freebsd-skq/sys/kern/subr_sleepqueue.c
Konstantin Belousov 15465a2c25 Add sleepq_remove_nested()
The helper removes the thread from a sleep queue, assuming that it would
need to sleep. The sleepq_remove_nested() function is intended for quite
special case, where suspended thread from traced stopped process is
temporary unsuspended to do some work on behalf of the debugger in the
target context, and this work might require sleep.

Reviewed by:	markj
Tested by:	pho
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D29955
2021-05-03 19:13:47 +03:00

1515 lines
40 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Implementation of sleep queues used to hold queue of threads blocked on
* a wait channel. Sleep queues are different from turnstiles in that wait
* channels are not owned by anyone, so there is no priority propagation.
* Sleep queues can also provide a timeout and can also be interrupted by
* signals. That said, there are several similarities between the turnstile
* and sleep queue implementations. (Note: turnstiles were implemented
* first.) For example, both use a hash table of the same size where each
* bucket is referred to as a "chain" that contains both a spin lock and
* a linked list of queues. An individual queue is located by using a hash
* to pick a chain, locking the chain, and then walking the chain searching
* for the queue. This means that a wait channel object does not need to
* embed its queue head just as locks do not embed their turnstile queue
* head. Threads also carry around a sleep queue that they lend to the
* wait channel when blocking. Just as in turnstiles, the queue includes
* a free list of the sleep queues of other threads blocked on the same
* wait channel in the case of multiple waiters.
*
* Some additional functionality provided by sleep queues include the
* ability to set a timeout. The timeout is managed using a per-thread
* callout that resumes a thread if it is asleep. A thread may also
* catch signals while it is asleep (aka an interruptible sleep). The
* signal code uses sleepq_abort() to interrupt a sleeping thread. Finally,
* sleep queues also provide some extra assertions. One is not allowed to
* mix the sleep/wakeup and cv APIs for a given wait channel. Also, one
* must consistently use the same lock to synchronize with a wait channel,
* though this check is currently only a warning for sleep/wakeup due to
* pre-existing abuse of that API. The same lock must also be held when
* awakening threads, though that is currently only enforced for condition
* variables.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_sleepqueue_profiling.h"
#include "opt_ddb.h"
#include "opt_sched.h"
#include "opt_stack.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/sleepqueue.h>
#include <sys/stack.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#ifdef EPOCH_TRACE
#include <sys/epoch.h>
#endif
#include <machine/atomic.h>
#include <vm/uma.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
/*
* Constants for the hash table of sleep queue chains.
* SC_TABLESIZE must be a power of two for SC_MASK to work properly.
*/
#ifndef SC_TABLESIZE
#define SC_TABLESIZE 256
#endif
CTASSERT(powerof2(SC_TABLESIZE));
#define SC_MASK (SC_TABLESIZE - 1)
#define SC_SHIFT 8
#define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
SC_MASK)
#define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)]
#define NR_SLEEPQS 2
/*
* There are two different lists of sleep queues. Both lists are connected
* via the sq_hash entries. The first list is the sleep queue chain list
* that a sleep queue is on when it is attached to a wait channel. The
* second list is the free list hung off of a sleep queue that is attached
* to a wait channel.
*
* Each sleep queue also contains the wait channel it is attached to, the
* list of threads blocked on that wait channel, flags specific to the
* wait channel, and the lock used to synchronize with a wait channel.
* The flags are used to catch mismatches between the various consumers
* of the sleep queue API (e.g. sleep/wakeup and condition variables).
* The lock pointer is only used when invariants are enabled for various
* debugging checks.
*
* Locking key:
* c - sleep queue chain lock
*/
struct sleepqueue {
struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */
LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */
LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */
const void *sq_wchan; /* (c) Wait channel. */
int sq_type; /* (c) Queue type. */
#ifdef INVARIANTS
struct lock_object *sq_lock; /* (c) Associated lock. */
#endif
};
struct sleepqueue_chain {
LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */
struct mtx sc_lock; /* Spin lock for this chain. */
#ifdef SLEEPQUEUE_PROFILING
u_int sc_depth; /* Length of sc_queues. */
u_int sc_max_depth; /* Max length of sc_queues. */
#endif
} __aligned(CACHE_LINE_SIZE);
#ifdef SLEEPQUEUE_PROFILING
u_int sleepq_max_depth;
static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"sleepq profiling");
static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains,
CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"sleepq chain stats");
SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
0, "maxmimum depth achieved of a single chain");
static void sleepq_profile(const char *wmesg);
static int prof_enabled;
#endif
static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
static uma_zone_t sleepq_zone;
/*
* Prototypes for non-exported routines.
*/
static int sleepq_catch_signals(const void *wchan, int pri);
static inline int sleepq_check_signals(void);
static inline int sleepq_check_timeout(void);
#ifdef INVARIANTS
static void sleepq_dtor(void *mem, int size, void *arg);
#endif
static int sleepq_init(void *mem, int size, int flags);
static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
int pri, int srqflags);
static void sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
static void sleepq_switch(const void *wchan, int pri);
static void sleepq_timeout(void *arg);
SDT_PROBE_DECLARE(sched, , , sleep);
SDT_PROBE_DECLARE(sched, , , wakeup);
/*
* Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
* Note that it must happen after sleepinit() has been fully executed, so
* it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
*/
#ifdef SLEEPQUEUE_PROFILING
static void
init_sleepqueue_profiling(void)
{
char chain_name[10];
struct sysctl_oid *chain_oid;
u_int i;
for (i = 0; i < SC_TABLESIZE; i++) {
snprintf(chain_name, sizeof(chain_name), "%u", i);
chain_oid = SYSCTL_ADD_NODE(NULL,
SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"sleepq chain stats");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
"depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
"max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
NULL);
}
}
SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
init_sleepqueue_profiling, NULL);
#endif
/*
* Early initialization of sleep queues that is called from the sleepinit()
* SYSINIT.
*/
void
init_sleepqueues(void)
{
int i;
for (i = 0; i < SC_TABLESIZE; i++) {
LIST_INIT(&sleepq_chains[i].sc_queues);
mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
MTX_SPIN);
}
sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
#ifdef INVARIANTS
NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
#else
NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
#endif
thread0.td_sleepqueue = sleepq_alloc();
}
/*
* Get a sleep queue for a new thread.
*/
struct sleepqueue *
sleepq_alloc(void)
{
return (uma_zalloc(sleepq_zone, M_WAITOK));
}
/*
* Free a sleep queue when a thread is destroyed.
*/
void
sleepq_free(struct sleepqueue *sq)
{
uma_zfree(sleepq_zone, sq);
}
/*
* Lock the sleep queue chain associated with the specified wait channel.
*/
void
sleepq_lock(const void *wchan)
{
struct sleepqueue_chain *sc;
sc = SC_LOOKUP(wchan);
mtx_lock_spin(&sc->sc_lock);
}
/*
* Look up the sleep queue associated with a given wait channel in the hash
* table locking the associated sleep queue chain. If no queue is found in
* the table, NULL is returned.
*/
struct sleepqueue *
sleepq_lookup(const void *wchan)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
if (sq->sq_wchan == wchan)
return (sq);
return (NULL);
}
/*
* Unlock the sleep queue chain associated with a given wait channel.
*/
void
sleepq_release(const void *wchan)
{
struct sleepqueue_chain *sc;
sc = SC_LOOKUP(wchan);
mtx_unlock_spin(&sc->sc_lock);
}
/*
* Places the current thread on the sleep queue for the specified wait
* channel. If INVARIANTS is enabled, then it associates the passed in
* lock with the sleepq to make sure it is held when that sleep queue is
* woken up.
*/
void
sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg,
int flags, int queue)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
struct thread *td;
td = curthread;
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
MPASS(td->td_sleepqueue != NULL);
MPASS(wchan != NULL);
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
/* If this thread is not allowed to sleep, die a horrible death. */
if (__predict_false(!THREAD_CAN_SLEEP())) {
#ifdef EPOCH_TRACE
epoch_trace_list(curthread);
#endif
KASSERT(0,
("%s: td %p to sleep on wchan %p with sleeping prohibited",
__func__, td, wchan));
}
/* Look up the sleep queue associated with the wait channel 'wchan'. */
sq = sleepq_lookup(wchan);
/*
* If the wait channel does not already have a sleep queue, use
* this thread's sleep queue. Otherwise, insert the current thread
* into the sleep queue already in use by this wait channel.
*/
if (sq == NULL) {
#ifdef INVARIANTS
int i;
sq = td->td_sleepqueue;
for (i = 0; i < NR_SLEEPQS; i++) {
KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
("thread's sleep queue %d is not empty", i));
KASSERT(sq->sq_blockedcnt[i] == 0,
("thread's sleep queue %d count mismatches", i));
}
KASSERT(LIST_EMPTY(&sq->sq_free),
("thread's sleep queue has a non-empty free list"));
KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
sq->sq_lock = lock;
#endif
#ifdef SLEEPQUEUE_PROFILING
sc->sc_depth++;
if (sc->sc_depth > sc->sc_max_depth) {
sc->sc_max_depth = sc->sc_depth;
if (sc->sc_max_depth > sleepq_max_depth)
sleepq_max_depth = sc->sc_max_depth;
}
#endif
sq = td->td_sleepqueue;
LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
sq->sq_wchan = wchan;
sq->sq_type = flags & SLEEPQ_TYPE;
} else {
MPASS(wchan == sq->sq_wchan);
MPASS(lock == sq->sq_lock);
MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
}
thread_lock(td);
TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
sq->sq_blockedcnt[queue]++;
td->td_sleepqueue = NULL;
td->td_sqqueue = queue;
td->td_wchan = wchan;
td->td_wmesg = wmesg;
if (flags & SLEEPQ_INTERRUPTIBLE) {
td->td_intrval = 0;
td->td_flags |= TDF_SINTR;
}
td->td_flags &= ~TDF_TIMEOUT;
thread_unlock(td);
}
/*
* Sets a timeout that will remove the current thread from the specified
* sleep queue after timo ticks if the thread has not already been awakened.
*/
void
sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr,
int flags)
{
struct sleepqueue_chain *sc __unused;
struct thread *td;
sbintime_t pr1;
td = curthread;
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
MPASS(TD_ON_SLEEPQ(td));
MPASS(td->td_sleepqueue == NULL);
MPASS(wchan != NULL);
if (cold && td == &thread0)
panic("timed sleep before timers are working");
KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
td->td_tid, td, (uintmax_t)td->td_sleeptimo));
thread_lock(td);
callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
thread_unlock(td);
callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
C_DIRECT_EXEC);
}
/*
* Return the number of actual sleepers for the specified queue.
*/
u_int
sleepq_sleepcnt(const void *wchan, int queue)
{
struct sleepqueue *sq;
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
sq = sleepq_lookup(wchan);
if (sq == NULL)
return (0);
return (sq->sq_blockedcnt[queue]);
}
static int
sleepq_check_ast_sc_locked(struct thread *td, struct sleepqueue_chain *sc)
{
struct proc *p;
int ret;
mtx_assert(&sc->sc_lock, MA_OWNED);
if ((td->td_pflags & TDP_WAKEUP) != 0) {
td->td_pflags &= ~TDP_WAKEUP;
thread_lock(td);
return (EINTR);
}
/*
* See if there are any pending signals or suspension requests for this
* thread. If not, we can switch immediately.
*/
thread_lock(td);
if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
return (0);
thread_unlock(td);
mtx_unlock_spin(&sc->sc_lock);
p = td->td_proc;
CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
(void *)td, (long)p->p_pid, td->td_name);
PROC_LOCK(p);
/*
* Check for suspension first. Checking for signals and then
* suspending could result in a missed signal, since a signal
* can be delivered while this thread is suspended.
*/
ret = sig_ast_checksusp(td);
if (ret != 0) {
PROC_UNLOCK(p);
mtx_lock_spin(&sc->sc_lock);
thread_lock(td);
return (ret);
}
ret = sig_ast_needsigchk(td);
/*
* Lock the per-process spinlock prior to dropping the
* PROC_LOCK to avoid a signal delivery race.
* PROC_LOCK, PROC_SLOCK, and thread_lock() are
* currently held in tdsendsignal().
*/
PROC_SLOCK(p);
mtx_lock_spin(&sc->sc_lock);
PROC_UNLOCK(p);
thread_lock(td);
PROC_SUNLOCK(p);
return (ret);
}
/*
* Marks the pending sleep of the current thread as interruptible and
* makes an initial check for pending signals before putting a thread
* to sleep. Enters and exits with the thread lock held. Thread lock
* may have transitioned from the sleepq lock to a run lock.
*/
static int
sleepq_catch_signals(const void *wchan, int pri)
{
struct thread *td;
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
int ret;
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
MPASS(wchan != NULL);
td = curthread;
ret = sleepq_check_ast_sc_locked(td, sc);
THREAD_LOCK_ASSERT(td, MA_OWNED);
mtx_assert(&sc->sc_lock, MA_OWNED);
if (ret == 0) {
/*
* No pending signals and no suspension requests found.
* Switch the thread off the cpu.
*/
sleepq_switch(wchan, pri);
} else {
/*
* There were pending signals and this thread is still
* on the sleep queue, remove it from the sleep queue.
*/
if (TD_ON_SLEEPQ(td)) {
sq = sleepq_lookup(wchan);
sleepq_remove_thread(sq, td);
}
MPASS(td->td_lock != &sc->sc_lock);
mtx_unlock_spin(&sc->sc_lock);
thread_unlock(td);
}
return (ret);
}
/*
* Switches to another thread if we are still asleep on a sleep queue.
* Returns with thread lock.
*/
static void
sleepq_switch(const void *wchan, int pri)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
struct thread *td;
bool rtc_changed;
td = curthread;
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
THREAD_LOCK_ASSERT(td, MA_OWNED);
/*
* If we have a sleep queue, then we've already been woken up, so
* just return.
*/
if (td->td_sleepqueue != NULL) {
mtx_unlock_spin(&sc->sc_lock);
thread_unlock(td);
return;
}
/*
* If TDF_TIMEOUT is set, then our sleep has been timed out
* already but we are still on the sleep queue, so dequeue the
* thread and return.
*
* Do the same if the real-time clock has been adjusted since this
* thread calculated its timeout based on that clock. This handles
* the following race:
* - The Ts thread needs to sleep until an absolute real-clock time.
* It copies the global rtc_generation into curthread->td_rtcgen,
* reads the RTC, and calculates a sleep duration based on that time.
* See umtxq_sleep() for an example.
* - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
* threads that are sleeping until an absolute real-clock time.
* See tc_setclock() and the POSIX specification of clock_settime().
* - Ts reaches the code below. It holds the sleepqueue chain lock,
* so Tc has finished waking, so this thread must test td_rtcgen.
* (The declaration of td_rtcgen refers to this comment.)
*/
rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
if (rtc_changed) {
td->td_rtcgen = 0;
}
MPASS(TD_ON_SLEEPQ(td));
sq = sleepq_lookup(wchan);
sleepq_remove_thread(sq, td);
mtx_unlock_spin(&sc->sc_lock);
thread_unlock(td);
return;
}
#ifdef SLEEPQUEUE_PROFILING
if (prof_enabled)
sleepq_profile(td->td_wmesg);
#endif
MPASS(td->td_sleepqueue == NULL);
sched_sleep(td, pri);
thread_lock_set(td, &sc->sc_lock);
SDT_PROBE0(sched, , , sleep);
TD_SET_SLEEPING(td);
mi_switch(SW_VOL | SWT_SLEEPQ);
KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
(void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
}
/*
* Check to see if we timed out.
*/
static inline int
sleepq_check_timeout(void)
{
struct thread *td;
int res;
res = 0;
td = curthread;
if (td->td_sleeptimo != 0) {
if (td->td_sleeptimo <= sbinuptime())
res = EWOULDBLOCK;
td->td_sleeptimo = 0;
}
return (res);
}
/*
* Check to see if we were awoken by a signal.
*/
static inline int
sleepq_check_signals(void)
{
struct thread *td;
td = curthread;
KASSERT((td->td_flags & TDF_SINTR) == 0,
("thread %p still in interruptible sleep?", td));
return (td->td_intrval);
}
/*
* Block the current thread until it is awakened from its sleep queue.
*/
void
sleepq_wait(const void *wchan, int pri)
{
struct thread *td;
td = curthread;
MPASS(!(td->td_flags & TDF_SINTR));
thread_lock(td);
sleepq_switch(wchan, pri);
}
/*
* Block the current thread until it is awakened from its sleep queue
* or it is interrupted by a signal.
*/
int
sleepq_wait_sig(const void *wchan, int pri)
{
int rcatch;
rcatch = sleepq_catch_signals(wchan, pri);
if (rcatch)
return (rcatch);
return (sleepq_check_signals());
}
/*
* Block the current thread until it is awakened from its sleep queue
* or it times out while waiting.
*/
int
sleepq_timedwait(const void *wchan, int pri)
{
struct thread *td;
td = curthread;
MPASS(!(td->td_flags & TDF_SINTR));
thread_lock(td);
sleepq_switch(wchan, pri);
return (sleepq_check_timeout());
}
/*
* Block the current thread until it is awakened from its sleep queue,
* it is interrupted by a signal, or it times out waiting to be awakened.
*/
int
sleepq_timedwait_sig(const void *wchan, int pri)
{
int rcatch, rvalt, rvals;
rcatch = sleepq_catch_signals(wchan, pri);
/* We must always call check_timeout() to clear sleeptimo. */
rvalt = sleepq_check_timeout();
rvals = sleepq_check_signals();
if (rcatch)
return (rcatch);
if (rvals)
return (rvals);
return (rvalt);
}
/*
* Returns the type of sleepqueue given a waitchannel.
*/
int
sleepq_type(const void *wchan)
{
struct sleepqueue *sq;
int type;
MPASS(wchan != NULL);
sq = sleepq_lookup(wchan);
if (sq == NULL)
return (-1);
type = sq->sq_type;
return (type);
}
/*
* Removes a thread from a sleep queue and makes it
* runnable.
*
* Requires the sc chain locked on entry. If SRQ_HOLD is specified it will
* be locked on return. Returns without the thread lock held.
*/
static int
sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri,
int srqflags)
{
struct sleepqueue_chain *sc;
bool drop;
MPASS(td != NULL);
MPASS(sq->sq_wchan != NULL);
MPASS(td->td_wchan == sq->sq_wchan);
sc = SC_LOOKUP(sq->sq_wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
/*
* Avoid recursing on the chain lock. If the locks don't match we
* need to acquire the thread lock which setrunnable will drop for
* us. In this case we need to drop the chain lock afterwards.
*
* There is no race that will make td_lock equal to sc_lock because
* we hold sc_lock.
*/
drop = false;
if (!TD_IS_SLEEPING(td)) {
thread_lock(td);
drop = true;
} else
thread_lock_block_wait(td);
/* Remove thread from the sleepq. */
sleepq_remove_thread(sq, td);
/* If we're done with the sleepqueue release it. */
if ((srqflags & SRQ_HOLD) == 0 && drop)
mtx_unlock_spin(&sc->sc_lock);
/* Adjust priority if requested. */
MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
if (pri != 0 && td->td_priority > pri &&
PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
sched_prio(td, pri);
/*
* Note that thread td might not be sleeping if it is running
* sleepq_catch_signals() on another CPU or is blocked on its
* proc lock to check signals. There's no need to mark the
* thread runnable in that case.
*/
if (TD_IS_SLEEPING(td)) {
MPASS(!drop);
TD_CLR_SLEEPING(td);
return (setrunnable(td, srqflags));
}
MPASS(drop);
thread_unlock(td);
return (0);
}
static void
sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
{
struct sleepqueue_chain *sc __unused;
MPASS(td != NULL);
MPASS(sq->sq_wchan != NULL);
MPASS(td->td_wchan == sq->sq_wchan);
MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
THREAD_LOCK_ASSERT(td, MA_OWNED);
sc = SC_LOOKUP(sq->sq_wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
/* Remove the thread from the queue. */
sq->sq_blockedcnt[td->td_sqqueue]--;
TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
/*
* Get a sleep queue for this thread. If this is the last waiter,
* use the queue itself and take it out of the chain, otherwise,
* remove a queue from the free list.
*/
if (LIST_EMPTY(&sq->sq_free)) {
td->td_sleepqueue = sq;
#ifdef INVARIANTS
sq->sq_wchan = NULL;
#endif
#ifdef SLEEPQUEUE_PROFILING
sc->sc_depth--;
#endif
} else
td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
LIST_REMOVE(td->td_sleepqueue, sq_hash);
if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0)
/*
* We ignore the situation where timeout subsystem was
* unable to stop our callout. The struct thread is
* type-stable, the callout will use the correct
* memory when running. The checks of the
* td_sleeptimo value in this function and in
* sleepq_timeout() ensure that the thread does not
* get spurious wakeups, even if the callout was reset
* or thread reused.
*/
callout_stop(&td->td_slpcallout);
td->td_wmesg = NULL;
td->td_wchan = NULL;
td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT);
CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
(void *)td, (long)td->td_proc->p_pid, td->td_name);
}
void
sleepq_remove_nested(struct thread *td)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
const void *wchan;
MPASS(TD_ON_SLEEPQ(td));
wchan = td->td_wchan;
sc = SC_LOOKUP(wchan);
mtx_lock_spin(&sc->sc_lock);
sq = sleepq_lookup(wchan);
MPASS(sq != NULL);
thread_lock(td);
sleepq_remove_thread(sq, td);
mtx_unlock_spin(&sc->sc_lock);
/* Returns with the thread lock owned. */
}
#ifdef INVARIANTS
/*
* UMA zone item deallocator.
*/
static void
sleepq_dtor(void *mem, int size, void *arg)
{
struct sleepqueue *sq;
int i;
sq = mem;
for (i = 0; i < NR_SLEEPQS; i++) {
MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
MPASS(sq->sq_blockedcnt[i] == 0);
}
}
#endif
/*
* UMA zone item initializer.
*/
static int
sleepq_init(void *mem, int size, int flags)
{
struct sleepqueue *sq;
int i;
bzero(mem, size);
sq = mem;
for (i = 0; i < NR_SLEEPQS; i++) {
TAILQ_INIT(&sq->sq_blocked[i]);
sq->sq_blockedcnt[i] = 0;
}
LIST_INIT(&sq->sq_free);
return (0);
}
/*
* Find thread sleeping on a wait channel and resume it.
*/
int
sleepq_signal(const void *wchan, int flags, int pri, int queue)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
struct threadqueue *head;
struct thread *td, *besttd;
int wakeup_swapper;
CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
sq = sleepq_lookup(wchan);
if (sq == NULL)
return (0);
KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
("%s: mismatch between sleep/wakeup and cv_*", __func__));
head = &sq->sq_blocked[queue];
if (flags & SLEEPQ_UNFAIR) {
/*
* Find the most recently sleeping thread, but try to
* skip threads still in process of context switch to
* avoid spinning on the thread lock.
*/
sc = SC_LOOKUP(wchan);
besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
while (besttd->td_lock != &sc->sc_lock) {
td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
if (td == NULL)
break;
besttd = td;
}
} else {
/*
* Find the highest priority thread on the queue. If there
* is a tie, use the thread that first appears in the queue
* as it has been sleeping the longest since threads are
* always added to the tail of sleep queues.
*/
besttd = td = TAILQ_FIRST(head);
while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
if (td->td_priority < besttd->td_priority)
besttd = td;
}
}
MPASS(besttd != NULL);
wakeup_swapper = sleepq_resume_thread(sq, besttd, pri, SRQ_HOLD);
return (wakeup_swapper);
}
static bool
match_any(struct thread *td __unused)
{
return (true);
}
/*
* Resume all threads sleeping on a specified wait channel.
*/
int
sleepq_broadcast(const void *wchan, int flags, int pri, int queue)
{
struct sleepqueue *sq;
CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
sq = sleepq_lookup(wchan);
if (sq == NULL)
return (0);
KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
("%s: mismatch between sleep/wakeup and cv_*", __func__));
return (sleepq_remove_matching(sq, queue, match_any, pri));
}
/*
* Resume threads on the sleep queue that match the given predicate.
*/
int
sleepq_remove_matching(struct sleepqueue *sq, int queue,
bool (*matches)(struct thread *), int pri)
{
struct thread *td, *tdn;
int wakeup_swapper;
/*
* The last thread will be given ownership of sq and may
* re-enqueue itself before sleepq_resume_thread() returns,
* so we must cache the "next" queue item at the beginning
* of the final iteration.
*/
wakeup_swapper = 0;
TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
if (matches(td))
wakeup_swapper |= sleepq_resume_thread(sq, td, pri,
SRQ_HOLD);
}
return (wakeup_swapper);
}
/*
* Time sleeping threads out. When the timeout expires, the thread is
* removed from the sleep queue and made runnable if it is still asleep.
*/
static void
sleepq_timeout(void *arg)
{
struct sleepqueue_chain *sc __unused;
struct sleepqueue *sq;
struct thread *td;
const void *wchan;
int wakeup_swapper;
td = arg;
CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
(void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
thread_lock(td);
if (td->td_sleeptimo == 0 || td->td_sleeptimo > sbinuptime()) {
/*
* The thread does not want a timeout (yet).
*/
} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
/*
* See if the thread is asleep and get the wait
* channel if it is.
*/
wchan = td->td_wchan;
sc = SC_LOOKUP(wchan);
THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
sq = sleepq_lookup(wchan);
MPASS(sq != NULL);
td->td_flags |= TDF_TIMEOUT;
wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
if (wakeup_swapper)
kick_proc0();
return;
} else if (TD_ON_SLEEPQ(td)) {
/*
* If the thread is on the SLEEPQ but isn't sleeping
* yet, it can either be on another CPU in between
* sleepq_add() and one of the sleepq_*wait*()
* routines or it can be in sleepq_catch_signals().
*/
td->td_flags |= TDF_TIMEOUT;
}
thread_unlock(td);
}
/*
* Resumes a specific thread from the sleep queue associated with a specific
* wait channel if it is on that queue.
*/
void
sleepq_remove(struct thread *td, const void *wchan)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
int wakeup_swapper;
/*
* Look up the sleep queue for this wait channel, then re-check
* that the thread is asleep on that channel, if it is not, then
* bail.
*/
MPASS(wchan != NULL);
sc = SC_LOOKUP(wchan);
mtx_lock_spin(&sc->sc_lock);
/*
* We can not lock the thread here as it may be sleeping on a
* different sleepq. However, holding the sleepq lock for this
* wchan can guarantee that we do not miss a wakeup for this
* channel. The asserts below will catch any false positives.
*/
if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
mtx_unlock_spin(&sc->sc_lock);
return;
}
/* Thread is asleep on sleep queue sq, so wake it up. */
sq = sleepq_lookup(wchan);
MPASS(sq != NULL);
MPASS(td->td_wchan == wchan);
wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
if (wakeup_swapper)
kick_proc0();
}
/*
* Abort a thread as if an interrupt had occurred. Only abort
* interruptible waits (unfortunately it isn't safe to abort others).
*
* Requires thread lock on entry, releases on return.
*/
int
sleepq_abort(struct thread *td, int intrval)
{
struct sleepqueue *sq;
const void *wchan;
THREAD_LOCK_ASSERT(td, MA_OWNED);
MPASS(TD_ON_SLEEPQ(td));
MPASS(td->td_flags & TDF_SINTR);
MPASS(intrval == EINTR || intrval == ERESTART);
/*
* If the TDF_TIMEOUT flag is set, just leave. A
* timeout is scheduled anyhow.
*/
if (td->td_flags & TDF_TIMEOUT) {
thread_unlock(td);
return (0);
}
CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
(void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
td->td_intrval = intrval;
/*
* If the thread has not slept yet it will find the signal in
* sleepq_catch_signals() and call sleepq_resume_thread. Otherwise
* we have to do it here.
*/
if (!TD_IS_SLEEPING(td)) {
thread_unlock(td);
return (0);
}
wchan = td->td_wchan;
MPASS(wchan != NULL);
sq = sleepq_lookup(wchan);
MPASS(sq != NULL);
/* Thread is asleep on sleep queue sq, so wake it up. */
return (sleepq_resume_thread(sq, td, 0, 0));
}
void
sleepq_chains_remove_matching(bool (*matches)(struct thread *))
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq, *sq1;
int i, wakeup_swapper;
wakeup_swapper = 0;
for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
if (LIST_EMPTY(&sc->sc_queues)) {
continue;
}
mtx_lock_spin(&sc->sc_lock);
LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
for (i = 0; i < NR_SLEEPQS; ++i) {
wakeup_swapper |= sleepq_remove_matching(sq, i,
matches, 0);
}
}
mtx_unlock_spin(&sc->sc_lock);
}
if (wakeup_swapper) {
kick_proc0();
}
}
/*
* Prints the stacks of all threads presently sleeping on wchan/queue to
* the sbuf sb. Sets count_stacks_printed to the number of stacks actually
* printed. Typically, this will equal the number of threads sleeping on the
* queue, but may be less if sb overflowed before all stacks were printed.
*/
#ifdef STACK
int
sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue,
int *count_stacks_printed)
{
struct thread *td, *td_next;
struct sleepqueue *sq;
struct stack **st;
struct sbuf **td_infos;
int i, stack_idx, error, stacks_to_allocate;
bool finished;
error = 0;
finished = false;
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
stacks_to_allocate = 10;
for (i = 0; i < 3 && !finished ; i++) {
/* We cannot malloc while holding the queue's spinlock, so
* we do our mallocs now, and hope it is enough. If it
* isn't, we will free these, drop the lock, malloc more,
* and try again, up to a point. After that point we will
* give up and report ENOMEM. We also cannot write to sb
* during this time since the client may have set the
* SBUF_AUTOEXTEND flag on their sbuf, which could cause a
* malloc as we print to it. So we defer actually printing
* to sb until after we drop the spinlock.
*/
/* Where we will store the stacks. */
st = malloc(sizeof(struct stack *) * stacks_to_allocate,
M_TEMP, M_WAITOK);
for (stack_idx = 0; stack_idx < stacks_to_allocate;
stack_idx++)
st[stack_idx] = stack_create(M_WAITOK);
/* Where we will store the td name, tid, etc. */
td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
M_TEMP, M_WAITOK);
for (stack_idx = 0; stack_idx < stacks_to_allocate;
stack_idx++)
td_infos[stack_idx] = sbuf_new(NULL, NULL,
MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
SBUF_FIXEDLEN);
sleepq_lock(wchan);
sq = sleepq_lookup(wchan);
if (sq == NULL) {
/* This sleepq does not exist; exit and return ENOENT. */
error = ENOENT;
finished = true;
sleepq_release(wchan);
goto loop_end;
}
stack_idx = 0;
/* Save thread info */
TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
td_next) {
if (stack_idx >= stacks_to_allocate)
goto loop_end;
/* Note the td_lock is equal to the sleepq_lock here. */
(void)stack_save_td(st[stack_idx], td);
sbuf_printf(td_infos[stack_idx], "%d: %s %p",
td->td_tid, td->td_name, td);
++stack_idx;
}
finished = true;
sleepq_release(wchan);
/* Print the stacks */
for (i = 0; i < stack_idx; i++) {
sbuf_finish(td_infos[i]);
sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
stack_sbuf_print(sb, st[i]);
sbuf_printf(sb, "\n");
error = sbuf_error(sb);
if (error == 0)
*count_stacks_printed = stack_idx;
}
loop_end:
if (!finished)
sleepq_release(wchan);
for (stack_idx = 0; stack_idx < stacks_to_allocate;
stack_idx++)
stack_destroy(st[stack_idx]);
for (stack_idx = 0; stack_idx < stacks_to_allocate;
stack_idx++)
sbuf_delete(td_infos[stack_idx]);
free(st, M_TEMP);
free(td_infos, M_TEMP);
stacks_to_allocate *= 10;
}
if (!finished && error == 0)
error = ENOMEM;
return (error);
}
#endif
#ifdef SLEEPQUEUE_PROFILING
#define SLEEPQ_PROF_LOCATIONS 1024
#define SLEEPQ_SBUFSIZE 512
struct sleepq_prof {
LIST_ENTRY(sleepq_prof) sp_link;
const char *sp_wmesg;
long sp_count;
};
LIST_HEAD(sqphead, sleepq_prof);
struct sqphead sleepq_prof_free;
struct sqphead sleepq_hash[SC_TABLESIZE];
static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
static struct mtx sleepq_prof_lock;
MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
static void
sleepq_profile(const char *wmesg)
{
struct sleepq_prof *sp;
mtx_lock_spin(&sleepq_prof_lock);
if (prof_enabled == 0)
goto unlock;
LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
if (sp->sp_wmesg == wmesg)
goto done;
sp = LIST_FIRST(&sleepq_prof_free);
if (sp == NULL)
goto unlock;
sp->sp_wmesg = wmesg;
LIST_REMOVE(sp, sp_link);
LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
done:
sp->sp_count++;
unlock:
mtx_unlock_spin(&sleepq_prof_lock);
return;
}
static void
sleepq_prof_reset(void)
{
struct sleepq_prof *sp;
int enabled;
int i;
mtx_lock_spin(&sleepq_prof_lock);
enabled = prof_enabled;
prof_enabled = 0;
for (i = 0; i < SC_TABLESIZE; i++)
LIST_INIT(&sleepq_hash[i]);
LIST_INIT(&sleepq_prof_free);
for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
sp = &sleepq_profent[i];
sp->sp_wmesg = NULL;
sp->sp_count = 0;
LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
}
prof_enabled = enabled;
mtx_unlock_spin(&sleepq_prof_lock);
}
static int
enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
{
int error, v;
v = prof_enabled;
error = sysctl_handle_int(oidp, &v, v, req);
if (error)
return (error);
if (req->newptr == NULL)
return (error);
if (v == prof_enabled)
return (0);
if (v == 1)
sleepq_prof_reset();
mtx_lock_spin(&sleepq_prof_lock);
prof_enabled = !!v;
mtx_unlock_spin(&sleepq_prof_lock);
return (0);
}
static int
reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
{
int error, v;
v = 0;
error = sysctl_handle_int(oidp, &v, 0, req);
if (error)
return (error);
if (req->newptr == NULL)
return (error);
if (v == 0)
return (0);
sleepq_prof_reset();
return (0);
}
static int
dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
{
struct sleepq_prof *sp;
struct sbuf *sb;
int enabled;
int error;
int i;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
sbuf_printf(sb, "\nwmesg\tcount\n");
enabled = prof_enabled;
mtx_lock_spin(&sleepq_prof_lock);
prof_enabled = 0;
mtx_unlock_spin(&sleepq_prof_lock);
for (i = 0; i < SC_TABLESIZE; i++) {
LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
sbuf_printf(sb, "%s\t%ld\n",
sp->sp_wmesg, sp->sp_count);
}
}
mtx_lock_spin(&sleepq_prof_lock);
prof_enabled = enabled;
mtx_unlock_spin(&sleepq_prof_lock);
error = sbuf_finish(sb);
sbuf_delete(sb);
return (error);
}
SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats,
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
dump_sleepq_prof_stats, "A",
"Sleepqueue profiling statistics");
SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
reset_sleepq_prof_stats, "I",
"Reset sleepqueue profiling statistics");
SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
enable_sleepq_prof, "I",
"Enable sleepqueue profiling");
#endif
#ifdef DDB
DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
#ifdef INVARIANTS
struct lock_object *lock;
#endif
struct thread *td;
void *wchan;
int i;
if (!have_addr)
return;
/*
* First, see if there is an active sleep queue for the wait channel
* indicated by the address.
*/
wchan = (void *)addr;
sc = SC_LOOKUP(wchan);
LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
if (sq->sq_wchan == wchan)
goto found;
/*
* Second, see if there is an active sleep queue at the address
* indicated.
*/
for (i = 0; i < SC_TABLESIZE; i++)
LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
if (sq == (struct sleepqueue *)addr)
goto found;
}
db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
return;
found:
db_printf("Wait channel: %p\n", sq->sq_wchan);
db_printf("Queue type: %d\n", sq->sq_type);
#ifdef INVARIANTS
if (sq->sq_lock) {
lock = sq->sq_lock;
db_printf("Associated Interlock: %p - (%s) %s\n", lock,
LOCK_CLASS(lock)->lc_name, lock->lo_name);
}
#endif
db_printf("Blocked threads:\n");
for (i = 0; i < NR_SLEEPQS; i++) {
db_printf("\nQueue[%d]:\n", i);
if (TAILQ_EMPTY(&sq->sq_blocked[i]))
db_printf("\tempty\n");
else
TAILQ_FOREACH(td, &sq->sq_blocked[i],
td_slpq) {
db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
td->td_tid, td->td_proc->p_pid,
td->td_name);
}
db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
}
}
/* Alias 'show sleepqueue' to 'show sleepq'. */
DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
#endif