: jkh, if he hadn't wandered off somewhere
Approved in his place by: msmith, who's standing right here
2000-02-02 17:59:13 +00:00

637 lines
17 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
struct wi_counters {
u_int32_t wi_tx_unicast_frames;
u_int32_t wi_tx_multicast_frames;
u_int32_t wi_tx_fragments;
u_int32_t wi_tx_unicast_octets;
u_int32_t wi_tx_multicast_octets;
u_int32_t wi_tx_deferred_xmits;
u_int32_t wi_tx_single_retries;
u_int32_t wi_tx_multi_retries;
u_int32_t wi_tx_retry_limit;
u_int32_t wi_tx_discards;
u_int32_t wi_rx_unicast_frames;
u_int32_t wi_rx_multicast_frames;
u_int32_t wi_rx_fragments;
u_int32_t wi_rx_unicast_octets;
u_int32_t wi_rx_multicast_octets;
u_int32_t wi_rx_fcs_errors;
u_int32_t wi_rx_discards_nobuf;
u_int32_t wi_tx_discards_wrong_sa;
u_int32_t wi_rx_WEP_cant_decrypt;
u_int32_t wi_rx_msg_in_msg_frags;
u_int32_t wi_rx_msg_in_bad_msg_frags;
};
/*
* Encryption controls. We can enable or disable encryption as
* well as specify up to 4 encryption keys. We can also specify
* which of the four keys will be used for transmit encryption.
*/
#define WI_RID_ENCRYPTION 0xFC20
#define WI_RID_AUTHTYPE 0xFC21
#define WI_RID_DEFLT_CRYPT_KEYS 0xFCB0
#define WI_RID_TX_CRYPT_KEY 0xFCB1
#define WI_RID_WEP_AVAIL 0xFD4F
struct wi_key {
u_int16_t wi_keylen;
u_int8_t wi_keydat[14];
};
struct wi_ltv_keys {
u_int16_t wi_len;
u_int16_t wi_type;
struct wi_key wi_keys[4];
};
struct wi_softc {
struct arpcom arpcom;
struct ifmedia ifmedia;
device_t dev;
int wi_unit;
struct resource * iobase;
struct resource * irq;
bus_space_handle_t wi_bhandle;
bus_space_tag_t wi_btag;
void * wi_intrhand;
int wi_io_addr;
int wi_tx_data_id;
int wi_tx_mgmt_id;
int wi_gone;
int wi_if_flags;
u_int16_t wi_ptype;
u_int16_t wi_portnum;
u_int16_t wi_max_data_len;
u_int16_t wi_rts_thresh;
u_int16_t wi_ap_density;
u_int16_t wi_tx_rate;
u_int16_t wi_create_ibss;
u_int16_t wi_channel;
u_int16_t wi_pm_enabled;
u_int16_t wi_max_sleep;
char wi_node_name[32];
char wi_net_name[32];
char wi_ibss_name[32];
u_int8_t wi_txbuf[1596];
struct wi_counters wi_stats;
int wi_has_wep;
int wi_use_wep;
int wi_tx_key;
struct wi_ltv_keys wi_keys;
#ifdef WICACHE
int wi_sigitems;
struct wi_sigcache wi_sigcache[MAXWICACHE];
int wi_nextitem;
#endif
struct callout_handle wi_stat_ch;
};
#define WI_TIMEOUT 65536
#define WI_PORT0 0
#define WI_PORT1 1
#define WI_PORT2 2
#define WI_PORT3 3
#define WI_PORT4 4
#define WI_PORT5 5
/* Default port: 0 (only 0 exists on stations) */
#define WI_DEFAULT_PORT (WI_PORT0 << 8)
/* Default TX rate: 2Mbps, auto fallback */
#define WI_DEFAULT_TX_RATE 3
/* Default network name: empty string implies any */
#define WI_DEFAULT_NETNAME ""
#define WI_DEFAULT_AP_DENSITY 1
#define WI_DEFAULT_RTS_THRESH 2347
#define WI_DEFAULT_DATALEN 2304
#define WI_DEFAULT_CREATE_IBSS 0
#define WI_DEFAULT_PM_ENABLED 0
#define WI_DEFAULT_MAX_SLEEP 100
#define WI_DEFAULT_NODENAME "FreeBSD WaveLAN/IEEE node"
#define WI_DEFAULT_IBSS "FreeBSD IBSS"
#define WI_DEFAULT_CHAN 3
/*
* register space access macros
*/
#define CSR_WRITE_4(sc, reg, val) \
bus_space_write_4(sc->wi_btag, sc->wi_bhandle, reg, val)
#define CSR_WRITE_2(sc, reg, val) \
bus_space_write_2(sc->wi_btag, sc->wi_bhandle, reg, val)
#define CSR_WRITE_1(sc, reg, val) \
bus_space_write_1(sc->wi_btag, sc->wi_bhandle, reg, val)
#define CSR_READ_4(sc, reg) \
bus_space_read_4(sc->wi_btag, sc->wi_bhandle, reg)
#define CSR_READ_2(sc, reg) \
bus_space_read_2(sc->wi_btag, sc->wi_bhandle, reg)
#define CSR_READ_1(sc, reg) \
bus_space_read_1(sc->wi_btag, sc->wi_bhandle, reg)
/*
* The WaveLAN/IEEE cards contain an 802.11 MAC controller which Lucent
* calls 'Hermes.' In typical fashion, getting documentation about this
* controller is about as easy as squeezing blood from a stone. Here
* is more or less what I know:
*
* - The Hermes controller is firmware driven, and the host interacts
* with the Hermes via a firmware interface, which can change.
*
* - The Hermes is described in a document called: "Hermes Firmware
* WaveLAN/IEEE Station Functions," document #010245, which of course
* Lucent will not release without an NDA.
*
* - Lucent has created a library called HCF (Hardware Control Functions)
* though which it wants developers to interact with the card. The HCF
* is needlessly complex, ill conceived and badly documented. Actually,
* the comments in the HCP code itself aren't bad, but the publically
* available manual that comes with it is awful, probably due largely to
* the fact that it has been emasculated in order to hide information
* that Lucent wants to keep proprietary. The purpose of the HCF seems
* to be to insulate the driver programmer from the Hermes itself so that
* Lucent has an excuse not to release programming in for it.
*
* - Lucent only makes available documentation and code for 'HCF Light'
* which is a stripped down version of HCF with certain features not
* implemented, most notably support for 802.11 frames.
*
* - The HCF code which I have seen blows goats. Whoever decided to
* use a 132 column format should be shot.
*
* Rather than actually use the Lucent HCF library, I have stripped all
* the useful information from it and used it to create a driver in the
* usual BSD form. Note: I don't want to hear anybody whining about the
* fact that the Lucent code is GPLed and mine isn't. I did not actually
* put any of Lucent's code in this driver: I only used it as a reference
* to obtain information about the underlying hardware. The Hermes
* programming interface is not GPLed, so bite me.
*/
/*
* Size of Hermes I/O space.
*/
#define WI_IOSIZ 0x40
/*
* Hermes register definitions and what little I know about them.
*/
/* Hermes command/status registers. */
#define WI_COMMAND 0x00
#define WI_PARAM0 0x02
#define WI_PARAM1 0x04
#define WI_PARAM2 0x06
#define WI_STATUS 0x08
#define WI_RESP0 0x0A
#define WI_RESP1 0x0C
#define WI_RESP2 0x0E
/* Command register values. */
#define WI_CMD_BUSY 0x8000 /* busy bit */
#define WI_CMD_INI 0x0000 /* initialize */
#define WI_CMD_ENABLE 0x0001 /* enable */
#define WI_CMD_DISABLE 0x0002 /* disable */
#define WI_CMD_DIAG 0x0003
#define WI_CMD_ALLOC_MEM 0x000A /* allocate NIC memory */
#define WI_CMD_TX 0x000B /* transmit */
#define WI_CMD_NOTIFY 0x0010
#define WI_CMD_INQUIRE 0x0011
#define WI_CMD_ACCESS 0x0021
#define WI_CMD_PROGRAM 0x0022
#define WI_CMD_CODE_MASK 0x003F
/*
* Reclaim qualifier bit, applicable to the
* TX and INQUIRE commands.
*/
#define WI_RECLAIM 0x0100 /* reclaim NIC memory */
/*
* ACCESS command qualifier bits.
*/
#define WI_ACCESS_READ 0x0000
#define WI_ACCESS_WRITE 0x0100
/*
* PROGRAM command qualifier bits.
*/
#define WI_PROGRAM_DISABLE 0x0000
#define WI_PROGRAM_ENABLE_RAM 0x0100
#define WI_PROGRAM_ENABLE_NVRAM 0x0200
#define WI_PROGRAM_NVRAM 0x0300
/* Status register values */
#define WI_STAT_CMD_CODE 0x003F
#define WI_STAT_DIAG_ERR 0x0100
#define WI_STAT_INQ_ERR 0x0500
#define WI_STAT_CMD_RESULT 0x7F00
/* memory handle management registers */
#define WI_INFO_FID 0x10
#define WI_RX_FID 0x20
#define WI_ALLOC_FID 0x22
#define WI_TX_CMP_FID 0x24
/*
* Buffer Access Path (BAP) registers.
* These are I/O channels. I believe you can use each one for
* any desired purpose independently of the other. In general
* though, we use BAP1 for reading and writing LTV records and
* reading received data frames, and BAP0 for writing transmit
* frames. This is a convention though, not a rule.
*/
#define WI_SEL0 0x18
#define WI_SEL1 0x1A
#define WI_OFF0 0x1C
#define WI_OFF1 0x1E
#define WI_DATA0 0x36
#define WI_DATA1 0x38
#define WI_BAP0 WI_DATA0
#define WI_BAP1 WI_DATA1
#define WI_OFF_BUSY 0x8000
#define WI_OFF_ERR 0x4000
#define WI_OFF_DATAOFF 0x0FFF
/* Event registers */
#define WI_EVENT_STAT 0x30 /* Event status */
#define WI_INT_EN 0x32 /* Interrupt enable/disable */
#define WI_EVENT_ACK 0x34 /* Ack event */
/* Events */
#define WI_EV_TICK 0x8000 /* aux timer tick */
#define WI_EV_RES 0x4000 /* controller h/w error (time out) */
#define WI_EV_INFO_DROP 0x2000 /* no RAM to build unsolicited frame */
#define WI_EV_NO_CARD 0x0800 /* card removed (hunh?) */
#define WI_EV_DUIF_RX 0x0400 /* wavelan management packet received */
#define WI_EV_INFO 0x0080 /* async info frame */
#define WI_EV_CMD 0x0010 /* command completed */
#define WI_EV_ALLOC 0x0008 /* async alloc/reclaim completed */
#define WI_EV_TX_EXC 0x0004 /* async xmit completed with failure */
#define WI_EV_TX 0x0002 /* async xmit completed succesfully */
#define WI_EV_RX 0x0001 /* async rx completed */
#define WI_INTRS \
(WI_EV_RX|WI_EV_TX|WI_EV_TX_EXC|WI_EV_ALLOC|WI_EV_INFO|WI_EV_INFO_DROP)
/* Host software registers */
#define WI_SW0 0x28
#define WI_SW1 0x2A
#define WI_SW2 0x2C
#define WI_SW3 0x2E
#define WI_CNTL 0x14
#define WI_CNTL_AUX_ENA 0xC000
#define WI_CNTL_AUX_ENA_STAT 0xC000
#define WI_CNTL_AUX_DIS_STAT 0x0000
#define WI_CNTL_AUX_ENA_CNTL 0x8000
#define WI_CNTL_AUX_DIS_CNTL 0x4000
#define WI_AUX_PAGE 0x3A
#define WI_AUX_OFFSET 0x3C
#define WI_AUX_DATA 0x3E
/*
* One form of communication with the Hermes is with what Lucent calls
* LTV records, where LTV stands for Length, Type and Value. The length
* and type are 16 bits and are in native byte order. The value is in
* multiples of 16 bits and is in little endian byte order.
*/
struct wi_ltv_gen {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_val;
};
struct wi_ltv_str {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_str[17];
};
#define WI_SETVAL(recno, val) \
do { \
struct wi_ltv_gen g; \
\
g.wi_len = 2; \
g.wi_type = recno; \
g.wi_val = val; \
wi_write_record(sc, &g); \
} while (0)
#define WI_SETSTR(recno, str) \
do { \
struct wi_ltv_str s; \
int l; \
\
l = (strlen(str) + 1) & ~0x1; \
bzero((char *)&s, sizeof(s)); \
s.wi_len = (l / 2) + 2; \
s.wi_type = recno; \
s.wi_str[0] = strlen(str); \
bcopy(str, (char *)&s.wi_str[1], strlen(str)); \
wi_write_record(sc, (struct wi_ltv_gen *)&s); \
} while (0)
/*
* Download buffer location and length (0xFD01).
*/
#define WI_RID_DNLD_BUF 0xFD01
struct wi_ltv_dnld_buf {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_buf_pg; /* page addr of intermediate dl buf*/
u_int16_t wi_buf_off; /* offset of idb */
u_int16_t wi_buf_len; /* len of idb */
};
/*
* Mem sizes (0xFD02).
*/
#define WI_RID_MEMSZ 0xFD02
struct wi_ltv_memsz {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_mem_ram;
u_int16_t wi_mem_nvram;
};
/*
* List of intended regulatory domains (0xFD11).
*/
#define WI_RID_DOMAINS 0xFD11
struct wi_ltv_domains {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_domains[6];
};
/*
* CIS struct (0xFD13).
*/
#define WI_RID_CIS 0xFD13
struct wi_ltv_cis {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_cis[240];
};
/*
* Communications quality (0xFD43).
*/
#define WI_RID_COMMQUAL 0xFD43
struct wi_ltv_commqual {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_coms_qual;
u_int16_t wi_sig_lvl;
u_int16_t wi_noise_lvl;
};
/*
* Actual system scale thresholds (0xFD46).
*/
#define WI_RID_SYSTEM_SCALE 0xFC06
#define WI_RID_SCALETHRESH 0xFD46
struct wi_ltv_scalethresh {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_energy_detect;
u_int16_t wi_carrier_detect;
u_int16_t wi_defer;
u_int16_t wi_cell_search;
u_int16_t wi_out_of_range;
u_int16_t wi_delta_snr;
};
/*
* PCF info struct (0xFD87).
*/
#define WI_RID_PCF 0xFD87
struct wi_ltv_pcf {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_energy_detect;
u_int16_t wi_carrier_detect;
u_int16_t wi_defer;
u_int16_t wi_cell_search;
u_int16_t wi_range;
};
/*
* Connection control characteristics.
* 1 == Basic Service Set (BSS)
* 2 == Wireless Distribudion System (WDS)
* 3 == Pseudo IBSS
*/
#define WI_RID_PORTTYPE 0xFC00
#define WI_PORTTYPE_BSS 0x1
#define WI_PORTTYPE_WDS 0x2
#define WI_PORTTYPE_ADHOC 0x3
/*
* Mac addresses.
*/
#define WI_RID_MAC_NODE 0xFC01
#define WI_RID_MAC_WDS 0xFC08
struct wi_ltv_macaddr {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_mac_addr[3];
};
/*
* Station set identification (SSID).
*/
#define WI_RID_DESIRED_SSID 0xFC02
#define WI_RID_OWN_SSID 0xFC04
struct wi_ltv_ssid {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_id[17];
};
/*
* Set communications channel (radio frequency).
*/
#define WI_RID_OWN_CHNL 0xFC03
/*
* Frame data size.
*/
#define WI_RID_MAX_DATALEN 0xFC07
/*
* ESS power management enable
*/
#define WI_RID_PM_ENABLED 0xFC09
/*
* ESS max PM sleep internal
*/
#define WI_RID_MAX_SLEEP 0xFC0C
/*
* Set our station name.
*/
#define WI_RID_NODENAME 0xFC0E
struct wi_ltv_nodename {
u_int16_t wi_len;
u_int16_t wi_type;
u_int16_t wi_nodename[17];
};
/*
* Multicast addresses to be put in filter. We're
* allowed up to 16 addresses in the filter.
*/
#define WI_RID_MCAST 0xFC80
struct wi_ltv_mcast {
u_int16_t wi_len;
u_int16_t wi_type;
struct ether_addr wi_mcast[16];
};
/*
* Create IBSS.
*/
#define WI_RID_CREATE_IBSS 0xFC81
#define WI_RID_FRAG_THRESH 0xFC82
#define WI_RID_RTS_THRESH 0xFC83
/*
* TX rate control
* 0 == Fixed 1mbps
* 1 == Fixed 2mbps
* 2 == auto fallback
*/
#define WI_RID_TX_RATE 0xFC84
/*
* promiscuous mode.
*/
#define WI_RID_PROMISC 0xFC85
/*
* Auxiliary Timer tick interval
*/
#define WI_RID_TICK_TIME 0xFCE0
/*
* Information frame types.
*/
#define WI_INFO_NOTIFY 0xF000 /* Handover address */
#define WI_INFO_COUNTERS 0xF100 /* Statistics counters */
#define WI_INFO_SCAN_RESULTS 0xF101 /* Scan results */
#define WI_INFO_LINK_STAT 0xF200 /* Link status */
#define WI_INFO_ASSOC_STAT 0xF201 /* Association status */
/*
* Hermes transmit/receive frame structure
*/
struct wi_frame {
u_int16_t wi_status; /* 0x00 */
u_int16_t wi_rsvd0; /* 0x02 */
u_int16_t wi_rsvd1; /* 0x04 */
u_int16_t wi_q_info; /* 0x06 */
u_int16_t wi_rsvd2; /* 0x08 */
u_int16_t wi_rsvd3; /* 0x0A */
u_int16_t wi_tx_ctl; /* 0x0C */
u_int16_t wi_frame_ctl; /* 0x0E */
u_int16_t wi_id; /* 0x10 */
u_int8_t wi_addr1[6]; /* 0x12 */
u_int8_t wi_addr2[6]; /* 0x18 */
u_int8_t wi_addr3[6]; /* 0x1E */
u_int16_t wi_seq_ctl; /* 0x24 */
u_int8_t wi_addr4[6]; /* 0x26 */
u_int16_t wi_dat_len; /* 0x2C */
u_int8_t wi_dst_addr[6]; /* 0x2E */
u_int8_t wi_src_addr[6]; /* 0x34 */
u_int16_t wi_len; /* 0x3A */
u_int16_t wi_dat[3]; /* 0x3C */ /* SNAP header */
u_int16_t wi_type; /* 0x42 */
};
#define WI_802_3_OFFSET 0x2E
#define WI_802_11_OFFSET 0x44
#define WI_802_11_OFFSET_RAW 0x3C
#define WI_STAT_BADCRC 0x0001
#define WI_STAT_UNDECRYPTABLE 0x0002
#define WI_STAT_ERRSTAT 0x0003
#define WI_STAT_MAC_PORT 0x0700
#define WI_STAT_1042 0x2000 /* RFC1042 encoded */
#define WI_STAT_TUNNEL 0x4000 /* Bridge-tunnel encoded */
#define WI_STAT_WMP_MSG 0x6000 /* WaveLAN-II management protocol */
#define WI_RXSTAT_MSG_TYPE 0xE000
#define WI_ENC_TX_802_3 0x00
#define WI_ENC_TX_802_11 0x11
#define WI_ENC_TX_E_II 0x0E
#define WI_ENC_TX_1042 0x00
#define WI_ENC_TX_TUNNEL 0xF8
#define WI_TXCNTL_MACPORT 0x00FF
#define WI_TXCNTL_STRUCTTYPE 0xFF00
/*
* SNAP (sub-network access protocol) constants for transmission
* of IP datagrams over IEEE 802 networks, taken from RFC1042.
* We need these for the LLC/SNAP header fields in the TX/RX frame
* structure.
*/
#define WI_SNAP_K1 0xaa /* assigned global SAP for SNAP */
#define WI_SNAP_K2 0x00
#define WI_SNAP_CONTROL 0x03 /* unnumbered information format */
#define WI_SNAP_WORD0 (WI_SNAP_K1 | (WI_SNAP_K1 << 8))
#define WI_SNAP_WORD1 (WI_SNAP_K2 | (WI_SNAP_CONTROL << 8))
#define WI_SNAPHDR_LEN 0x6