freebsd-skq/sys/dev/sr/if_sr_isa.c
1999-01-12 01:17:01 +00:00

2921 lines
71 KiB
C

/*
* Copyright (c) 1996 John Hay.
* Copyright (c) 1996 SDL Communications, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: if_sr.c,v 1.17 1998/12/16 18:42:38 phk Exp $
*/
/*
* Programming assumptions and other issues.
*
* Only a 16K window will be used.
*
* The descriptors of a DMA channel will fit in a 16K memory window.
*
* The buffers of a transmit DMA channel will fit in a 16K memory window.
*
* When interface is going up, handshaking is set and it is only cleared
* when the interface is down'ed.
*
* There should be a way to set/reset Raw HDLC/PPP, Loopback, DCE/DTE,
* internal/external clock, etc.....
*
*/
#include "sr.h"
#ifdef notyet
#include "fr.h"
#else
#define NFR 0
#endif
#include "bpfilter.h"
#include "sppp.h"
#if NSPPP <= 0
#error Device 'sr' requires sppp.
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/sockio.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_sppp.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/md_var.h>
#include <i386/isa/if_srregs.h>
#include <i386/isa/ic/hd64570.h>
#include <i386/isa/isa_device.h>
/* #define USE_MODEMCK */
#ifndef BUGGY
#define BUGGY 0
#endif
#define PPP_HEADER_LEN 4
/*
* These macros are used to hide the difference between the way the
* ISA N2 cards and the PCI N2 cards access the Hitachi 64570 SCA.
*/
#define SRC_GET8(base,off) (*hc->src_get8)(base,(u_int)&off)
#define SRC_GET16(base,off) (*hc->src_get16)(base,(u_int)&off)
#define SRC_PUT8(base,off,d) (*hc->src_put8)(base,(u_int)&off,d)
#define SRC_PUT16(base,off,d) (*hc->src_put16)(base,(u_int)&off,d)
/*
* These macros enable/disable the DPRAM and select the correct
* DPRAM page.
*/
#define SRC_GET_WIN(addr) ((addr >> SRC_WIN_SHFT) & SR_PG_MSK)
#define SRC_SET_ON(iobase) outb(iobase+SR_PCR, \
SR_PCR_MEM_WIN | inb(iobase+SR_PCR))
#define SRC_SET_MEM(iobase,win) outb(iobase+SR_PSR, SRC_GET_WIN(win) | \
(inb(iobase+SR_PSR) & ~SR_PG_MSK))
#define SRC_SET_OFF(iobase) outb(iobase+SR_PCR, \
~SR_PCR_MEM_WIN & inb(iobase+SR_PCR))
/*
* Define the hardware (card information) structure needed to keep
* track of the device itself... There is only one per card.
*/
struct sr_hardc {
struct sr_hardc *next; /* PCI card linkage */
struct sr_softc *sc; /* software channels */
int cunit; /* card w/in system */
u_short iobase; /* I/O Base Address */
int cardtype;
int numports; /* # of ports on cd */
int mempages;
u_int memsize; /* DPRAM size: bytes */
u_int winmsk;
vm_offset_t sca_base;
vm_offset_t mem_pstart; /* start of buffer */
caddr_t mem_start; /* start of DP RAM */
caddr_t mem_end; /* end of DP RAM */
caddr_t plx_base;
sca_regs *sca; /* register array */
/*
* We vectorize the following functions to allow re-use between the
* ISA card's needs and those of the PCI card.
*/
void (*src_put8)(u_int base, u_int off, u_int val);
void (*src_put16)(u_int base, u_int off, u_int val);
u_int (*src_get8)(u_int base, u_int off);
u_int (*src_get16)(u_int base, u_int off);
};
static int next_sc_unit = 0;
static int sr_watcher = 0;
static struct sr_hardc sr_hardc[NSR];
static struct sr_hardc *sr_hardc_pci;
/*
* Define the software interface for the card... There is one for
* every channel (port).
*/
struct sr_softc {
struct sppp ifsppp; /* PPP service w/in system */
struct sr_hardc *hc; /* card-level information */
int unit; /* With regard to all sr devices */
int subunit; /* With regard to this card */
int attached; /* attached to FR or PPP */
int protocol; /* FR or PPP */
#define N2_USE_FRP 2 /* Frame Relay Protocol */
#define N2_USE_PPP 1 /* Point-to-Point Protocol */
struct buf_block {
u_int txdesc; /* DPRAM offset */
u_int txstart;/* DPRAM offset */
u_int txend; /* DPRAM offset */
u_int txtail; /* # of 1st free gran */
u_int txmax; /* # of free grans */
u_int txeda; /* err descr addr */
} block[SR_TX_BLOCKS];
char xmit_busy; /* Transmitter is busy */
char txb_inuse; /* # of tx grans in use */
u_int txb_new; /* ndx to new buffer */
u_int txb_next_tx; /* ndx to next gran rdy tx */
u_int rxdesc; /* DPRAM offset */
u_int rxstart; /* DPRAM offset */
u_int rxend; /* DPRAM offset */
u_int rxhind; /* ndx to the hd of rx bufrs */
u_int rxmax; /* # of avail grans */
u_int clk_cfg; /* Clock configuration */
int scachan; /* channel # on card */
};
/*
* List of valid interrupt numbers for the N2 ISA card.
*/
static int sr_irqtable[16] = {
0, /* 0 */
0, /* 1 */
0, /* 2 */
1, /* 3 */
1, /* 4 */
1, /* 5 */
0, /* 6 */
1, /* 7 */
0, /* 8 */
0, /* 9 */
1, /* 10 */
1, /* 11 */
1, /* 12 */
0, /* 13 */
0, /* 14 */
1 /* 15 */
};
static int srprobe(struct isa_device *id);
static int srattach_isa(struct isa_device *id);
struct isa_driver srdriver = {srprobe, srattach_isa, "src"};
/*
* Baud Rate table for Sync Mode.
* Each entry consists of 3 elements:
* Baud Rate (x100) , TMC, BR
*
* Baud Rate = FCLK / TMC / 2^BR
* Baud table for Crystal freq. of 9.8304 Mhz
*/
#ifdef N2_TEST_SPEED
struct rate_line {
int target; /* target rate/100 */
int tmc_reg; /* TMC register value */
int br_reg; /* BR (BaudRateClk) selector */
} n2_rates[] = {
/* Baudx100 TMC BR */
{ 3, 128, 8 },
{ 6, 128, 7 },
{ 12, 128, 6 },
{ 24, 128, 5 },
{ 48, 128, 4 },
{ 96, 128, 3 },
{ 192, 128, 2 },
{ 384, 128, 1 },
{ 560, 88, 1 },
{ 640, 77, 1 },
{ 1280, 38, 1 },
{ 2560, 19, 1 },
{ 5120, 10, 1 },
{ 10000, 5, 1 },
{ 15000, 3, 1 },
{ 25000, 2, 1 },
{ 50000, 1, 1 },
{ 0, 0, 0 }
};
int sr_test_speed[] = {
N2_TEST_SPEED,
N2_TEST_SPEED
};
int etc0vals[] = {
SR_MCR_ETC0, /* ISA channel 0 */
SR_MCR_ETC1, /* ISA channel 1 */
SR_FECR_ETC0, /* PCI channel 0 */
SR_FECR_ETC1 /* PCI channel 1 */
};
#endif
struct sr_hardc *srattach_pci(int unit, vm_offset_t plx_vaddr,
vm_offset_t sca_vaddr);
void srintr_hc(struct sr_hardc *hc);
static int srattach(struct sr_hardc *hc);
static void sr_xmit(struct sr_softc *sc);
static void srstart(struct ifnet *ifp);
static int srioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static void srwatchdog(struct ifnet *ifp);
static int sr_packet_avail(struct sr_softc *sc, int *len, u_char *rxstat);
static void sr_copy_rxbuf(struct mbuf *m, struct sr_softc *sc, int len);
static void sr_eat_packet(struct sr_softc *sc, int single);
static void sr_get_packets(struct sr_softc *sc);
static void sr_up(struct sr_softc *sc);
static void sr_down(struct sr_softc *sc);
static void src_init(struct sr_hardc *hc);
static void sr_init_sca(struct sr_hardc *hc);
static void sr_init_msci(struct sr_softc *sc);
static void sr_init_rx_dmac(struct sr_softc *sc);
static void sr_init_tx_dmac(struct sr_softc *sc);
static void sr_dmac_intr(struct sr_hardc *hc, u_char isr);
static void sr_msci_intr(struct sr_hardc *hc, u_char isr);
static void sr_timer_intr(struct sr_hardc *hc, u_char isr);
static void sr_modemck(void *x);
static u_int src_get8_io(u_int base, u_int off);
static u_int src_get16_io(u_int base, u_int off);
static void src_put8_io(u_int base, u_int off, u_int val);
static void src_put16_io(u_int base, u_int off, u_int val);
static u_int src_get8_mem(u_int base, u_int off);
static u_int src_get16_mem(u_int base, u_int off);
static void src_put8_mem(u_int base, u_int off, u_int val);
static void src_put16_mem(u_int base, u_int off, u_int val);
#if NFR > 0
extern void fr_detach(struct ifnet *);
extern int fr_attach(struct ifnet *);
extern int fr_ioctl(struct ifnet *, int, caddr_t);
extern void fr_flush(struct ifnet *);
extern int fr_input(struct ifnet *, struct mbuf *);
extern struct mbuf *fr_dequeue(struct ifnet *);
#endif
/*
* I/O for ISA N2 card(s)
*/
#define SRC_REG(iobase,y) ((((y) & 0xf) + (((y) & 0xf0) << 6) + \
(iobase)) | 0x8000)
static u_int
src_get8_io(u_int base, u_int off)
{
return inb(SRC_REG(base, off));
}
static u_int
src_get16_io(u_int base, u_int off)
{
return inw(SRC_REG(base, off));
}
static void
src_put8_io(u_int base, u_int off, u_int val)
{
outb(SRC_REG(base, off), val);
}
static void
src_put16_io(u_int base, u_int off, u_int val)
{
outw(SRC_REG(base, off), val);
}
/*
* I/O for PCI N2 card(s)
*/
#define SRC_PCI_SCA_REG(y) ((y & 2) ? ((y & 0xfd) + 0x100) : y)
static u_int
src_get8_mem(u_int base, u_int off)
{
return *((u_char *)(base + SRC_PCI_SCA_REG(off)));
}
static u_int
src_get16_mem(u_int base, u_int off)
{
return *((u_short *)(base + SRC_PCI_SCA_REG(off)));
}
static void
src_put8_mem(u_int base, u_int off, u_int val)
{
*((u_char *)(base + SRC_PCI_SCA_REG(off))) = (u_char)val;
}
static void
src_put16_mem(u_int base, u_int off, u_int val)
{
*((u_short *)(base + SRC_PCI_SCA_REG(off))) = (u_short)val;
}
/*
* Probe for an ISA card. If it is there, size its memory. Then get the
* rest of its information and fill it in.
*/
static int
srprobe(struct isa_device *id)
{
struct sr_hardc *hc = &sr_hardc[id->id_unit];
u_int pgs, i, tmp;
u_short port;
u_short *smem;
u_char mar;
sca_regs *sca = 0;
/*
* Now see if the card is realy there.
*/
hc->cardtype = SR_CRD_N2;
/*
* We have to fill these in early because the SRC_PUT* and SRC_GET*
* macros use them.
*/
hc->src_get8 = src_get8_io;
hc->src_get16 = src_get16_io;
hc->src_put8 = src_put8_io;
hc->src_put16 = src_put16_io;
hc->sca = 0;
port = id->id_iobase;
hc->numports = NCHAN; /* assumed # of channels on the card */
if (id->id_flags & SR_FLAGS_NCHAN_MSK)
hc->numports = id->id_flags & SR_FLAGS_NCHAN_MSK;
outb(port + SR_PCR, 0); /* turn off the card */
/*
* Next, we'll test the Base Address Register to retension of
* data... ... seeing if we're *really* talking to an N2.
*/
for (i = 0; i < 0x100; i++) {
outb(port + SR_BAR, i);
inb(port + SR_PCR);
tmp = inb(port + SR_BAR);
if (tmp != i) {
printf("sr%d: probe failed BAR %x, %x.\n",
id->id_unit, i, tmp);
return 0;
}
}
/*
* Now see if we can see the SCA.
*/
outb(port + SR_PCR, SR_PCR_SCARUN | inb(port + SR_PCR));
SRC_PUT8(port, sca->wcrl, 0);
SRC_PUT8(port, sca->wcrm, 0);
SRC_PUT8(port, sca->wcrh, 0);
SRC_PUT8(port, sca->pcr, 0);
SRC_PUT8(port, sca->msci[0].tmc, 0);
inb(port);
tmp = SRC_GET8(port, sca->msci[0].tmc);
if (tmp != 0) {
printf("sr%d: Error reading SCA 0, %x\n", id->id_unit, tmp);
return 0;
}
SRC_PUT8(port, sca->msci[0].tmc, 0x5A);
inb(port);
tmp = SRC_GET8(port, sca->msci[0].tmc);
if (tmp != 0x5A) {
printf("sr%d: Error reading SCA 0x5A, %x\n", id->id_unit, tmp);
return 0;
}
SRC_PUT16(port, sca->dmac[0].cda, 0);
inb(port);
tmp = SRC_GET16(port, sca->dmac[0].cda);
if (tmp != 0) {
printf("sr%d: Error reading SCA 0, %x\n", id->id_unit, tmp);
return 0;
}
SRC_PUT16(port, sca->dmac[0].cda, 0x55AA);
inb(port);
tmp = SRC_GET16(port, sca->dmac[0].cda);
if (tmp != 0x55AA) {
printf("sr%d: Error reading SCA 0x55AA, %x\n",
id->id_unit, tmp);
return 0;
}
/*
* OK, the board's interface registers seem to work. Now we'll see
* if the Dual-Ported RAM is fully accessible...
*/
outb(port + SR_PCR, SR_PCR_EN_VPM | SR_PCR_ISA16);
outb(port + SR_PSR, SR_PSR_WIN_16K);
/*
* Take the kernel "virtual" address supplied to us and convert
* it to a "real" address. Then program the card to use that.
*/
mar = (kvtop(id->id_maddr) >> 16) & SR_PCR_16M_SEL;
outb(port + SR_PCR, mar | inb(port + SR_PCR));
mar = kvtop(id->id_maddr) >> 12;
outb(port + SR_BAR, mar);
outb(port + SR_PCR, inb(port + SR_PCR) | SR_PCR_MEM_WIN);
smem = (u_short *)id->id_maddr; /* DP RAM Address */
/*
* Here we will perform the memory scan to size the device.
*
* This is done by marking each potential page with a magic number.
* We then loop through the pages looking for that magic number. As
* soon as we no longer see that magic number, we'll quit the scan,
* knowing that no more memory is present. This provides the number
* of pages present on the card.
*
* Note: We're sizing 16K memory granules.
*/
for (i = 0; i <= SR_PSR_PG_SEL; i++) {
outb(port + SR_PSR,
(inb(port + SR_PSR) & ~SR_PSR_PG_SEL) | i);
*smem = 0xAA55;
}
for (i = 0; i <= SR_PSR_PG_SEL; i++) {
outb(port + SR_PSR,
(inb(port + SR_PSR) & ~SR_PSR_PG_SEL) | i);
if (*smem != 0xAA55) {
/*
* If we have less than 64k of memory, give up. That
* is 4 x 16k pages.
*/
if (i < 4) {
printf("sr%d: Bad mem page %d, mem %x, %x.\n",
id->id_unit, i, 0xAA55, *smem);
return 0;
}
break;
}
*smem = i;
}
hc->mempages = i;
hc->memsize = i * SRC_WIN_SIZ;
hc->winmsk = SRC_WIN_MSK;
pgs = i; /* final count of 16K pages */
/*
* This next loop erases the contents of that page in DPRAM
*/
for (i = 0; i <= pgs; i++) {
outb(port + SR_PSR,
(inb(port + SR_PSR) & ~SR_PSR_PG_SEL) | i);
bzero(smem, SRC_WIN_SIZ);
}
SRC_SET_OFF(port);
/*
* We have a card here, fill in what we can.
*/
id->id_msize = SRC_WIN_SIZ;
hc->iobase = id->id_iobase;
hc->sca_base = id->id_iobase;
hc->mem_start = id->id_maddr;
hc->mem_end = (id->id_maddr + id->id_msize) - 1;
hc->mem_pstart = 0;
hc->cunit = id->id_unit;
/*
* Do a little sanity check.
*/
if (sr_irqtable[ffs(id->id_irq) - 1] == 0)
printf("sr%d: Warning: illegal interrupt %d chosen.\n",
id->id_unit, ffs(id->id_irq) - 1);
/*
* Bogus card configuration
*/
if ((hc->numports > NCHAN) /* only 2 ports/card */
||(hc->memsize > (512 * 1024))) /* no more than 256K */
return 0;
return SRC_IO_SIZ; /* return the amount of IO addresses used. */
}
/*
* srattach_isa and srattach_pci allocate memory for hardc, softc and
* data buffers. It also does any initialization that is bus specific.
* At the end they call the common srattach() function.
*/
static int
srattach_isa(struct isa_device *id)
{
u_char mar;
struct sr_hardc *hc = &sr_hardc[id->id_unit];
outb(hc->iobase + SR_PCR, inb(hc->iobase + SR_PCR) | SR_PCR_SCARUN);
outb(hc->iobase + SR_PSR, inb(hc->iobase + SR_PSR) | SR_PSR_EN_SCA_DMA);
outb(hc->iobase + SR_MCR,
SR_MCR_DTR0 | SR_MCR_DTR1 | SR_MCR_TE0 | SR_MCR_TE1);
SRC_SET_ON(hc->iobase);
/*
* Configure the card. Mem address, irq,
*/
mar = (kvtop(id->id_maddr) >> 16) & SR_PCR_16M_SEL;
outb(hc->iobase + SR_PCR,
mar | (inb(hc->iobase + SR_PCR) & ~SR_PCR_16M_SEL));
mar = kvtop(id->id_maddr) >> 12;
outb(hc->iobase + SR_BAR, mar);
/*
* Allocate the software interface table(s)
*/
hc->sc = malloc(hc->numports * sizeof(struct sr_softc),
M_DEVBUF, M_WAITOK);
bzero(hc->sc, hc->numports * sizeof(struct sr_softc));
/*
* Get the TX clock direction and configuration. The default is a
* single external clock which is used by RX and TX.
*/
#ifdef N2_TEST_SPEED
if (sr_test_speed[0] > 0)
hc->sc[0].clk_cfg = SR_FLAGS_INT_CLK;
else if (id->id_flags & SR_FLAGS_0_CLK_MSK)
hc->sc[0].clk_cfg =
(id->id_flags & SR_FLAGS_0_CLK_MSK)
>> SR_FLAGS_CLK_SHFT;
#else
if (id->id_flags & SR_FLAGS_0_CLK_MSK)
hc->sc[0].clk_cfg =
(id->id_flags & SR_FLAGS_0_CLK_MSK)
>> SR_FLAGS_CLK_SHFT;
#endif
if (hc->numports == 2)
#ifdef N2_TEST_SPEED
if (sr_test_speed[1] > 0)
hc->sc[0].clk_cfg = SR_FLAGS_INT_CLK;
else
#endif
if (id->id_flags & SR_FLAGS_1_CLK_MSK)
hc->sc[1].clk_cfg = (id->id_flags & SR_FLAGS_1_CLK_MSK)
>> (SR_FLAGS_CLK_SHFT + SR_FLAGS_CLK_CHAN_SHFT);
return srattach(hc);
}
struct sr_hardc *
srattach_pci(int unit, vm_offset_t plx_vaddr, vm_offset_t sca_vaddr)
{
int numports, pndx;
u_int fecr, *fecrp = (u_int *)(sca_vaddr + SR_FECR);
struct sr_hardc *hc, **hcp;
/*
* Configure the PLX. This is magic. I'm doing it just like I'm told
* to. :-)
*
* offset
* 0x00 - Map Range - Mem-mapped to locate anywhere
* 0x04 - Re-Map - PCI address decode enable
* 0x18 - Bus Region - 32-bit bus, ready enable
* 0x1c - Master Range - include all 16 MB
* 0x20 - Master RAM - Map SCA Base at 0
* 0x28 - Master Remap - direct master memory enable
* 0x68 - Interrupt - Enable interrupt (0 to disable)
*
* Note: This is "cargo cult" stuff. - jrc
*/
*((u_int *)(plx_vaddr + 0x00)) = 0xfffff000;
*((u_int *)(plx_vaddr + 0x04)) = 1;
*((u_int *)(plx_vaddr + 0x18)) = 0x40030043;
*((u_int *)(plx_vaddr + 0x1c)) = 0xff000000;
*((u_int *)(plx_vaddr + 0x20)) = 0;
*((u_int *)(plx_vaddr + 0x28)) = 0xe9;
*((u_int *)(plx_vaddr + 0x68)) = 0x10900;
/*
* Get info from card.
*
* Only look for the second port if the first exists. Too many things
* will break if we have only a second port.
*/
fecr = *fecrp;
numports = 0;
if (((fecr & SR_FECR_ID0) >> SR_FE_ID0_SHFT) != SR_FE_ID_NONE) {
numports++;
if (((fecr & SR_FECR_ID1) >> SR_FE_ID1_SHFT) != SR_FE_ID_NONE)
numports++;
}
if (numports == 0)
return NULL;
hc = sr_hardc_pci;
hcp = &sr_hardc_pci;
while (hc) {
hcp = &hc->next;
hc = hc->next;
}
hc = malloc(sizeof(struct sr_hardc), M_DEVBUF, M_WAITOK);
*hcp = hc;
bzero(hc, sizeof(struct sr_hardc));
hc->sc = malloc(numports * sizeof(struct sr_softc),
M_DEVBUF, M_WAITOK);
bzero(hc->sc, numports * sizeof(struct sr_softc));
hc->numports = numports;
hc->cunit = unit;
hc->cardtype = SR_CRD_N2PCI;
hc->plx_base = (caddr_t)plx_vaddr;
hc->sca_base = sca_vaddr;
hc->src_put8 = src_put8_mem;
hc->src_put16 = src_put16_mem;
hc->src_get8 = src_get8_mem;
hc->src_get16 = src_get16_mem;
/*
* Malloc area for tx and rx buffers. For now allocate SRC_WIN_SIZ
* (16k) for each buffer.
*
* Allocate the block below 16M because the N2pci card can only access
* 16M memory at a time.
*
* (We could actually allocate a contiguous block above the 16MB limit,
* but this would complicate card programming more than we want to
* right now -jrc)
*/
hc->memsize = 2 * hc->numports * SRC_WIN_SIZ;
hc->mem_start = contigmalloc(hc->memsize,
M_DEVBUF,
M_NOWAIT,
0ul,
0xfffffful,
0x10000,
0x1000000);
if (hc->mem_start == NULL) {
printf("src%d: pci: failed to allocate buffer space.\n", unit);
return NULL;
}
hc->winmsk = 0xffffffff;
hc->mem_end = (caddr_t)((u_int)hc->mem_start + hc->memsize);
hc->mem_pstart = kvtop(hc->mem_start);
bzero(hc->mem_start, hc->memsize);
for (pndx = 0; pndx < numports; pndx++) {
int intf_sw;
struct sr_softc *sc;
sc = &hc->sc[pndx];
switch (pndx) {
case 1:
intf_sw = fecr & SR_FECR_ID1 >> SR_FE_ID1_SHFT;
break;
case 0:
default:
intf_sw = fecr & SR_FECR_ID0 >> SR_FE_ID0_SHFT;
}
#ifdef N2_TEST_SPEED
if (sr_test_speed[pndx] > 0)
sc->clk_cfg = SR_FLAGS_INT_CLK;
else
#endif
switch (intf_sw) {
default:
case SR_FE_ID_RS232:
case SR_FE_ID_HSSI:
case SR_FE_ID_RS422:
case SR_FE_ID_TEST:
break;
case SR_FE_ID_V35:
sc->clk_cfg = SR_FLAGS_EXT_SEP_CLK;
break;
case SR_FE_ID_X21:
sc->clk_cfg = SR_FLAGS_EXT_CLK;
break;
}
}
*fecrp = SR_FECR_DTR0
| SR_FECR_DTR1
| SR_FECR_TE0
| SR_FECR_TE1;
srattach(hc);
return hc;
}
/*
* Register the ports on the adapter.
* Fill in the info for each port.
* Attach each port to sppp and bpf.
*/
static int
srattach(struct sr_hardc *hc)
{
struct sr_softc *sc = hc->sc;
struct ifnet *ifp;
int unit; /* index: channel w/in card */
/*
* Report Card configuration information before we start configuring
* each channel on the card...
*/
printf("src%d: %uK RAM (%d mempages) @ %08x-%08x, %u ports.\n",
hc->cunit, hc->memsize / 1024, hc->mempages,
(u_int)hc->mem_start, (u_int)hc->mem_end, hc->numports);
src_init(hc);
sr_init_sca(hc);
/*
* Now configure each port on the card.
*/
for (unit = 0; unit < hc->numports; sc++, unit++) {
sc->hc = hc;
sc->subunit = unit;
sc->unit = next_sc_unit;
next_sc_unit++;
sc->scachan = unit % NCHAN;
sr_init_rx_dmac(sc);
sr_init_tx_dmac(sc);
sr_init_msci(sc);
ifp = &sc->ifsppp.pp_if;
ifp->if_softc = sc;
ifp->if_unit = sc->unit;
ifp->if_name = "sr";
ifp->if_mtu = PP_MTU;
ifp->if_flags = IFF_POINTOPOINT | IFF_MULTICAST;
ifp->if_ioctl = srioctl;
ifp->if_start = srstart;
ifp->if_watchdog = srwatchdog;
printf("sr%d: Adapter %d, port %d.\n",
sc->unit, hc->cunit, sc->subunit);
/*
* Despite the fact that we want to allow both PPP *and*
* Frame Relay access to a channel, due to the architecture
* of the system, we'll have to do the attach here.
*
* At some point I'll defer the attach to the "up" call and
* have the attach/detach performed when the interface is
* up/downed...
*/
sc->attached = 0;
sc->protocol = N2_USE_PPP; /* default protocol */
#if 0
sc->ifsppp.pp_flags = PP_KEEPALIVE;
sppp_attach((struct ifnet *)&sc->ifsppp);
#endif
if_attach(ifp);
#if NBPFILTER > 0
bpfattach(ifp, DLT_PPP, PPP_HEADER_LEN);
#endif
}
if (hc->mempages)
SRC_SET_OFF(hc->iobase);
return 1;
}
void
srintr_hc(struct sr_hardc *hc)
{
sca_regs *sca = hc->sca; /* MSCI register tree */
u_char isr0, isr1, isr2; /* interrupt statii captured */
#if BUGGY > 1
printf("sr: srintr_hc(hc=%08x)\n", hc);
#endif
/*
* Since multiple interfaces may share this interrupt, we must loop
* until no interrupts are still pending service.
*/
while (1) {
/*
* Read all three interrupt status registers from the N2
* card...
*/
isr0 = SRC_GET8(hc->sca_base, sca->isr0);
isr1 = SRC_GET8(hc->sca_base, sca->isr1);
isr2 = SRC_GET8(hc->sca_base, sca->isr2);
/*
* If all three registers returned 0, we've finished
* processing interrupts from this device, so we can quit
* this loop...
*/
if ((isr0 | isr1 | isr2) == 0)
break;
#if BUGGY > 2
printf("src%d: srintr_hc isr0 %x, isr1 %x, isr2 %x\n",
unit, isr0, isr1, isr2);
#endif
/*
* Now we can dispatch the interrupts. Since we don't expect
* either MSCI or timer interrupts, we'll test for DMA
* interrupts first...
*/
if (isr1) /* DMA-initiated interrupt */
sr_dmac_intr(hc, isr1);
if (isr0) /* serial part IRQ? */
sr_msci_intr(hc, isr0);
if (isr2) /* timer-initiated interrupt */
sr_timer_intr(hc, isr2);
}
}
/*
* This will only start the transmitter. It is assumed that the data
* is already there.
* It is normally called from srstart() or sr_dmac_intr().
*/
static void
sr_xmit(struct sr_softc *sc)
{
u_short cda_value; /* starting descriptor */
u_short eda_value; /* ending descriptor */
struct sr_hardc *hc;
struct ifnet *ifp; /* O/S Network Services */
dmac_channel *dmac; /* DMA channel registers */
#if BUGGY > 0
printf("sr: sr_xmit( sc=%08x)\n", sc);
#endif
hc = sc->hc;
ifp = &sc->ifsppp.pp_if;
dmac = &hc->sca->dmac[DMAC_TXCH(sc->scachan)];
/*
* Get the starting and ending addresses of the chain to be
* transmitted and pass these on to the DMA engine on-chip.
*/
cda_value = sc->block[sc->txb_next_tx].txdesc + hc->mem_pstart;
cda_value &= 0x00ffff;
eda_value = sc->block[sc->txb_next_tx].txeda + hc->mem_pstart;
eda_value &= 0x00ffff;
SRC_PUT16(hc->sca_base, dmac->cda, cda_value);
SRC_PUT16(hc->sca_base, dmac->eda, eda_value);
/*
* Now we'll let the DMA status register know about this change
*/
SRC_PUT8(hc->sca_base, dmac->dsr, SCA_DSR_DE);
sc->xmit_busy = 1; /* mark transmitter busy */
#if BUGGY > 2
printf("sr%d: XMIT cda=%04x, eda=%4x, rcda=%08lx\n",
sc->unit, cda_value, eda_value,
sc->block[sc->txb_next_tx].txdesc + hc->mem_pstart);
#endif
sc->txb_next_tx++; /* update next transmit seq# */
if (sc->txb_next_tx == SR_TX_BLOCKS) /* handle wrap... */
sc->txb_next_tx = 0;
/*
* Finally, we'll set a timout (which will start srwatchdog())
* within the O/S network services layer...
*/
ifp->if_timer = 2; /* Value in seconds. */
}
/*
* This function will be called from the upper level when a user add a
* packet to be send, and from the interrupt handler after a finished
* transmit.
*
* NOTE: it should run at spl_imp().
*
* This function only place the data in the oncard buffers. It does not
* start the transmition. sr_xmit() does that.
*
* Transmitter idle state is indicated by the IFF_OACTIVE flag.
* The function that clears that should ensure that the transmitter
* and its DMA is in a "good" idle state.
*/
static void
srstart(struct ifnet *ifp)
{
struct sr_softc *sc; /* channel control structure */
struct sr_hardc *hc; /* card control/config block */
int len; /* total length of a packet */
int pkts; /* packets placed in DPRAM */
int tlen; /* working length of pkt */
u_int i;
struct mbuf *mtx; /* message buffer from O/S */
u_char *txdata; /* buffer address in DPRAM */
sca_descriptor *txdesc; /* working descriptor pointr */
struct buf_block *blkp;
#if BUGGY > 0
printf("sr: srstart( ifp=%08x)\n", ifp);
#endif
sc = ifp->if_softc;
hc = sc->hc;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
/*
* It is OK to set the memory window outside the loop because all tx
* buffers and descriptors are assumed to be in the same 16K window.
*/
if (hc->mempages) {
SRC_SET_ON(hc->iobase);
SRC_SET_MEM(hc->iobase, sc->block[0].txdesc);
}
/*
* Loop to place packets into DPRAM.
*
* We stay in this loop until there is nothing in
* the TX queue left or the tx buffers are full.
*/
top_srstart:
/*
* See if we have space for more packets.
*/
if (sc->txb_inuse == SR_TX_BLOCKS) { /* out of space? */
ifp->if_flags |= IFF_OACTIVE; /* yes, mark active */
if (hc->mempages)
SRC_SET_OFF(hc->iobase);
#if BUGGY > 9
printf("sr%d.srstart: sc->txb_inuse=%d; DPRAM full...\n",
sc->unit, sc->txb_inuse);
#endif
return;
}
/*
* OK, the card can take more traffic. Let's see if there's any
* pending from the system...
*
* NOTE:
* The architecture of the networking interface doesn't
* actually call us like 'write()', providing an address. We get
* started, a lot like a disk strategy routine, and we actually call
* back out to the system to get traffic to send...
*
* NOTE:
* If we were gonna run through another layer, we would use a
* dispatch table to select the service we're getting a packet
* from...
*/
switch (sc->protocol) {
#if NFR > 0
case N2_USE_FRP:
mtx = fr_dequeue(ifp);
break;
#endif
case N2_USE_PPP:
default:
mtx = sppp_dequeue(ifp);
}
if (!mtx) {
if (hc->mempages)
SRC_SET_OFF(hc->iobase);
return;
}
/*
* OK, we got a packet from the network services of the O/S. Now we
* can move it into the DPRAM (under control of the descriptors) and
* fire it off...
*/
pkts = 0;
i = 0; /* counts # of granules used */
blkp = &sc->block[sc->txb_new]; /* address of free granule */
txdesc = (sca_descriptor *)
(hc->mem_start + (blkp->txdesc & hc->winmsk));
txdata = (u_char *)(hc->mem_start
+ (blkp->txstart & hc->winmsk));
/*
* Now we'll try to install as many packets as possible into the
* card's DP RAM buffers.
*/
for (;;) { /* perform actual copy of packet */
len = mtx->m_pkthdr.len; /* length of message */
#if BUGGY > 1
printf("sr%d.srstart: mbuf @ %08lx, %d bytes\n",
sc->unit, mtx, len);
#endif
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp, mtx);
#endif
/*
* We can perform a straight copy because the tranmit
* buffers won't wrap.
*/
m_copydata(mtx, 0, len, txdata);
/*
* Now we know how big the message is gonna be. We must now
* construct the descriptors to drive this message out...
*/
tlen = len;
while (tlen > SR_BUF_SIZ) { /* loop for full granules */
txdesc->stat = 0; /* reset bits */
txdesc->len = SR_BUF_SIZ; /* size of granule */
tlen -= SR_BUF_SIZ;
txdesc++; /* move to next dscr */
txdata += SR_BUF_SIZ; /* adjust data addr */
i++;
}
/*
* This section handles the setting of the final piece of a
* message.
*/
txdesc->stat = SCA_DESC_EOM;
txdesc->len = tlen;
pkts++;
/*
* prepare for subsequent packets (if any)
*/
txdesc++;
txdata += SR_BUF_SIZ; /* next mem granule */
i++; /* count of granules */
/*
* OK, we've now placed the message into the DPRAM where it
* can be transmitted. We'll now release the message memory
* and update the statistics...
*/
m_freem(mtx);
++sc->ifsppp.pp_if.if_opackets;
/*
* Check if we have space for another packet. XXX This is
* hardcoded. A packet can't be larger than 3 buffers (3 x
* 512).
*/
if ((i + 3) >= blkp->txmax) { /* enough remains? */
#if BUGGY > 9
printf("sr%d.srstart: i=%d (%d pkts); card full.\n",
sc->unit, i, pkts);
#endif
break;
}
/*
* We'll pull the next message to be sent (if any)
*/
switch (sc->protocol) {
#if NFR > 0
case N2_USE_FRP:
mtx = fr_dequeue(ifp);
break;
#endif
case N2_USE_PPP:
default:
mtx = sppp_dequeue(ifp);
}
if (!mtx) { /* no message? We're done! */
#if BUGGY > 9
printf("sr%d.srstart: pending=0, pkts=%d\n",
sc->unit, pkts);
#endif
break;
}
}
blkp->txtail = i; /* record next free granule */
/*
* Mark the last descriptor, so that the SCA know where to stop.
*/
txdesc--; /* back up to last descriptor in list */
txdesc->stat |= SCA_DESC_EOT; /* mark as end of list */
/*
* Now we'll reset the transmit granule's descriptor address so we
* can record this in the structure and fire it off w/ the DMA
* processor of the serial chip...
*/
txdesc = (sca_descriptor *)blkp->txdesc;
blkp->txeda = (u_short)((u_int)&txdesc[i]);
sc->txb_inuse++; /* update inuse status */
sc->txb_new++; /* new traffic wuz added */
if (sc->txb_new == SR_TX_BLOCKS)
sc->txb_new = 0;
/*
* If the tranmitter wasn't marked as "busy" we will force it to be
* started...
*/
if (sc->xmit_busy == 0) {
sr_xmit(sc);
#if BUGGY > 9
printf("sr%d.srstart: called sr_xmit()\n", sc->unit);
#endif
}
goto top_srstart;
}
/*
* Handle ioctl's at the device level, though we *will* call up
* a layer...
*/
#if BUGGY > 2
static int bug_splats[] = {0, 0, 0, 0, 0, 0, 0, 0};
#endif
static int
srioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
int s, error, was_up, should_be_up;
struct sppp *sp = (struct sppp *)ifp;
struct sr_softc *sc = ifp->if_softc;
#if BUGGY > 0
printf("sr%d: srioctl(ifp=%08x, cmd=%08x, data=%08x)\n",
ifp->if_unit, ifp, cmd, data);
#endif
was_up = ifp->if_flags & IFF_RUNNING;
if (cmd == SIOCSIFFLAGS) {
/*
* First, handle an apparent protocol switch
*/
#if NFR > 0
if (was_up == 0)/* can only happen if DOWN */
if (ifp->if_flags & IFF_LINK1)
sc->protocol = N2_USE_FRP;
else
sc->protocol = N2_USE_PPP;
#else
sc->protocol = N2_USE_PPP;
ifp->if_flags &= ~IFF_LINK1;
#endif
/*
* Next we can handle minor protocol point(s)
*/
if (ifp->if_flags & IFF_LINK2)
sp->pp_flags |= PP_CISCO;
else
sp->pp_flags &= ~PP_CISCO;
}
/*
* Next, we'll allow the network service layer we've called process
* the ioctl...
*/
if ((sc->attached != 0)
&& (sc->attached != sc->protocol)) {
switch (sc->attached) {
#if NFR > 0
case N2_USE_FRP:
fr_detach(ifp);
break;
#endif
case N2_USE_PPP:
default:
sppp_detach(ifp);
sc->ifsppp.pp_flags &= ~PP_KEEPALIVE;
}
sc->attached = 0;
}
if (sc->attached == 0) {
switch (sc->protocol) {
#if NFR > 0
case N2_USE_FRP:
fr_attach(&sc->ifsppp.pp_if);
break;
#endif
case N2_USE_PPP:
default:
sc->ifsppp.pp_flags |= PP_KEEPALIVE;
sppp_attach(&sc->ifsppp.pp_if);
}
sc->attached = sc->protocol;
}
switch (sc->protocol) {
#if NFR > 0
case N2_USE_FRP:
error = fr_ioctl(ifp, cmd, data);
break;
#endif
case N2_USE_PPP:
default:
error = sppp_ioctl(ifp, cmd, data);
}
#if BUGGY > 1
printf("sr%d: ioctl: ifsppp.pp_flags = %08x, if_flags %08x.\n",
ifp->if_unit, ((struct sppp *)ifp)->pp_flags, ifp->if_flags);
#endif
if (error)
return error;
if ((cmd != SIOCSIFFLAGS) && (cmd != SIOCSIFADDR)) {
#if BUGGY > 2
if (bug_splats[sc->unit]++ < 2) {
printf("sr(%d).if_addrlist = %08x\n",
sc->unit, ifp->if_addrlist);
printf("sr(%d).if_bpf = %08x\n",
sc->unit, ifp->if_bpf);
printf("sr(%d).if_init = %08x\n",
sc->unit, ifp->if_init);
printf("sr(%d).if_output = %08x\n",
sc->unit, ifp->if_output);
printf("sr(%d).if_start = %08x\n",
sc->unit, ifp->if_start);
printf("sr(%d).if_done = %08x\n",
sc->unit, ifp->if_done);
printf("sr(%d).if_ioctl = %08x\n",
sc->unit, ifp->if_ioctl);
printf("sr(%d).if_reset = %08x\n",
sc->unit, ifp->if_reset);
printf("sr(%d).if_watchdog = %08x\n",
sc->unit, ifp->if_watchdog);
}
#endif
return 0;
}
s = splimp();
should_be_up = ifp->if_flags & IFF_RUNNING;
if (!was_up && should_be_up) {
/*
* Interface should be up -- start it.
*/
sr_up(sc);
srstart(ifp);
/*
* XXX Clear the IFF_UP flag so that the link will only go
* up after sppp lcp and ipcp negotiation.
*/
ifp->if_flags &= ~IFF_UP;
} else if (was_up && !should_be_up) {
/*
* Interface should be down -- stop it.
*/
sr_down(sc);
switch (sc->protocol) {
#if NFR > 0
case N2_USE_FRP:
fr_flush(ifp);
break;
#endif
case N2_USE_PPP:
default:
sppp_flush(ifp);
}
}
splx(s);
#if BUGGY > 2
if (bug_splats[sc->unit]++ < 2) {
printf("sr(%d).if_addrlist = %08x\n",
sc->unit, ifp->if_addrlist);
printf("sr(%d).if_bpf = %08x\n",
sc->unit, ifp->if_bpf);
printf("sr(%d).if_init = %08x\n",
sc->unit, ifp->if_init);
printf("sr(%d).if_output = %08x\n",
sc->unit, ifp->if_output);
printf("sr(%d).if_start = %08x\n",
sc->unit, ifp->if_start);
printf("sr(%d).if_done = %08x\n",
sc->unit, ifp->if_done);
printf("sr(%d).if_ioctl = %08x\n",
sc->unit, ifp->if_ioctl);
printf("sr(%d).if_reset = %08x\n",
sc->unit, ifp->if_reset);
printf("sr(%d).if_watchdog = %08x\n",
sc->unit, ifp->if_watchdog);
}
#endif
return 0;
}
/*
* This is to catch lost tx interrupts.
*/
static void
srwatchdog(struct ifnet *ifp)
{
int got_st0, got_st1, got_st3, got_dsr;
struct sr_softc *sc = ifp->if_softc;
struct sr_hardc *hc = sc->hc;
msci_channel *msci = &hc->sca->msci[sc->scachan];
dmac_channel *dmac = &sc->hc->sca->dmac[sc->scachan];
#if BUGGY > 0
printf("srwatchdog(unit=%d)\n", unit);
#endif
if (!(ifp->if_flags & IFF_RUNNING))
return;
ifp->if_oerrors++; /* update output error count */
got_st0 = SRC_GET8(hc->sca_base, msci->st0);
got_st1 = SRC_GET8(hc->sca_base, msci->st1);
got_st3 = SRC_GET8(hc->sca_base, msci->st3);
got_dsr = SRC_GET8(hc->sca_base, dmac->dsr);
#if 0
if (ifp->if_flags & IFF_DEBUG)
#endif
printf("sr%d: transmit failed, "
"ST0 %02x, ST1 %02x, ST3 %02x, DSR %02x.\n",
sc->unit,
got_st0, got_st1, got_st3, got_dsr);
if (SRC_GET8(hc->sca_base, msci->st1) & SCA_ST1_UDRN) {
SRC_PUT8(hc->sca_base, msci->cmd, SCA_CMD_TXABORT);
SRC_PUT8(hc->sca_base, msci->cmd, SCA_CMD_TXENABLE);
SRC_PUT8(hc->sca_base, msci->st1, SCA_ST1_UDRN);
}
sc->xmit_busy = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (sc->txb_inuse && --sc->txb_inuse)
sr_xmit(sc);
srstart(ifp); /* restart transmitter */
}
static void
sr_up(struct sr_softc *sc)
{
u_int *fecrp;
struct sr_hardc *hc = sc->hc;
sca_regs *sca = hc->sca;
msci_channel *msci = &sca->msci[sc->scachan];
#if BUGGY > 0
printf("sr_up(sc=%08x)\n", sc);
#endif
/*
* This section should really do the attach to the appropriate
* system service, be it frame relay or PPP...
*/
if (sc->attached == 0) {
switch (sc->protocol) {
#if NFR > 0
case N2_USE_FRP:
fr_attach(&sc->ifsppp.pp_if);
break;
#endif
case N2_USE_PPP:
default:
sc->ifsppp.pp_flags |= PP_KEEPALIVE;
sppp_attach(&sc->ifsppp.pp_if);
}
sc->attached = sc->protocol;
}
/*
* Enable transmitter and receiver. Raise DTR and RTS. Enable
* interrupts.
*
* XXX What about using AUTO mode in msci->md0 ???
*/
SRC_PUT8(hc->sca_base, msci->ctl,
SRC_GET8(hc->sca_base, msci->ctl) & ~SCA_CTL_RTS);
if (sc->scachan == 0)
switch (hc->cardtype) {
case SR_CRD_N2:
outb(hc->iobase + SR_MCR,
(inb(hc->iobase + SR_MCR) & ~SR_MCR_DTR0));
break;
case SR_CRD_N2PCI:
fecrp = (u_int *)(hc->sca_base + SR_FECR);
*fecrp &= ~SR_FECR_DTR0;
break;
}
else
switch (hc->cardtype) {
case SR_CRD_N2:
outb(hc->iobase + SR_MCR,
(inb(hc->iobase + SR_MCR) & ~SR_MCR_DTR1));
break;
case SR_CRD_N2PCI:
fecrp = (u_int *)(hc->sca_base + SR_FECR);
*fecrp &= ~SR_FECR_DTR1;
break;
}
if (sc->scachan == 0) {
SRC_PUT8(hc->sca_base, sca->ier0,
SRC_GET8(hc->sca_base, sca->ier0) | 0x000F);
SRC_PUT8(hc->sca_base, sca->ier1,
SRC_GET8(hc->sca_base, sca->ier1) | 0x000F);
} else {
SRC_PUT8(hc->sca_base, sca->ier0,
SRC_GET8(hc->sca_base, sca->ier0) | 0x00F0);
SRC_PUT8(hc->sca_base, sca->ier1,
SRC_GET8(hc->sca_base, sca->ier1) | 0x00F0);
}
SRC_PUT8(hc->sca_base, msci->cmd, SCA_CMD_RXENABLE);
inb(hc->iobase); /* XXX slow it down a bit. */
SRC_PUT8(hc->sca_base, msci->cmd, SCA_CMD_TXENABLE);
#ifdef USE_MODEMCK
if (sr_watcher == 0)
sr_modemck(NULL);
#endif
}
static void
sr_down(struct sr_softc *sc)
{
u_int *fecrp;
struct sr_hardc *hc = sc->hc;
sca_regs *sca = hc->sca;
msci_channel *msci = &sca->msci[sc->scachan];
#if BUGGY > 0
printf("sr_down(sc=%08x)\n", sc);
#endif
/*
* Disable transmitter and receiver. Lower DTR and RTS. Disable
* interrupts.
*/
SRC_PUT8(hc->sca_base, msci->cmd, SCA_CMD_RXDISABLE);
inb(hc->iobase); /* XXX slow it down a bit. */
SRC_PUT8(hc->sca_base, msci->cmd, SCA_CMD_TXDISABLE);
SRC_PUT8(hc->sca_base, msci->ctl,
SRC_GET8(hc->sca_base, msci->ctl) | SCA_CTL_RTS);
if (sc->scachan == 0)
switch (hc->cardtype) {
case SR_CRD_N2:
outb(hc->iobase + SR_MCR,
(inb(hc->iobase + SR_MCR) | SR_MCR_DTR0));
break;
case SR_CRD_N2PCI:
fecrp = (u_int *)(hc->sca_base + SR_FECR);
*fecrp |= SR_FECR_DTR0;
break;
}
else
switch (hc->cardtype) {
case SR_CRD_N2:
outb(hc->iobase + SR_MCR,
(inb(hc->iobase + SR_MCR) | SR_MCR_DTR1));
break;
case SR_CRD_N2PCI:
fecrp = (u_int *)(hc->sca_base + SR_FECR);
*fecrp |= SR_FECR_DTR1;
break;
}
if (sc->scachan == 0) {
SRC_PUT8(hc->sca_base, sca->ier0,
SRC_GET8(hc->sca_base, sca->ier0) & ~0x0F);
SRC_PUT8(hc->sca_base, sca->ier1,
SRC_GET8(hc->sca_base, sca->ier1) & ~0x0F);
} else {
SRC_PUT8(hc->sca_base, sca->ier0,
SRC_GET8(hc->sca_base, sca->ier0) & ~0xF0);
SRC_PUT8(hc->sca_base, sca->ier1,
SRC_GET8(hc->sca_base, sca->ier1) & ~0xF0);
}
/*
* This section does the detach from the currently configured net
* service, be it frame relay or PPP...
*/
switch (sc->protocol) {
#if NFR > 0
case N2_USE_FRP:
fr_detach(&sc->ifsppp.pp_if);
break;
#endif
case N2_USE_PPP:
default:
sppp_detach(&sc->ifsppp.pp_if);
}
sc->attached = 0;
}
/*
* Initialize the card, allocate memory for the sr_softc structures
* and fill in the pointers.
*/
static void
src_init(struct sr_hardc *hc)
{
struct sr_softc *sc = hc->sc;
int x;
u_int chanmem;
u_int bufmem;
u_int next;
u_int descneeded;
#if BUGGY > 0
printf("src_init(hc=%08x)\n", hc);
#endif
chanmem = hc->memsize / hc->numports;
next = 0;
for (x = 0; x < hc->numports; x++, sc++) {
int blk;
for (blk = 0; blk < SR_TX_BLOCKS; blk++) {
sc->block[blk].txdesc = next;
bufmem = (16 * 1024) / SR_TX_BLOCKS;
descneeded = bufmem / SR_BUF_SIZ;
sc->block[blk].txstart = sc->block[blk].txdesc
+ ((((descneeded * sizeof(sca_descriptor))
/ SR_BUF_SIZ) + 1)
* SR_BUF_SIZ);
sc->block[blk].txend = next + bufmem;
sc->block[blk].txmax =
(sc->block[blk].txend - sc->block[blk].txstart)
/ SR_BUF_SIZ;
next += bufmem;
#if BUGGY > 2
printf("sr%d: blk %d: txdesc %08x, txstart %08x\n",
sc->unit, blk,
sc->block[blk].txdesc, sc->block[blk].txstart);
#endif
}
sc->rxdesc = next;
bufmem = chanmem - (bufmem * SR_TX_BLOCKS);
descneeded = bufmem / SR_BUF_SIZ;
sc->rxstart = sc->rxdesc +
((((descneeded * sizeof(sca_descriptor)) /
SR_BUF_SIZ) + 1) * SR_BUF_SIZ);
sc->rxend = next + bufmem;
sc->rxmax = (sc->rxend - sc->rxstart) / SR_BUF_SIZ;
next += bufmem;
}
}
/*
* The things done here are channel independent.
*
* Configure the sca waitstates.
* Configure the global interrupt registers.
* Enable master dma enable.
*/
static void
sr_init_sca(struct sr_hardc *hc)
{
sca_regs *sca = hc->sca;
#if BUGGY > 0
printf("sr_init_sca(hc=%08x)\n", hc);
#endif
/*
* Do the wait registers. Set everything to 0 wait states.
*/
SRC_PUT8(hc->sca_base, sca->pabr0, 0);
SRC_PUT8(hc->sca_base, sca->pabr1, 0);
SRC_PUT8(hc->sca_base, sca->wcrl, 0);
SRC_PUT8(hc->sca_base, sca->wcrm, 0);
SRC_PUT8(hc->sca_base, sca->wcrh, 0);
/*
* Configure the interrupt registers. Most are cleared until the
* interface is configured.
*/
SRC_PUT8(hc->sca_base, sca->ier0, 0x00); /* MSCI interrupts. */
SRC_PUT8(hc->sca_base, sca->ier1, 0x00); /* DMAC interrupts */
SRC_PUT8(hc->sca_base, sca->ier2, 0x00); /* TIMER interrupts. */
SRC_PUT8(hc->sca_base, sca->itcr, 0x00); /* Use ivr and no intr
* ack */
SRC_PUT8(hc->sca_base, sca->ivr, 0x40); /* Interrupt vector. */
SRC_PUT8(hc->sca_base, sca->imvr, 0x40);
/*
* Configure the timers. XXX Later
*/
/*
* Set the DMA channel priority to rotate between all four channels.
*
* Enable all dma channels.
*/
SRC_PUT8(hc->sca_base, sca->pcr, SCA_PCR_PR2);
SRC_PUT8(hc->sca_base, sca->dmer, SCA_DMER_EN);
}
/*
* Configure the msci
*
* NOTE: The serial port configuration is hardcoded at the moment.
*/
static void
sr_init_msci(struct sr_softc *sc)
{
int portndx; /* on-board port number */
u_int mcr_v; /* contents of modem control */
u_int *fecrp; /* pointer for PCI's MCR i/o */
struct sr_hardc *hc = sc->hc;
msci_channel *msci = &hc->sca->msci[sc->scachan];
#ifdef N2_TEST_SPEED
int br_v; /* contents for BR divisor */
int etcndx; /* index into ETC table */
int fifo_v, gotspeed; /* final tabled speed found */
int tmc_v; /* timer control register */
int wanted; /* speed (bitrate) wanted... */
struct rate_line *rtp;
#endif
portndx = sc->scachan;
#if BUGGY > 0
printf("sr: sr_init_msci( sc=%08x)\n", sc);
#endif
SRC_PUT8(hc->sca_base, msci->cmd, SCA_CMD_RESET);
SRC_PUT8(hc->sca_base, msci->md0, SCA_MD0_CRC_1 |
SCA_MD0_CRC_CCITT |
SCA_MD0_CRC_ENABLE |
SCA_MD0_MODE_HDLC);
SRC_PUT8(hc->sca_base, msci->md1, SCA_MD1_NOADDRCHK);
SRC_PUT8(hc->sca_base, msci->md2, SCA_MD2_DUPLEX | SCA_MD2_NRZ);
/*
* According to the manual I should give a reset after changing the
* mode registers.
*/
SRC_PUT8(hc->sca_base, msci->cmd, SCA_CMD_RXRESET);
SRC_PUT8(hc->sca_base, msci->ctl, SCA_CTL_IDLPAT |
SCA_CTL_UDRNC |
SCA_CTL_RTS);
/*
* XXX Later we will have to support different clock settings.
*/
switch (sc->clk_cfg) {
default:
#if BUGGY > 0
printf("sr%: clk_cfg=%08x, selected default clock.\n",
portndx, sc->clk_cfg);
#endif
/* FALLTHROUGH */
case SR_FLAGS_EXT_CLK:
/*
* For now all interfaces are programmed to use the RX clock
* for the TX clock.
*/
#if BUGGY > 0
printf("sr%d: External Clock Selected.\n", portndx);
#endif
SRC_PUT8(hc->sca_base, msci->rxs, 0);
SRC_PUT8(hc->sca_base, msci->txs, 0);
break;
case SR_FLAGS_EXT_SEP_CLK:
#if BUGGY > 0
printf("sr%d: Split Clocking Selected.\n", portndx);
#endif
#if 1
SRC_PUT8(hc->sca_base, msci->rxs, 0);
SRC_PUT8(hc->sca_base, msci->txs, 0);
#else
SRC_PUT8(hc->sca_base, msci->rxs,
SCA_RXS_CLK_RXC0 | SCA_RXS_DIV1);
/*
* We need to configure the internal bit clock for the
* transmitter's channel...
*/
SRC_PUT8(hc->sca_base, msci->txs,
SCA_TXS_CLK_RX | SCA_TXS_DIV1);
#endif
break;
case SR_FLAGS_INT_CLK:
#if BUGGY > 0
printf("sr%d: Internal Clocking selected.\n", portndx);
#endif
/*
* XXX I do need some code to set the baud rate here!
*/
#ifdef N2_TEST_SPEED
switch (hc->cardtype) {
case SR_CRD_N2PCI:
fecrp = (u_int *)(hc->sca_base + SR_FECR);
mcr_v = *fecrp;
etcndx = 2;
break;
case SR_CRD_N2:
default:
mcr_v = inb(hc->iobase + SR_MCR);
etcndx = 0;
}
fifo_v = 0x10; /* stolen from Linux version */
/*
* search for appropriate speed in table, don't calc it:
*/
wanted = sr_test_speed[portndx];
rtp = &n2_rates[0]; /* point to first table item */
while ((rtp->target > 0) /* search table for speed */
&&(rtp->target != wanted))
rtp++;
/*
* We've searched the table for a matching speed. If we've
* found the correct rate line, we'll get the pre-calc'd
* values for the TMC and baud rate divisor for subsequent
* use...
*/
if (rtp->target > 0) { /* use table-provided values */
gotspeed = wanted;
tmc_v = rtp->tmc_reg;
br_v = rtp->br_reg;
} else { /* otherwise assume 1MBit comm rate */
gotspeed = 10000;
tmc_v = 5;
br_v = 1;
}
/*
* Now we mask in the enable clock output for the MCR:
*/
mcr_v |= etc0vals[etcndx + portndx];
/*
* Now we'll program the registers with these speed- related
* contents...
*/
SRC_PUT8(hc->sca_base, msci->tmc, tmc_v);
SRC_PUT8(hc->sca_base, msci->trc0, fifo_v);
SRC_PUT8(hc->sca_base, msci->rxs, SCA_RXS_CLK_INT + br_v);
SRC_PUT8(hc->sca_base, msci->txs, SCA_TXS_CLK_INT + br_v);
switch (hc->cardtype) {
case SR_CRD_N2PCI:
*fecrp = mcr_v;
break;
case SR_CRD_N2:
default:
outb(hc->iobase + SR_MCR, mcr_v);
}
#if BUGGY > 0
if (wanted != gotspeed)
printf("sr%d: Speed wanted=%d, found=%d\n",
wanted, gotspeed);
printf("sr%d: Internal Clock %dx100 BPS, tmc=%d, div=%d\n",
portndx, gotspeed, tmc_v, br_v);
#endif
#else
SRC_PUT8(hc->sca_base, msci->rxs,
SCA_RXS_CLK_INT | SCA_RXS_DIV1);
SRC_PUT8(hc->sca_base, msci->txs,
SCA_TXS_CLK_INT | SCA_TXS_DIV1);
SRC_PUT8(hc->sca_base, msci->tmc, 5);
if (portndx == 0)
switch (hc->cardtype) {
case SR_CRD_N2PCI:
fecrp = (u_int *)(hc->sca_base + SR_FECR);
*fecrp |= SR_FECR_ETC0;
break;
case SR_CRD_N2:
default:
mcr_v = inb(hc->iobase + SR_MCR);
mcr_v |= SR_MCR_ETC0;
outb(hc->iobase + SR_MCR, mcr_v);
}
else
switch (hc->cardtype) {
case SR_CRD_N2:
mcr_v = inb(hc->iobase + SR_MCR);
mcr_v |= SR_MCR_ETC1;
outb(hc->iobase + SR_MCR, mcr_v);
break;
case SR_CRD_N2PCI:
fecrp = (u_int *)(hc->sca_base + SR_FECR);
*fecrp |= SR_FECR_ETC1;
break;
}
#endif
}
/*
* XXX Disable all interrupts for now. I think if you are using the
* dmac you don't use these interrupts.
*/
SRC_PUT8(hc->sca_base, msci->ie0, 0);
SRC_PUT8(hc->sca_base, msci->ie1, 0x0C);
SRC_PUT8(hc->sca_base, msci->ie2, 0);
SRC_PUT8(hc->sca_base, msci->fie, 0);
SRC_PUT8(hc->sca_base, msci->sa0, 0);
SRC_PUT8(hc->sca_base, msci->sa1, 0);
SRC_PUT8(hc->sca_base, msci->idl, 0x7E); /* set flags value */
SRC_PUT8(hc->sca_base, msci->rrc, 0x0E);
SRC_PUT8(hc->sca_base, msci->trc0, 0x10);
SRC_PUT8(hc->sca_base, msci->trc1, 0x1F);
}
/*
* Configure the rx dma controller.
*/
static void
sr_init_rx_dmac(struct sr_softc *sc)
{
struct sr_hardc *hc;
dmac_channel *dmac;
sca_descriptor *rxd;
u_int cda_v, sarb_v, rxbuf, rxda, rxda_d;
#if BUGGY > 0
printf("sr_init_rx_dmac(sc=%08x)\n", sc);
#endif
hc = sc->hc;
dmac = &hc->sca->dmac[DMAC_RXCH(sc->scachan)];
if (hc->mempages)
SRC_SET_MEM(hc->iobase, sc->rxdesc);
/*
* This phase initializes the contents of the descriptor table
* needed to construct a circular buffer...
*/
rxd = (sca_descriptor *)(hc->mem_start + (sc->rxdesc & hc->winmsk));
rxda_d = (u_int) hc->mem_start - (sc->rxdesc & ~hc->winmsk);
for (rxbuf = sc->rxstart;
rxbuf < sc->rxend;
rxbuf += SR_BUF_SIZ, rxd++) {
/*
* construct the circular chain...
*/
rxda = (u_int) & rxd[1] - rxda_d + hc->mem_pstart;
rxd->cp = (u_short)(rxda & 0xffff);
/*
* set the on-card buffer address...
*/
rxd->bp = (u_short)((rxbuf + hc->mem_pstart) & 0xffff);
rxd->bpb = (u_char)(((rxbuf + hc->mem_pstart) >> 16) & 0xff);
rxd->len = 0; /* bytes resident w/in granule */
rxd->stat = 0xff; /* The sca write here when finished */
}
/*
* heal the chain so that the last entry points to the first...
*/
rxd--;
rxd->cp = (u_short)((sc->rxdesc + hc->mem_pstart) & 0xffff);
/*
* reset the reception handler's index...
*/
sc->rxhind = 0;
/*
* We'll now configure the receiver's DMA logic...
*/
SRC_PUT8(hc->sca_base, dmac->dsr, 0); /* Disable DMA transfer */
SRC_PUT8(hc->sca_base, dmac->dcr, SCA_DCR_ABRT);
/* XXX maybe also SCA_DMR_CNTE */
SRC_PUT8(hc->sca_base, dmac->dmr, SCA_DMR_TMOD | SCA_DMR_NF);
SRC_PUT16(hc->sca_base, dmac->bfl, SR_BUF_SIZ);
cda_v = (u_short)((sc->rxdesc + hc->mem_pstart) & 0xffff);
sarb_v = (u_char)(((sc->rxdesc + hc->mem_pstart) >> 16) & 0xff);
SRC_PUT16(hc->sca_base, dmac->cda, cda_v);
SRC_PUT8(hc->sca_base, dmac->sarb, sarb_v);
rxd = (sca_descriptor *)sc->rxstart;
SRC_PUT16(hc->sca_base, dmac->eda,
(u_short)((u_int) & rxd[sc->rxmax - 1] & 0xffff));
SRC_PUT8(hc->sca_base, dmac->dir, 0xF0);
SRC_PUT8(hc->sca_base, dmac->dsr, SCA_DSR_DE); /* Enable DMA */
}
/*
* Configure the TX DMA descriptors.
* Initialize the needed values and chain the descriptors.
*/
static void
sr_init_tx_dmac(struct sr_softc *sc)
{
int blk;
u_int txbuf, txda, txda_d;
struct sr_hardc *hc;
sca_descriptor *txd;
dmac_channel *dmac;
struct buf_block *blkp;
u_int x;
u_int sarb_v;
#if BUGGY > 0
printf("sr_init_tx_dmac(sc=%08x)\n", sc);
#endif
hc = sc->hc;
dmac = &hc->sca->dmac[DMAC_TXCH(sc->scachan)];
if (hc->mempages)
SRC_SET_MEM(hc->iobase, sc->block[0].txdesc);
/*
* Initialize the array of descriptors for transmission
*/
for (blk = 0; blk < SR_TX_BLOCKS; blk++) {
blkp = &sc->block[blk];
txd = (sca_descriptor *)(hc->mem_start
+ (blkp->txdesc & hc->winmsk));
txda_d = (u_int) hc->mem_start
- (blkp->txdesc & ~hc->winmsk);
x = 0;
txbuf = blkp->txstart;
for (; txbuf < blkp->txend; txbuf += SR_BUF_SIZ, txd++) {
txda = (u_int) & txd[1] - txda_d + hc->mem_pstart;
txd->cp = (u_short)(txda & 0xffff);
txd->bp = (u_short)((txbuf + hc->mem_pstart)
& 0xffff);
txd->bpb = (u_char)(((txbuf + hc->mem_pstart) >> 16)
& 0xff);
txd->len = 0;
txd->stat = 0;
x++;
}
txd--;
txd->cp = (u_short)((blkp->txdesc + hc->mem_pstart)
& 0xffff);
blkp->txtail = (u_int)txd - (u_int)hc->mem_start;
}
SRC_PUT8(hc->sca_base, dmac->dsr, 0); /* Disable DMA */
SRC_PUT8(hc->sca_base, dmac->dcr, SCA_DCR_ABRT);
SRC_PUT8(hc->sca_base, dmac->dmr, SCA_DMR_TMOD | SCA_DMR_NF);
SRC_PUT8(hc->sca_base, dmac->dir,
SCA_DIR_EOT | SCA_DIR_BOF | SCA_DIR_COF);
sarb_v = (sc->block[0].txdesc + hc->mem_pstart) >> 16;
sarb_v &= 0x00ff;
SRC_PUT8(hc->sca_base, dmac->sarb, (u_char) sarb_v);
}
/*
* Look through the descriptors to see if there is a complete packet
* available. Stop if we get to where the sca is busy.
*
* Return the length and status of the packet.
* Return nonzero if there is a packet available.
*
* NOTE:
* It seems that we get the interrupt a bit early. The updateing of
* descriptor values is not always completed when this is called.
*/
static int
sr_packet_avail(struct sr_softc *sc, int *len, u_char *rxstat)
{
int granules; /* count of granules in pkt */
int wki, wko;
struct sr_hardc *hc;
sca_descriptor *rxdesc; /* current descriptor */
sca_descriptor *endp; /* ending descriptor */
sca_descriptor *cda; /* starting descriptor */
hc = sc->hc; /* get card's information */
/*
* set up starting descriptor by pulling that info from the DMA half
* of the HD chip...
*/
wki = DMAC_RXCH(sc->scachan);
wko = SRC_GET16(hc->sca_base, hc->sca->dmac[wki].cda);
cda = (sca_descriptor *)(hc->mem_start + (wko & hc->winmsk));
#if BUGGY > 1
printf("sr_packet_avail(): wki=%d, wko=%04x, cda=%08x\n",
wki, wko, cda);
#endif
/*
* open the appropriate memory window and set our expectations...
*/
if (hc->mempages) {
SRC_SET_MEM(hc->iobase, sc->rxdesc);
SRC_SET_ON(hc->iobase);
}
rxdesc = (sca_descriptor *)
(hc->mem_start + (sc->rxdesc & hc->winmsk));
endp = rxdesc;
rxdesc = &rxdesc[sc->rxhind];
endp = &endp[sc->rxmax];
*len = 0; /* reset result total length */
granules = 0; /* reset count of granules */
/*
* This loop will scan descriptors, but it *will* puke up if we wrap
* around to our starting point...
*/
while (rxdesc != cda) {
*len += rxdesc->len; /* increment result length */
granules++;
/*
* If we hit a valid packet's completion we'll know we've
* got a live one, and that we can deliver the packet.
* Since we're only allowed to report a packet available,
* somebody else does that...
*/
if (rxdesc->stat & SCA_DESC_EOM) { /* End Of Message */
*rxstat = rxdesc->stat; /* return closing */
#if BUGGY > 0
printf("sr%d: PKT AVAIL len %d, %x, bufs %u.\n",
sc->unit, *len, *rxstat, granules);
#endif
return 1; /* indicate success */
}
/*
* OK, this packet take up multiple granules. Move on to
* the next descriptor so we can consider it...
*/
rxdesc++;
if (rxdesc == endp) /* recognize & act on wrap point */
rxdesc = (sca_descriptor *)
(hc->mem_start + (sc->rxdesc & hc->winmsk));
}
/*
* Nothing found in the DPRAM. Let the caller know...
*/
*len = 0;
*rxstat = 0;
return 0;
}
/*
* Copy a packet from the on card memory into a provided mbuf.
* Take into account that buffers wrap and that a packet may
* be larger than a buffer.
*/
static void
sr_copy_rxbuf(struct mbuf *m, struct sr_softc *sc, int len)
{
struct sr_hardc *hc;
sca_descriptor *rxdesc;
u_int rxdata;
u_int rxmax;
u_int off = 0;
u_int tlen;
#if BUGGY > 0
printf("sr_copy_rxbuf(m=%08x,sc=%08x,len=%d)\n",
m, sc, len);
#endif
hc = sc->hc;
rxdata = sc->rxstart + (sc->rxhind * SR_BUF_SIZ);
rxmax = sc->rxstart + (sc->rxmax * SR_BUF_SIZ);
rxdesc = (sca_descriptor *)
(hc->mem_start + (sc->rxdesc & hc->winmsk));
rxdesc = &rxdesc[sc->rxhind];
/*
* Using the count of bytes in the received packet, we decrement it
* for each granule (controller by an SCA descriptor) to control the
* looping...
*/
while (len) {
/*
* tlen gets the length of *this* granule... ...which is
* then copied to the target buffer.
*/
tlen = (len < SR_BUF_SIZ) ? len : SR_BUF_SIZ;
if (hc->mempages)
SRC_SET_MEM(hc->iobase, rxdata);
bcopy(hc->mem_start + (rxdata & hc->winmsk),
mtod(m, caddr_t) +off,
tlen);
off += tlen;
len -= tlen;
/*
* now, return to the descriptor's window in DPRAM and reset
* the descriptor we've just suctioned...
*/
if (hc->mempages)
SRC_SET_MEM(hc->iobase, sc->rxdesc);
rxdesc->len = 0;
rxdesc->stat = 0xff;
/*
* Move on to the next granule. If we've any remaining
* bytes to process we'll just continue in our loop...
*/
rxdata += SR_BUF_SIZ;
rxdesc++;
if (rxdata == rxmax) { /* handle the wrap point */
rxdata = sc->rxstart;
rxdesc = (sca_descriptor *)
(hc->mem_start + (sc->rxdesc & hc->winmsk));
}
}
}
/*
* If single is set, just eat a packet. Otherwise eat everything up to
* where cda points. Update pointers to point to the next packet.
*
* This handles "flushing" of a packet as received...
*
* If the "single" parameter is zero, all pending reeceive traffic will
* be flushed out of existence. A non-zero value will only drop the
* *next* (currently) pending packet...
*/
static void
sr_eat_packet(struct sr_softc *sc, int single)
{
struct sr_hardc *hc;
sca_descriptor *rxdesc; /* current descriptor being eval'd */
sca_descriptor *endp; /* last descriptor in chain */
sca_descriptor *cda; /* current start point */
u_int loopcnt = 0; /* count of packets flushed ??? */
u_char stat; /* captured status byte from descr */
hc = sc->hc;
cda = (sca_descriptor *)(hc->mem_start +
(SRC_GET16(hc->sca_base,
hc->sca->dmac[DMAC_RXCH(sc->scachan)].cda) &
hc->winmsk));
/*
* loop until desc->stat == (0xff || EOM) Clear the status and
* length in the descriptor. Increment the descriptor.
*/
if (hc->mempages)
SRC_SET_MEM(hc->iobase, sc->rxdesc);
rxdesc = (sca_descriptor *)
(hc->mem_start + (sc->rxdesc & hc->winmsk));
endp = rxdesc;
rxdesc = &rxdesc[sc->rxhind];
endp = &endp[sc->rxmax];
/*
* allow loop, but abort it if we wrap completely...
*/
while (rxdesc != cda) {
loopcnt++;
if (loopcnt > sc->rxmax) {
printf("sr%d: eat pkt %d loop, cda %x, "
"rxdesc %x, stat %x.\n",
sc->unit, loopcnt, (u_int) cda, (u_int) rxdesc,
rxdesc->stat);
break;
}
stat = rxdesc->stat;
rxdesc->len = 0;
rxdesc->stat = 0xff;
rxdesc++;
sc->rxhind++;
if (rxdesc == endp) {
rxdesc = (sca_descriptor *)
(hc->mem_start + (sc->rxdesc & hc->winmsk));
sc->rxhind = 0;
}
if (single && (stat == SCA_DESC_EOM))
break;
}
/*
* Update the eda to the previous descriptor.
*/
rxdesc = (sca_descriptor *)sc->rxdesc;
rxdesc = &rxdesc[(sc->rxhind + sc->rxmax - 2) % sc->rxmax];
SRC_PUT16(hc->sca_base,
hc->sca->dmac[DMAC_RXCH(sc->scachan)].eda,
(u_short)((u_int)(rxdesc + hc->mem_pstart) & 0xffff));
}
/*
* While there is packets available in the rx buffer, read them out
* into mbufs and ship them off.
*/
static void
sr_get_packets(struct sr_softc *sc)
{
u_char rxstat; /* acquired status byte */
int i;
int pkts; /* count of packets found */
int rxndx; /* rcv buffer index */
int tries; /* settling time counter */
u_int len; /* length of pending packet */
struct sr_hardc *hc; /* card-level information */
sca_descriptor *rxdesc; /* descriptor in memory */
struct ifnet *ifp; /* network intf ctl table */
struct mbuf *m = NULL; /* message buffer */
#if BUGGY > 0
printf("sr_get_packets(sc=%08x)\n", sc);
#endif
hc = sc->hc;
ifp = &sc->ifsppp.pp_if;
if (hc->mempages) {
SRC_SET_MEM(hc->iobase, sc->rxdesc);
SRC_SET_ON(hc->iobase); /* enable shared memory */
}
pkts = 0; /* reset count of found packets */
/*
* for each complete packet in the receiving pool, process each
* packet...
*/
while (sr_packet_avail(sc, &len, &rxstat)) { /* packet pending? */
/*
* I have seen situations where we got the interrupt but the
* status value wasn't deposited. This code should allow
* the status byte's value to settle...
*/
tries = 5;
while ((rxstat == 0x00ff)
&& --tries)
sr_packet_avail(sc, &len, &rxstat);
#if BUGGY > 1
printf("sr_packet_avail() returned len=%d, rxstat=%02ux\n",
len, rxstat);
#endif
pkts++;
/*
* OK, we've settled the incoming message status. We can now
* process it...
*/
if (((rxstat & SCA_DESC_ERRORS) == 0) && (len < MCLBYTES)) {
#if BUGGY > 1
printf("sr%d: sr_get_packet() rxstat=%02x, len=%d\n",
sc->unit, rxstat, len);
#endif
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
/*
* eat (flush) packet if get mbuf fail!!
*/
sr_eat_packet(sc, 1);
continue;
}
/*
* construct control information for pass-off
*/
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
if (len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
/*
* We couldn't get a big enough
* message packet, so we'll send the
* packet to /dev/null...
*/
m_freem(m);
sr_eat_packet(sc, 1);
continue;
}
}
/*
* OK, we've got a good message buffer. Now we can
* copy the received message into it
*/
sr_copy_rxbuf(m, sc, len); /* copy from DPRAM */
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp, m);
#endif
#if BUGGY > 3
{
u_char *bp;
bp = (u_char *)m;
printf("sr%d: rcvd=%02x%02x%02x%02x%02x%02x\n",
sc->unit,
bp[0], bp[1], bp[2],
bp[4], bp[5], bp[6]);
}
#endif
/*
* Pass off the message to PPP, connecting it it to
* the system...
*/
switch (sc->protocol) {
#if NFR > 0
case N2_USE_FRP:
fr_input(ifp, m);
break;
#endif
case N2_USE_PPP:
default:
sppp_input(ifp, m);
}
ifp->if_ipackets++;
/*
* Update the eda to the previous descriptor.
*/
i = (len + SR_BUF_SIZ - 1) / SR_BUF_SIZ;
sc->rxhind = (sc->rxhind + i) % sc->rxmax;
rxdesc = (sca_descriptor *)sc->rxdesc;
rxndx = (sc->rxhind + sc->rxmax - 2) % sc->rxmax;
rxdesc = &rxdesc[rxndx];
SRC_PUT16(hc->sca_base,
hc->sca->dmac[DMAC_RXCH(sc->scachan)].eda,
(u_short)((u_int)(rxdesc + hc->mem_pstart)
& 0xffff));
} else {
int got_st3, got_cda, got_eda;
int tries = 5;
while((rxstat == 0xff) && --tries)
sr_packet_avail(sc, &len, &rxstat);
/*
* It look like we get an interrupt early
* sometimes and then the status is not
* filled in yet.
*/
if(tries && (tries != 5))
continue;
/*
* This chunk of code handles the error packets.
* We'll log them for posterity...
*/
sr_eat_packet(sc, 1);
ifp->if_ierrors++;
got_st3 = SRC_GET8(hc->sca_base,
hc->sca->msci[sc->scachan].st3);
got_cda = SRC_GET16(hc->sca_base,
hc->sca->dmac[DMAC_RXCH(sc->scachan)].cda);
got_eda = SRC_GET16(hc->sca_base,
hc->sca->dmac[DMAC_RXCH(sc->scachan)].eda);
#if BUGGY > 0
printf("sr%d: Receive error chan %d, "
"stat %02x, msci st3 %02x,"
"rxhind %d, cda %04x, eda %04x.\n",
sc->unit, sc->scachan, rxstat,
got_st3, sc->rxhind, got_cda, got_eda);
#endif
}
}
#if BUGGY > 0
printf("sr%d: sr_get_packets() found %d packet(s)\n",
sc->unit, pkts);
#endif
if (hc->mempages)
SRC_SET_OFF(hc->iobase);
}
/*
* All DMA interrupts come here.
*
* Each channel has two interrupts.
* Interrupt A for errors and Interrupt B for normal stuff like end
* of transmit or receive dmas.
*/
static void
sr_dmac_intr(struct sr_hardc *hc, u_char isr1)
{
u_char dsr; /* contents of DMA Stat Reg */
u_char dotxstart; /* enables for tranmit part */
int mch; /* channel being processed */
struct sr_softc *sc; /* channel's softc structure */
sca_regs *sca = hc->sca;
dmac_channel *dmac; /* dma structure of chip */
#if BUGGY > 0
printf("sr_dmac_intr(hc=%08x,isr1=%04x)\n", hc, isr1);
#endif
mch = 0; /* assume chan0 on card */
dotxstart = isr1; /* copy for xmitter starts */
/*
* Shortcut if there is no interrupts for dma channel 0 or 1.
* Skip processing for channel 0 if no incoming hit
*/
if ((isr1 & 0x0F) == 0) {
mch = 1;
isr1 >>= 4;
}
do {
sc = &hc->sc[mch];
/*
* Transmit channel - DMA Status Register Evaluation
*/
if (isr1 & 0x0C) {
dmac = &sca->dmac[DMAC_TXCH(mch)];
/*
* get the DMA Status Register contents and write
* back to reset interrupt...
*/
dsr = SRC_GET8(hc->sca_base, dmac->dsr);
SRC_PUT8(hc->sca_base, dmac->dsr, dsr);
/*
* Check for (& process) a Counter overflow
*/
if (dsr & SCA_DSR_COF) {
printf("sr%d: TX DMA Counter overflow, "
"txpacket no %lu.\n",
sc->unit, sc->ifsppp.pp_if.if_opackets);
sc->ifsppp.pp_if.if_oerrors++;
}
/*
* Check for (& process) a Buffer overflow
*/
if (dsr & SCA_DSR_BOF) {
printf("sr%d: TX DMA Buffer overflow, "
"txpacket no %lu, dsr %02x, "
"cda %04x, eda %04x.\n",
sc->unit, sc->ifsppp.pp_if.if_opackets,
dsr,
SRC_GET16(hc->sca_base, dmac->cda),
SRC_GET16(hc->sca_base, dmac->eda));
sc->ifsppp.pp_if.if_oerrors++;
}
/*
* Check for (& process) an End of Transfer (OK)
*/
if (dsr & SCA_DSR_EOT) {
/*
* This should be the most common case.
*
* Clear the IFF_OACTIVE flag.
*
* Call srstart to start a new transmit if
* there is data to transmit.
*/
#if BUGGY > 0
printf("sr%d: TX Completed OK\n", sc->unit);
#endif
sc->xmit_busy = 0;
sc->ifsppp.pp_if.if_flags &= ~IFF_OACTIVE;
sc->ifsppp.pp_if.if_timer = 0;
if (sc->txb_inuse && --sc->txb_inuse)
sr_xmit(sc);
}
}
/*
* Receive channel processing of DMA Status Register
*/
if (isr1 & 0x03) {
dmac = &sca->dmac[DMAC_RXCH(mch)];
dsr = SRC_GET8(hc->sca_base, dmac->dsr);
SRC_PUT8(hc->sca_base, dmac->dsr, dsr);
/*
* End of frame processing (MSG OK?)
*/
if (dsr & SCA_DSR_EOM) {
#if BUGGY > 0
int tt, ind;
tt = sc->ifsppp.pp_if.if_ipackets;
ind = sc->rxhind;
#endif
sr_get_packets(sc);
#if BUGGY > 0
if (tt == sc->ifsppp.pp_if.if_ipackets) {
sca_descriptor *rxdesc;
int i;
printf("SR: RXINTR isr1 %x, dsr %x, "
"no data %d pkts, orxind %d.\n",
dotxstart, dsr, tt, ind);
printf("SR: rxdesc %x, rxstart %x, "
"rxend %x, rxhind %d, "
"rxmax %d.\n",
sc->rxdesc, sc->rxstart,
sc->rxend, sc->rxhind,
sc->rxmax);
printf("SR: cda %x, eda %x.\n",
SRC_GET16(hc->sca_base, dmac->cda),
SRC_GET16(hc->sca_base, dmac->eda));
if (hc->mempages) {
SRC_SET_ON(hc->iobase);
SRC_SET_MEM(hc->iobase, sc->rxdesc);
}
rxdesc = (sca_descriptor *)
(hc->mem_start +
(sc->rxdesc & hc->winmsk));
rxdesc = &rxdesc[sc->rxhind];
for (i = 0; i < 3; i++, rxdesc++)
printf("SR: rxdesc->stat %x, "
"len %d.\n",
rxdesc->stat,
rxdesc->len);
if (hc->mempages)
SRC_SET_OFF(hc->iobase);
}
#endif
}
/*
* Check for Counter overflow
*/
if (dsr & SCA_DSR_COF) {
printf("sr%d: RX DMA Counter overflow, "
"rxpkts %lu.\n",
sc->unit, sc->ifsppp.pp_if.if_ipackets);
sc->ifsppp.pp_if.if_ierrors++;
}
/*
* Check for Buffer overflow
*/
if (dsr & SCA_DSR_BOF) {
printf("sr%d: RX DMA Buffer overflow, "
"rxpkts %lu, rxind %d, "
"cda %x, eda %x, dsr %x.\n",
sc->unit, sc->ifsppp.pp_if.if_ipackets,
sc->rxhind,
SRC_GET16(hc->sca_base, dmac->cda),
SRC_GET16(hc->sca_base, dmac->eda),
dsr);
/*
* Make sure we eat as many as possible.
* Then get the system running again.
*/
if (hc->mempages)
SRC_SET_ON(hc->iobase);
sr_eat_packet(sc, 0);
sc->ifsppp.pp_if.if_ierrors++;
SRC_PUT8(hc->sca_base,
sca->msci[mch].cmd,
SCA_CMD_RXMSGREJ);
SRC_PUT8(hc->sca_base, dmac->dsr, SCA_DSR_DE);
#if BUGGY > 0
printf("sr%d: RX DMA Buffer overflow, "
"rxpkts %lu, rxind %d, "
"cda %x, eda %x, dsr %x. After\n",
sc->unit,
sc->ifsppp.pp_if.if_ipackets,
sc->rxhind,
SRC_GET16(hc->sca_base, dmac->cda),
SRC_GET16(hc->sca_base, dmac->eda),
SRC_GET8(hc->sca_base, dmac->dsr));
#endif
if (hc->mempages)
SRC_SET_OFF(hc->iobase);
}
/*
* End of Transfer
*/
if (dsr & SCA_DSR_EOT) {
/*
* If this happen, it means that we are
* receiving faster than what the processor
* can handle.
*
* XXX We should enable the dma again.
*/
printf("sr%d: RX End of xfer, rxpkts %lu.\n",
sc->unit,
sc->ifsppp.pp_if.if_ipackets);
sc->ifsppp.pp_if.if_ierrors++;
}
}
isr1 >>= 4; /* process next half of ISR */
mch++; /* and move to next channel */
} while ((mch < NCHAN) && isr1); /* loop for each chn */
/*
* Now that we have done all the urgent things, see if we can fill
* the transmit buffers.
*/
for (mch = 0; mch < NCHAN; mch++) {
if (dotxstart & 0x0C) { /* TX initiation enabled? */
sc = &hc->sc[mch];
srstart(&sc->ifsppp.pp_if);
}
dotxstart >>= 4;/* shift for next channel */
}
}
/*
* Perform timeout on an FR channel
*
* Establish a periodic check of open N2 ports; If
* a port is open/active, its DCD state is checked
* and a loss of DCD is recognized (and eventually
* processed).
*/
static void
sr_modemck(void *arg)
{
u_int s;
int card; /* card index in table */
int cards; /* card list index */
int mch; /* channel on card */
u_char dcd_v; /* Data Carrier Detect */
u_char got_st0; /* contents of ST0 */
u_char got_st1; /* contents of ST1 */
u_char got_st2; /* contents of ST2 */
u_char got_st3; /* contents of ST3 */
struct sr_hardc *hc; /* card's configuration */
struct sr_hardc *Card[16];/* up to 16 cards in system */
struct sr_softc *sc; /* channel's softc structure */
struct ifnet *ifp; /* interface control table */
msci_channel *msci; /* regs specific to channel */
s = splimp();
#if 0
if (sr_opens == 0) { /* count of "up" channels */
sr_watcher = 0; /* indicate no watcher */
splx(s);
return;
}
#endif
sr_watcher = 1; /* mark that we're online */
/*
* Now we'll need a list of cards to process. Since we can handle
* both ISA and PCI cards (and I didn't think of making this logic
* global YET) we'll generate a single table of card table
* addresses.
*/
cards = 0;
for (card = 0; card < NSR; card++) {
hc = &sr_hardc[card];
if (hc->sc == (void *)0)
continue;
Card[cards++] = hc;
}
hc = sr_hardc_pci;
while (hc) {
Card[cards++] = hc;
hc = hc->next;
}
/*
* OK, we've got work we can do. Let's do it... (Please note that
* this code _only_ deals w/ ISA cards)
*/
for (card = 0; card < cards; card++) {
hc = Card[card];/* get card table */
for (mch = 0; mch < hc->numports; mch++) {
sc = &hc->sc[mch];
if (sc->attached == 0)
continue;
ifp = &sc->ifsppp.pp_if;
/*
* if this channel isn't "up", skip it
*/
if ((ifp->if_flags & IFF_UP) == 0)
continue;
/*
* OK, now we can go looking at this channel's
* actual register contents...
*/
msci = &hc->sca->msci[sc->scachan];
/*
* OK, now we'll look into the actual status of this
* channel...
*
* I suck in more registers than strictly needed
*/
got_st0 = SRC_GET8(hc->sca_base, msci->st0);
got_st1 = SRC_GET8(hc->sca_base, msci->st1);
got_st2 = SRC_GET8(hc->sca_base, msci->st2);
got_st3 = SRC_GET8(hc->sca_base, msci->st3);
/*
* We want to see if the DCD signal is up (DCD is
* true if zero)
*/
dcd_v = (got_st3 & SCA_ST3_DCD) == 0;
if (dcd_v == 0)
printf("sr%d: DCD lost\n", sc->unit);
}
}
/*
* OK, now set up for the next modem signal checking pass...
*/
timeout(sr_modemck, NULL, hz);
splx(s);
}
static void
sr_msci_intr(struct sr_hardc *hc, u_char isr0)
{
printf("src%d: SRINTR: MSCI\n", hc->cunit);
}
static void
sr_timer_intr(struct sr_hardc *hc, u_char isr2)
{
printf("src%d: SRINTR: TIMER\n", hc->cunit);
}
/*
********************************* END ************************************
*/