freebsd-skq/sys/ufs/ffs/ffs_inode.c
mckusick 3be8dc9e04 Further evaluation of the POSIX spec for fdatasync() shows that it
requires that new data on growing files be accessible. Thus, the
the fsyncdata() system call must update the on-disk inode when the
size of the file has changed.

This commit adds another inode update flag, IN_SIZEMOD, that gets
set any time that the file size changes. If either the IN_IBLKDATA
or the IN_SIZEMOD flag is set when fdatasync() is called, the
associated inode is synchronously written to disk. We could have
overloaded the IN_IBLKDATA flag to also track size changes since
the only (current) use case for these flags are for fsyncdata(),
but it does seem useful for possible future uses to separately
track the file size changes and the inode block pointer changes.

Reviewed by: kib
MFC with: -r361785
Differential revision:  https://reviews.freebsd.org/D25072
2020-06-05 01:00:55 +00:00

779 lines
24 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_quota.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/random.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/stat.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t,
ufs2_daddr_t, int, ufs2_daddr_t *);
/*
* Update the access, modified, and inode change times as specified by the
* IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode
* to disk if the IN_MODIFIED flag is set (it may be set initially, or by
* the timestamp update). The IN_LAZYMOD flag is set to force a write
* later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs
* is currently being suspended (or is suspended) and vnode has been accessed.
* If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to
* reflect the presumably successful write, and if waitfor is set, then wait
* for the write to complete.
*/
int
ffs_update(vp, waitfor)
struct vnode *vp;
int waitfor;
{
struct fs *fs;
struct buf *bp;
struct inode *ip;
daddr_t bn;
int flags, error;
ASSERT_VOP_ELOCKED(vp, "ffs_update");
ufs_itimes(vp);
ip = VTOI(vp);
if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
return (0);
ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED | IN_IBLKDATA);
fs = ITOFS(ip);
if (fs->fs_ronly && ITOUMP(ip)->um_fsckpid == 0)
return (0);
/*
* If we are updating a snapshot and another process is currently
* writing the buffer containing the inode for this snapshot then
* a deadlock can occur when it tries to check the snapshot to see
* if that block needs to be copied. Thus when updating a snapshot
* we check to see if the buffer is already locked, and if it is
* we drop the snapshot lock until the buffer has been written
* and is available to us. We have to grab a reference to the
* snapshot vnode to prevent it from being removed while we are
* waiting for the buffer.
*/
flags = 0;
if (IS_SNAPSHOT(ip))
flags = GB_LOCK_NOWAIT;
loop:
bn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
error = ffs_breadz(VFSTOUFS(vp->v_mount), ITODEVVP(ip), bn, bn,
(int) fs->fs_bsize, NULL, NULL, 0, NOCRED, flags, NULL, &bp);
if (error != 0) {
if (error != EBUSY)
return (error);
KASSERT((IS_SNAPSHOT(ip)), ("EBUSY from non-snapshot"));
/*
* Wait for our inode block to become available.
*
* Hold a reference to the vnode to protect against
* ffs_snapgone(). Since we hold a reference, it can only
* get reclaimed (VIRF_DOOMED flag) in a forcible downgrade
* or unmount. For an unmount, the entire filesystem will be
* gone, so we cannot attempt to touch anything associated
* with it while the vnode is unlocked; all we can do is
* pause briefly and try again. If when we relock the vnode
* we discover that it has been reclaimed, updating it is no
* longer necessary and we can just return an error.
*/
vref(vp);
VOP_UNLOCK(vp);
pause("ffsupd", 1);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
vrele(vp);
if (VN_IS_DOOMED(vp))
return (ENOENT);
goto loop;
}
if (DOINGSOFTDEP(vp))
softdep_update_inodeblock(ip, bp, waitfor);
else if (ip->i_effnlink != ip->i_nlink)
panic("ffs_update: bad link cnt");
if (I_IS_UFS1(ip)) {
*((struct ufs1_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
/*
* XXX: FIX? The entropy here is desirable,
* but the harvesting may be expensive
*/
random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME);
} else {
ffs_update_dinode_ckhash(fs, ip->i_din2);
*((struct ufs2_dinode *)bp->b_data +
ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
/*
* XXX: FIX? The entropy here is desirable,
* but the harvesting may be expensive
*/
random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME);
}
if (waitfor) {
error = bwrite(bp);
if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error))
error = 0;
} else if (vm_page_count_severe() || buf_dirty_count_severe()) {
bawrite(bp);
error = 0;
} else {
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
bdwrite(bp);
error = 0;
}
return (error);
}
#define SINGLE 0 /* index of single indirect block */
#define DOUBLE 1 /* index of double indirect block */
#define TRIPLE 2 /* index of triple indirect block */
/*
* Truncate the inode ip to at most length size, freeing the
* disk blocks.
*/
int
ffs_truncate(vp, length, flags, cred)
struct vnode *vp;
off_t length;
int flags;
struct ucred *cred;
{
struct inode *ip;
ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR];
ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR];
ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR];
ufs2_daddr_t count, blocksreleased = 0, datablocks, blkno;
struct bufobj *bo;
struct fs *fs;
struct buf *bp;
struct ufsmount *ump;
int softdeptrunc, journaltrunc;
int needextclean, extblocks;
int offset, size, level, nblocks;
int i, error, allerror, indiroff, waitforupdate;
u_long key;
off_t osize;
ip = VTOI(vp);
ump = VFSTOUFS(vp->v_mount);
fs = ump->um_fs;
bo = &vp->v_bufobj;
ASSERT_VOP_LOCKED(vp, "ffs_truncate");
if (length < 0)
return (EINVAL);
if (length > fs->fs_maxfilesize)
return (EFBIG);
#ifdef QUOTA
error = getinoquota(ip);
if (error)
return (error);
#endif
/*
* Historically clients did not have to specify which data
* they were truncating. So, if not specified, we assume
* traditional behavior, e.g., just the normal data.
*/
if ((flags & (IO_EXT | IO_NORMAL)) == 0)
flags |= IO_NORMAL;
if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp))
flags |= IO_SYNC;
waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp);
/*
* If we are truncating the extended-attributes, and cannot
* do it with soft updates, then do it slowly here. If we are
* truncating both the extended attributes and the file contents
* (e.g., the file is being unlinked), then pick it off with
* soft updates below.
*/
allerror = 0;
needextclean = 0;
softdeptrunc = 0;
journaltrunc = DOINGSUJ(vp);
journaltrunc = 0; /* XXX temp patch until bug found */
if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0)
softdeptrunc = !softdep_slowdown(vp);
extblocks = 0;
datablocks = DIP(ip, i_blocks);
if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) {
extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
datablocks -= extblocks;
}
if ((flags & IO_EXT) && extblocks > 0) {
if (length != 0)
panic("ffs_truncate: partial trunc of extdata");
if (softdeptrunc || journaltrunc) {
if ((flags & IO_NORMAL) == 0)
goto extclean;
needextclean = 1;
} else {
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
return (error);
#ifdef QUOTA
(void) chkdq(ip, -extblocks, NOCRED, FORCE);
#endif
vinvalbuf(vp, V_ALT, 0, 0);
vn_pages_remove(vp,
OFF_TO_IDX(lblktosize(fs, -extblocks)), 0);
osize = ip->i_din2->di_extsize;
ip->i_din2->di_blocks -= extblocks;
ip->i_din2->di_extsize = 0;
for (i = 0; i < UFS_NXADDR; i++) {
oldblks[i] = ip->i_din2->di_extb[i];
ip->i_din2->di_extb[i] = 0;
}
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
if ((error = ffs_update(vp, waitforupdate)))
return (error);
for (i = 0; i < UFS_NXADDR; i++) {
if (oldblks[i] == 0)
continue;
ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i],
sblksize(fs, osize, i), ip->i_number,
vp->v_type, NULL, SINGLETON_KEY);
}
}
}
if ((flags & IO_NORMAL) == 0)
return (0);
if (vp->v_type == VLNK &&
(ip->i_size < vp->v_mount->mnt_maxsymlinklen ||
datablocks == 0)) {
#ifdef INVARIANTS
if (length != 0)
panic("ffs_truncate: partial truncate of symlink");
#endif
bzero(SHORTLINK(ip), (u_int)ip->i_size);
ip->i_size = 0;
DIP_SET(ip, i_size, 0);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
if (needextclean)
goto extclean;
return (ffs_update(vp, waitforupdate));
}
if (ip->i_size == length) {
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
if (needextclean)
goto extclean;
return (ffs_update(vp, 0));
}
if (fs->fs_ronly)
panic("ffs_truncate: read-only filesystem");
if (IS_SNAPSHOT(ip))
ffs_snapremove(vp);
vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
osize = ip->i_size;
/*
* Lengthen the size of the file. We must ensure that the
* last byte of the file is allocated. Since the smallest
* value of osize is 0, length will be at least 1.
*/
if (osize < length) {
vnode_pager_setsize(vp, length);
flags |= BA_CLRBUF;
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
if (error) {
vnode_pager_setsize(vp, osize);
return (error);
}
ip->i_size = length;
DIP_SET(ip, i_size, length);
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
if (flags & IO_SYNC)
bwrite(bp);
else if (DOINGASYNC(vp))
bdwrite(bp);
else
bawrite(bp);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
return (ffs_update(vp, waitforupdate));
}
/*
* Lookup block number for a given offset. Zero length files
* have no blocks, so return a blkno of -1.
*/
lbn = lblkno(fs, length - 1);
if (length == 0) {
blkno = -1;
} else if (lbn < UFS_NDADDR) {
blkno = DIP(ip, i_db[lbn]);
} else {
error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize,
cred, BA_METAONLY, &bp);
if (error)
return (error);
indiroff = (lbn - UFS_NDADDR) % NINDIR(fs);
if (I_IS_UFS1(ip))
blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff];
else
blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff];
/*
* If the block number is non-zero, then the indirect block
* must have been previously allocated and need not be written.
* If the block number is zero, then we may have allocated
* the indirect block and hence need to write it out.
*/
if (blkno != 0)
brelse(bp);
else if (flags & IO_SYNC)
bwrite(bp);
else
bdwrite(bp);
}
/*
* If the block number at the new end of the file is zero,
* then we must allocate it to ensure that the last block of
* the file is allocated. Soft updates does not handle this
* case, so here we have to clean up the soft updates data
* structures describing the allocation past the truncation
* point. Finding and deallocating those structures is a lot of
* work. Since partial truncation with a hole at the end occurs
* rarely, we solve the problem by syncing the file so that it
* will have no soft updates data structures left.
*/
if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
return (error);
if (blkno != 0 && DOINGSOFTDEP(vp)) {
if (softdeptrunc == 0 && journaltrunc == 0) {
/*
* If soft updates cannot handle this truncation,
* clean up soft dependency data structures and
* fall through to the synchronous truncation.
*/
if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
return (error);
} else {
flags = IO_NORMAL | (needextclean ? IO_EXT: 0);
if (journaltrunc)
softdep_journal_freeblocks(ip, cred, length,
flags);
else
softdep_setup_freeblocks(ip, length, flags);
ASSERT_VOP_LOCKED(vp, "ffs_truncate1");
if (journaltrunc == 0) {
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
error = ffs_update(vp, 0);
}
return (error);
}
}
/*
* Shorten the size of the file. If the last block of the
* shortened file is unallocated, we must allocate it.
* Additionally, if the file is not being truncated to a
* block boundary, the contents of the partial block
* following the end of the file must be zero'ed in
* case it ever becomes accessible again because of
* subsequent file growth. Directories however are not
* zero'ed as they should grow back initialized to empty.
*/
offset = blkoff(fs, length);
if (blkno != 0 && offset == 0) {
ip->i_size = length;
DIP_SET(ip, i_size, length);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
} else {
lbn = lblkno(fs, length);
flags |= BA_CLRBUF;
error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp);
if (error)
return (error);
/*
* When we are doing soft updates and the UFS_BALLOC
* above fills in a direct block hole with a full sized
* block that will be truncated down to a fragment below,
* we must flush out the block dependency with an FSYNC
* so that we do not get a soft updates inconsistency
* when we create the fragment below.
*/
if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR &&
fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize &&
(error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0)
return (error);
ip->i_size = length;
DIP_SET(ip, i_size, length);
size = blksize(fs, ip, lbn);
if (vp->v_type != VDIR && offset != 0)
bzero((char *)bp->b_data + offset,
(u_int)(size - offset));
/* Kirk's code has reallocbuf(bp, size, 1) here */
allocbuf(bp, size);
if (bp->b_bufsize == fs->fs_bsize)
bp->b_flags |= B_CLUSTEROK;
if (flags & IO_SYNC)
bwrite(bp);
else if (DOINGASYNC(vp))
bdwrite(bp);
else
bawrite(bp);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
}
/*
* Calculate index into inode's block list of
* last direct and indirect blocks (if any)
* which we want to keep. Lastblock is -1 when
* the file is truncated to 0.
*/
lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
lastiblock[SINGLE] = lastblock - UFS_NDADDR;
lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
nblocks = btodb(fs->fs_bsize);
/*
* Update file and block pointers on disk before we start freeing
* blocks. If we crash before free'ing blocks below, the blocks
* will be returned to the free list. lastiblock values are also
* normalized to -1 for calls to ffs_indirtrunc below.
*/
for (level = TRIPLE; level >= SINGLE; level--) {
oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]);
if (lastiblock[level] < 0) {
DIP_SET(ip, i_ib[level], 0);
lastiblock[level] = -1;
}
}
for (i = 0; i < UFS_NDADDR; i++) {
oldblks[i] = DIP(ip, i_db[i]);
if (i > lastblock)
DIP_SET(ip, i_db[i], 0);
}
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
allerror = ffs_update(vp, waitforupdate);
/*
* Having written the new inode to disk, save its new configuration
* and put back the old block pointers long enough to process them.
* Note that we save the new block configuration so we can check it
* when we are done.
*/
for (i = 0; i < UFS_NDADDR; i++) {
newblks[i] = DIP(ip, i_db[i]);
DIP_SET(ip, i_db[i], oldblks[i]);
}
for (i = 0; i < UFS_NIADDR; i++) {
newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]);
DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]);
}
ip->i_size = osize;
DIP_SET(ip, i_size, osize);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
error = vtruncbuf(vp, length, fs->fs_bsize);
if (error && (allerror == 0))
allerror = error;
/*
* Indirect blocks first.
*/
indir_lbn[SINGLE] = -UFS_NDADDR;
indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
for (level = TRIPLE; level >= SINGLE; level--) {
bn = DIP(ip, i_ib[level]);
if (bn != 0) {
error = ffs_indirtrunc(ip, indir_lbn[level],
fsbtodb(fs, bn), lastiblock[level], level, &count);
if (error)
allerror = error;
blocksreleased += count;
if (lastiblock[level] < 0) {
DIP_SET(ip, i_ib[level], 0);
ffs_blkfree(ump, fs, ump->um_devvp, bn,
fs->fs_bsize, ip->i_number,
vp->v_type, NULL, SINGLETON_KEY);
blocksreleased += nblocks;
}
}
if (lastiblock[level] >= 0)
goto done;
}
/*
* All whole direct blocks or frags.
*/
key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number);
for (i = UFS_NDADDR - 1; i > lastblock; i--) {
long bsize;
bn = DIP(ip, i_db[i]);
if (bn == 0)
continue;
DIP_SET(ip, i_db[i], 0);
bsize = blksize(fs, ip, i);
ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number,
vp->v_type, NULL, key);
blocksreleased += btodb(bsize);
}
ffs_blkrelease_finish(ump, key);
if (lastblock < 0)
goto done;
/*
* Finally, look for a change in size of the
* last direct block; release any frags.
*/
bn = DIP(ip, i_db[lastblock]);
if (bn != 0) {
long oldspace, newspace;
/*
* Calculate amount of space we're giving
* back as old block size minus new block size.
*/
oldspace = blksize(fs, ip, lastblock);
ip->i_size = length;
DIP_SET(ip, i_size, length);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
newspace = blksize(fs, ip, lastblock);
if (newspace == 0)
panic("ffs_truncate: newspace");
if (oldspace - newspace > 0) {
/*
* Block number of space to be free'd is
* the old block # plus the number of frags
* required for the storage we're keeping.
*/
bn += numfrags(fs, newspace);
ffs_blkfree(ump, fs, ump->um_devvp, bn,
oldspace - newspace, ip->i_number, vp->v_type,
NULL, SINGLETON_KEY);
blocksreleased += btodb(oldspace - newspace);
}
}
done:
#ifdef INVARIANTS
for (level = SINGLE; level <= TRIPLE; level++)
if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level]))
panic("ffs_truncate1: level %d newblks %jd != i_ib %jd",
level, (intmax_t)newblks[UFS_NDADDR + level],
(intmax_t)DIP(ip, i_ib[level]));
for (i = 0; i < UFS_NDADDR; i++)
if (newblks[i] != DIP(ip, i_db[i]))
panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd",
i, (intmax_t)newblks[UFS_NDADDR + level],
(intmax_t)DIP(ip, i_ib[level]));
BO_LOCK(bo);
if (length == 0 &&
(fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) &&
(bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d",
vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt);
BO_UNLOCK(bo);
#endif /* INVARIANTS */
/*
* Put back the real size.
*/
ip->i_size = length;
DIP_SET(ip, i_size, length);
if (DIP(ip, i_blocks) >= blocksreleased)
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased);
else /* sanity */
DIP_SET(ip, i_blocks, 0);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
#ifdef QUOTA
(void) chkdq(ip, -blocksreleased, NOCRED, FORCE);
#endif
return (allerror);
extclean:
if (journaltrunc)
softdep_journal_freeblocks(ip, cred, length, IO_EXT);
else
softdep_setup_freeblocks(ip, length, IO_EXT);
return (ffs_update(vp, waitforupdate));
}
/*
* Release blocks associated with the inode ip and stored in the indirect
* block bn. Blocks are free'd in LIFO order up to (but not including)
* lastbn. If level is greater than SINGLE, the block is an indirect block
* and recursive calls to indirtrunc must be used to cleanse other indirect
* blocks.
*/
static int
ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
struct inode *ip;
ufs2_daddr_t lbn, lastbn;
ufs2_daddr_t dbn;
int level;
ufs2_daddr_t *countp;
{
struct buf *bp;
struct fs *fs;
struct ufsmount *ump;
struct vnode *vp;
caddr_t copy = NULL;
u_long key;
int i, nblocks, error = 0, allerror = 0;
ufs2_daddr_t nb, nlbn, last;
ufs2_daddr_t blkcount, factor, blocksreleased = 0;
ufs1_daddr_t *bap1 = NULL;
ufs2_daddr_t *bap2 = NULL;
#define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i])
fs = ITOFS(ip);
ump = ITOUMP(ip);
/*
* Calculate index in current block of last
* block to be kept. -1 indicates the entire
* block so we need not calculate the index.
*/
factor = lbn_offset(fs, level);
last = lastbn;
if (lastbn > 0)
last /= factor;
nblocks = btodb(fs->fs_bsize);
/*
* Get buffer of block pointers, zero those entries corresponding
* to blocks to be free'd, and update on disk copy first. Since
* double(triple) indirect before single(double) indirect, calls
* to VOP_BMAP() on these blocks will fail. However, we already
* have the on-disk address, so we just pass it to bread() instead
* of having bread() attempt to calculate it using VOP_BMAP().
*/
vp = ITOV(ip);
error = ffs_breadz(ump, vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0,
NOCRED, 0, NULL, &bp);
if (error) {
*countp = 0;
return (error);
}
if (I_IS_UFS1(ip))
bap1 = (ufs1_daddr_t *)bp->b_data;
else
bap2 = (ufs2_daddr_t *)bp->b_data;
if (lastbn != -1) {
copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
bcopy((caddr_t)bp->b_data, copy, (u_int)fs->fs_bsize);
for (i = last + 1; i < NINDIR(fs); i++)
if (I_IS_UFS1(ip))
bap1[i] = 0;
else
bap2[i] = 0;
if (DOINGASYNC(vp)) {
bdwrite(bp);
} else {
error = bwrite(bp);
if (error)
allerror = error;
}
if (I_IS_UFS1(ip))
bap1 = (ufs1_daddr_t *)copy;
else
bap2 = (ufs2_daddr_t *)copy;
}
/*
* Recursively free totally unused blocks.
*/
key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number);
for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
i--, nlbn += factor) {
nb = BAP(ip, i);
if (nb == 0)
continue;
if (level > SINGLE) {
if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
(ufs2_daddr_t)-1, level - 1, &blkcount)) != 0)
allerror = error;
blocksreleased += blkcount;
}
ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize,
ip->i_number, vp->v_type, NULL, key);
blocksreleased += nblocks;
}
ffs_blkrelease_finish(ump, key);
/*
* Recursively free last partial block.
*/
if (level > SINGLE && lastbn >= 0) {
last = lastbn % factor;
nb = BAP(ip, i);
if (nb != 0) {
error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
last, level - 1, &blkcount);
if (error)
allerror = error;
blocksreleased += blkcount;
}
}
if (copy != NULL) {
free(copy, M_TEMP);
} else {
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
}
*countp = blocksreleased;
return (allerror);
}
int
ffs_rdonly(struct inode *ip)
{
return (ITOFS(ip)->fs_ronly != 0);
}