7e6cabd06e
Renumber cluase 4 to 3, per what everybody else did when BSD granted them permission to remove clause 3. My insistance on keeping the same numbering for legal reasons is too pedantic, so give up on that point. Submitted by: Jan Schaumann <jschauma@stevens.edu> Pull Request: https://github.com/freebsd/freebsd/pull/96
343 lines
7.4 KiB
C
343 lines
7.4 KiB
C
/*-
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Kenneth Almquist.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef lint
|
|
#if 0
|
|
static char sccsid[] = "@(#)memalloc.c 8.3 (Berkeley) 5/4/95";
|
|
#endif
|
|
#endif /* not lint */
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include "shell.h"
|
|
#include "output.h"
|
|
#include "memalloc.h"
|
|
#include "error.h"
|
|
#include "mystring.h"
|
|
#include "expand.h"
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
|
|
/*
|
|
* Like malloc, but returns an error when out of space.
|
|
*/
|
|
|
|
pointer
|
|
ckmalloc(size_t nbytes)
|
|
{
|
|
pointer p;
|
|
|
|
INTOFF;
|
|
p = malloc(nbytes);
|
|
INTON;
|
|
if (p == NULL)
|
|
error("Out of space");
|
|
return p;
|
|
}
|
|
|
|
|
|
/*
|
|
* Same for realloc.
|
|
*/
|
|
|
|
pointer
|
|
ckrealloc(pointer p, int nbytes)
|
|
{
|
|
INTOFF;
|
|
p = realloc(p, nbytes);
|
|
INTON;
|
|
if (p == NULL)
|
|
error("Out of space");
|
|
return p;
|
|
}
|
|
|
|
void
|
|
ckfree(pointer p)
|
|
{
|
|
INTOFF;
|
|
free(p);
|
|
INTON;
|
|
}
|
|
|
|
|
|
/*
|
|
* Make a copy of a string in safe storage.
|
|
*/
|
|
|
|
char *
|
|
savestr(const char *s)
|
|
{
|
|
char *p;
|
|
size_t len;
|
|
|
|
len = strlen(s);
|
|
p = ckmalloc(len + 1);
|
|
memcpy(p, s, len + 1);
|
|
return p;
|
|
}
|
|
|
|
|
|
/*
|
|
* Parse trees for commands are allocated in lifo order, so we use a stack
|
|
* to make this more efficient, and also to avoid all sorts of exception
|
|
* handling code to handle interrupts in the middle of a parse.
|
|
*
|
|
* The size 496 was chosen because with 16-byte alignment the total size
|
|
* for the allocated block is 512.
|
|
*/
|
|
|
|
#define MINSIZE 496 /* minimum size of a block. */
|
|
|
|
|
|
struct stack_block {
|
|
struct stack_block *prev;
|
|
/* Data follows */
|
|
};
|
|
#define SPACE(sp) ((char*)(sp) + ALIGN(sizeof(struct stack_block)))
|
|
|
|
static struct stack_block *stackp;
|
|
char *stacknxt;
|
|
int stacknleft;
|
|
char *sstrend;
|
|
|
|
|
|
static void
|
|
stnewblock(int nbytes)
|
|
{
|
|
struct stack_block *sp;
|
|
int allocsize;
|
|
|
|
if (nbytes < MINSIZE)
|
|
nbytes = MINSIZE;
|
|
|
|
allocsize = ALIGN(sizeof(struct stack_block)) + ALIGN(nbytes);
|
|
|
|
INTOFF;
|
|
sp = ckmalloc(allocsize);
|
|
sp->prev = stackp;
|
|
stacknxt = SPACE(sp);
|
|
stacknleft = allocsize - (stacknxt - (char*)sp);
|
|
sstrend = stacknxt + stacknleft;
|
|
stackp = sp;
|
|
INTON;
|
|
}
|
|
|
|
|
|
pointer
|
|
stalloc(int nbytes)
|
|
{
|
|
char *p;
|
|
|
|
nbytes = ALIGN(nbytes);
|
|
if (nbytes > stacknleft)
|
|
stnewblock(nbytes);
|
|
p = stacknxt;
|
|
stacknxt += nbytes;
|
|
stacknleft -= nbytes;
|
|
return p;
|
|
}
|
|
|
|
|
|
void
|
|
stunalloc(pointer p)
|
|
{
|
|
if (p == NULL) { /*DEBUG */
|
|
write(STDERR_FILENO, "stunalloc\n", 10);
|
|
abort();
|
|
}
|
|
stacknleft += stacknxt - (char *)p;
|
|
stacknxt = p;
|
|
}
|
|
|
|
|
|
char *
|
|
stsavestr(const char *s)
|
|
{
|
|
char *p;
|
|
size_t len;
|
|
|
|
len = strlen(s);
|
|
p = stalloc(len + 1);
|
|
memcpy(p, s, len + 1);
|
|
return p;
|
|
}
|
|
|
|
|
|
void
|
|
setstackmark(struct stackmark *mark)
|
|
{
|
|
mark->stackp = stackp;
|
|
mark->stacknxt = stacknxt;
|
|
mark->stacknleft = stacknleft;
|
|
/* Ensure this block stays in place. */
|
|
if (stackp != NULL && stacknxt == SPACE(stackp))
|
|
stalloc(1);
|
|
}
|
|
|
|
|
|
void
|
|
popstackmark(struct stackmark *mark)
|
|
{
|
|
struct stack_block *sp;
|
|
|
|
INTOFF;
|
|
while (stackp != mark->stackp) {
|
|
sp = stackp;
|
|
stackp = sp->prev;
|
|
ckfree(sp);
|
|
}
|
|
stacknxt = mark->stacknxt;
|
|
stacknleft = mark->stacknleft;
|
|
sstrend = stacknxt + stacknleft;
|
|
INTON;
|
|
}
|
|
|
|
|
|
/*
|
|
* When the parser reads in a string, it wants to stick the string on the
|
|
* stack and only adjust the stack pointer when it knows how big the
|
|
* string is. Stackblock (defined in stack.h) returns a pointer to a block
|
|
* of space on top of the stack and stackblocklen returns the length of
|
|
* this block. Growstackblock will grow this space by at least one byte,
|
|
* possibly moving it (like realloc). Grabstackblock actually allocates the
|
|
* part of the block that has been used.
|
|
*/
|
|
|
|
static void
|
|
growstackblock(int min)
|
|
{
|
|
char *p;
|
|
int newlen;
|
|
char *oldspace;
|
|
int oldlen;
|
|
struct stack_block *sp;
|
|
struct stack_block *oldstackp;
|
|
|
|
if (min < stacknleft)
|
|
min = stacknleft;
|
|
if ((unsigned int)min >=
|
|
INT_MAX / 2 - ALIGN(sizeof(struct stack_block)))
|
|
error("Out of space");
|
|
min += stacknleft;
|
|
min += ALIGN(sizeof(struct stack_block));
|
|
newlen = 512;
|
|
while (newlen < min)
|
|
newlen <<= 1;
|
|
oldspace = stacknxt;
|
|
oldlen = stacknleft;
|
|
|
|
if (stackp != NULL && stacknxt == SPACE(stackp)) {
|
|
INTOFF;
|
|
oldstackp = stackp;
|
|
stackp = oldstackp->prev;
|
|
sp = ckrealloc((pointer)oldstackp, newlen);
|
|
sp->prev = stackp;
|
|
stackp = sp;
|
|
stacknxt = SPACE(sp);
|
|
stacknleft = newlen - (stacknxt - (char*)sp);
|
|
sstrend = stacknxt + stacknleft;
|
|
INTON;
|
|
} else {
|
|
newlen -= ALIGN(sizeof(struct stack_block));
|
|
p = stalloc(newlen);
|
|
if (oldlen != 0)
|
|
memcpy(p, oldspace, oldlen);
|
|
stunalloc(p);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* The following routines are somewhat easier to use that the above.
|
|
* The user declares a variable of type STACKSTR, which may be declared
|
|
* to be a register. The macro STARTSTACKSTR initializes things. Then
|
|
* the user uses the macro STPUTC to add characters to the string. In
|
|
* effect, STPUTC(c, p) is the same as *p++ = c except that the stack is
|
|
* grown as necessary. When the user is done, she can just leave the
|
|
* string there and refer to it using stackblock(). Or she can allocate
|
|
* the space for it using grabstackstr(). If it is necessary to allow
|
|
* someone else to use the stack temporarily and then continue to grow
|
|
* the string, the user should use grabstack to allocate the space, and
|
|
* then call ungrabstr(p) to return to the previous mode of operation.
|
|
*
|
|
* USTPUTC is like STPUTC except that it doesn't check for overflow.
|
|
* CHECKSTACKSPACE can be called before USTPUTC to ensure that there
|
|
* is space for at least one character.
|
|
*/
|
|
|
|
static char *
|
|
growstrstackblock(int n, int min)
|
|
{
|
|
growstackblock(min);
|
|
return stackblock() + n;
|
|
}
|
|
|
|
char *
|
|
growstackstr(void)
|
|
{
|
|
int len;
|
|
|
|
len = stackblocksize();
|
|
return (growstrstackblock(len, 0));
|
|
}
|
|
|
|
|
|
/*
|
|
* Called from CHECKSTRSPACE.
|
|
*/
|
|
|
|
char *
|
|
makestrspace(int min, char *p)
|
|
{
|
|
int len;
|
|
|
|
len = p - stackblock();
|
|
return (growstrstackblock(len, min));
|
|
}
|
|
|
|
|
|
char *
|
|
stputbin(const char *data, size_t len, char *p)
|
|
{
|
|
CHECKSTRSPACE(len, p);
|
|
memcpy(p, data, len);
|
|
return (p + len);
|
|
}
|
|
|
|
char *
|
|
stputs(const char *data, char *p)
|
|
{
|
|
return (stputbin(data, strlen(data), p));
|
|
}
|