freebsd-skq/sys/pci/if_wb.c
rwatson 5d770a09e8 Propagate rename of IFF_OACTIVE and IFF_RUNNING to IFF_DRV_OACTIVE and
IFF_DRV_RUNNING, as well as the move from ifnet.if_flags to
ifnet.if_drv_flags.  Device drivers are now responsible for
synchronizing access to these flags, as they are in if_drv_flags.  This
helps prevent races between the network stack and device driver in
maintaining the interface flags field.

Many __FreeBSD__ and __FreeBSD_version checks maintained and continued;
some less so.

Reviewed by:	pjd, bz
MFC after:	7 days
2005-08-09 10:20:02 +00:00

1838 lines
40 KiB
C

/*-
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Winbond fast ethernet PCI NIC driver
*
* Supports various cheap network adapters based on the Winbond W89C840F
* fast ethernet controller chip. This includes adapters manufactured by
* Winbond itself and some made by Linksys.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Winbond W89C840F chip is a bus master; in some ways it resembles
* a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
* one major difference which is that while the registers do many of
* the same things as a tulip adapter, the offsets are different: where
* tulip registers are typically spaced 8 bytes apart, the Winbond
* registers are spaced 4 bytes apart. The receiver filter is also
* programmed differently.
*
* Like the tulip, the Winbond chip uses small descriptors containing
* a status word, a control word and 32-bit areas that can either be used
* to point to two external data blocks, or to point to a single block
* and another descriptor in a linked list. Descriptors can be grouped
* together in blocks to form fixed length rings or can be chained
* together in linked lists. A single packet may be spread out over
* several descriptors if necessary.
*
* For the receive ring, this driver uses a linked list of descriptors,
* each pointing to a single mbuf cluster buffer, which us large enough
* to hold an entire packet. The link list is looped back to created a
* closed ring.
*
* For transmission, the driver creates a linked list of 'super descriptors'
* which each contain several individual descriptors linked toghether.
* Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
* abuse as fragment pointers. This allows us to use a buffer managment
* scheme very similar to that used in the ThunderLAN and Etherlink XL
* drivers.
*
* Autonegotiation is performed using the external PHY via the MII bus.
* The sample boards I have all use a Davicom PHY.
*
* Note: the author of the Linux driver for the Winbond chip alludes
* to some sort of flaw in the chip's design that seems to mandate some
* drastic workaround which signigicantly impairs transmit performance.
* I have no idea what he's on about: transmit performance with all
* three of my test boards seems fine.
*/
#include "opt_bdg.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define WB_USEIOSPACE
#include <pci/if_wbreg.h>
MODULE_DEPEND(wb, pci, 1, 1, 1);
MODULE_DEPEND(wb, ether, 1, 1, 1);
MODULE_DEPEND(wb, miibus, 1, 1, 1);
/*
* Various supported device vendors/types and their names.
*/
static struct wb_type wb_devs[] = {
{ WB_VENDORID, WB_DEVICEID_840F,
"Winbond W89C840F 10/100BaseTX" },
{ CP_VENDORID, CP_DEVICEID_RL100,
"Compex RL100-ATX 10/100baseTX" },
{ 0, 0, NULL }
};
static int wb_probe(device_t);
static int wb_attach(device_t);
static int wb_detach(device_t);
static void wb_bfree(void *addr, void *args);
static int wb_newbuf(struct wb_softc *, struct wb_chain_onefrag *,
struct mbuf *);
static int wb_encap(struct wb_softc *, struct wb_chain *, struct mbuf *);
static void wb_rxeof(struct wb_softc *);
static void wb_rxeoc(struct wb_softc *);
static void wb_txeof(struct wb_softc *);
static void wb_txeoc(struct wb_softc *);
static void wb_intr(void *);
static void wb_tick(void *);
static void wb_start(struct ifnet *);
static int wb_ioctl(struct ifnet *, u_long, caddr_t);
static void wb_init(void *);
static void wb_stop(struct wb_softc *);
static void wb_watchdog(struct ifnet *);
static void wb_shutdown(device_t);
static int wb_ifmedia_upd(struct ifnet *);
static void wb_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void wb_eeprom_putbyte(struct wb_softc *, int);
static void wb_eeprom_getword(struct wb_softc *, int, u_int16_t *);
static void wb_read_eeprom(struct wb_softc *, caddr_t, int, int, int);
static void wb_mii_sync(struct wb_softc *);
static void wb_mii_send(struct wb_softc *, u_int32_t, int);
static int wb_mii_readreg(struct wb_softc *, struct wb_mii_frame *);
static int wb_mii_writereg(struct wb_softc *, struct wb_mii_frame *);
static void wb_setcfg(struct wb_softc *, u_int32_t);
static void wb_setmulti(struct wb_softc *);
static void wb_reset(struct wb_softc *);
static void wb_fixmedia(struct wb_softc *);
static int wb_list_rx_init(struct wb_softc *);
static int wb_list_tx_init(struct wb_softc *);
static int wb_miibus_readreg(device_t, int, int);
static int wb_miibus_writereg(device_t, int, int, int);
static void wb_miibus_statchg(device_t);
#ifdef WB_USEIOSPACE
#define WB_RES SYS_RES_IOPORT
#define WB_RID WB_PCI_LOIO
#else
#define WB_RES SYS_RES_MEMORY
#define WB_RID WB_PCI_LOMEM
#endif
static device_method_t wb_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, wb_probe),
DEVMETHOD(device_attach, wb_attach),
DEVMETHOD(device_detach, wb_detach),
DEVMETHOD(device_shutdown, wb_shutdown),
/* bus interface, for miibus */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, wb_miibus_readreg),
DEVMETHOD(miibus_writereg, wb_miibus_writereg),
DEVMETHOD(miibus_statchg, wb_miibus_statchg),
{ 0, 0 }
};
static driver_t wb_driver = {
"wb",
wb_methods,
sizeof(struct wb_softc)
};
static devclass_t wb_devclass;
DRIVER_MODULE(wb, pci, wb_driver, wb_devclass, 0, 0);
DRIVER_MODULE(miibus, wb, miibus_driver, miibus_devclass, 0, 0);
#define WB_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define WB_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, WB_SIO, \
CSR_READ_4(sc, WB_SIO) | (x))
#define SIO_CLR(x) \
CSR_WRITE_4(sc, WB_SIO, \
CSR_READ_4(sc, WB_SIO) & ~(x))
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
wb_eeprom_putbyte(sc, addr)
struct wb_softc *sc;
int addr;
{
register int d, i;
d = addr | WB_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(WB_SIO_EE_DATAIN);
} else {
SIO_CLR(WB_SIO_EE_DATAIN);
}
DELAY(100);
SIO_SET(WB_SIO_EE_CLK);
DELAY(150);
SIO_CLR(WB_SIO_EE_CLK);
DELAY(100);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
wb_eeprom_getword(sc, addr, dest)
struct wb_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
/*
* Send address of word we want to read.
*/
wb_eeprom_putbyte(sc, addr);
CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(WB_SIO_EE_CLK);
DELAY(100);
if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
word |= i;
SIO_CLR(WB_SIO_EE_CLK);
DELAY(100);
}
/* Turn off EEPROM access mode. */
CSR_WRITE_4(sc, WB_SIO, 0);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
wb_read_eeprom(sc, dest, off, cnt, swap)
struct wb_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
wb_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void
wb_mii_sync(sc)
struct wb_softc *sc;
{
register int i;
SIO_SET(WB_SIO_MII_DIR|WB_SIO_MII_DATAIN);
for (i = 0; i < 32; i++) {
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void
wb_mii_send(sc, bits, cnt)
struct wb_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
SIO_CLR(WB_SIO_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
SIO_SET(WB_SIO_MII_DATAIN);
} else {
SIO_CLR(WB_SIO_MII_DATAIN);
}
DELAY(1);
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int
wb_mii_readreg(sc, frame)
struct wb_softc *sc;
struct wb_mii_frame *frame;
{
int i, ack;
WB_LOCK(sc);
/*
* Set up frame for RX.
*/
frame->mii_stdelim = WB_MII_STARTDELIM;
frame->mii_opcode = WB_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_4(sc, WB_SIO, 0);
/*
* Turn on data xmit.
*/
SIO_SET(WB_SIO_MII_DIR);
wb_mii_sync(sc);
/*
* Send command/address info.
*/
wb_mii_send(sc, frame->mii_stdelim, 2);
wb_mii_send(sc, frame->mii_opcode, 2);
wb_mii_send(sc, frame->mii_phyaddr, 5);
wb_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
SIO_CLR((WB_SIO_MII_CLK|WB_SIO_MII_DATAIN));
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
/* Turn off xmit. */
SIO_CLR(WB_SIO_MII_DIR);
/* Check for ack */
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
frame->mii_data |= i;
DELAY(1);
}
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
}
fail:
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
WB_UNLOCK(sc);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int
wb_mii_writereg(sc, frame)
struct wb_softc *sc;
struct wb_mii_frame *frame;
{
WB_LOCK(sc);
/*
* Set up frame for TX.
*/
frame->mii_stdelim = WB_MII_STARTDELIM;
frame->mii_opcode = WB_MII_WRITEOP;
frame->mii_turnaround = WB_MII_TURNAROUND;
/*
* Turn on data output.
*/
SIO_SET(WB_SIO_MII_DIR);
wb_mii_sync(sc);
wb_mii_send(sc, frame->mii_stdelim, 2);
wb_mii_send(sc, frame->mii_opcode, 2);
wb_mii_send(sc, frame->mii_phyaddr, 5);
wb_mii_send(sc, frame->mii_regaddr, 5);
wb_mii_send(sc, frame->mii_turnaround, 2);
wb_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
SIO_SET(WB_SIO_MII_CLK);
DELAY(1);
SIO_CLR(WB_SIO_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
SIO_CLR(WB_SIO_MII_DIR);
WB_UNLOCK(sc);
return(0);
}
static int
wb_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct wb_softc *sc;
struct wb_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
wb_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static int
wb_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct wb_softc *sc;
struct wb_mii_frame frame;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
wb_mii_writereg(sc, &frame);
return(0);
}
static void
wb_miibus_statchg(dev)
device_t dev;
{
struct wb_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
WB_LOCK(sc);
mii = device_get_softc(sc->wb_miibus);
wb_setcfg(sc, mii->mii_media_active);
WB_UNLOCK(sc);
return;
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
wb_setmulti(sc)
struct wb_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
int mcnt = 0;
ifp = sc->wb_ifp;
rxfilt = CSR_READ_4(sc, WB_NETCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= WB_NETCFG_RX_MULTI;
CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, WB_MAR0, 0);
CSR_WRITE_4(sc, WB_MAR1, 0);
/* now program new ones */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
IF_ADDR_UNLOCK(ifp);
if (mcnt)
rxfilt |= WB_NETCFG_RX_MULTI;
else
rxfilt &= ~WB_NETCFG_RX_MULTI;
CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
return;
}
/*
* The Winbond manual states that in order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void
wb_setcfg(sc, media)
struct wb_softc *sc;
u_int32_t media;
{
int i, restart = 0;
if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)) {
restart = 1;
WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON));
for (i = 0; i < WB_TIMEOUT; i++) {
DELAY(10);
if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
break;
}
if (i == WB_TIMEOUT)
printf("wb%d: failed to force tx and "
"rx to idle state\n", sc->wb_unit);
}
if (IFM_SUBTYPE(media) == IFM_10_T)
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
else
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
if ((media & IFM_GMASK) == IFM_FDX)
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
else
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
if (restart)
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON|WB_NETCFG_RX_ON);
return;
}
static void
wb_reset(sc)
struct wb_softc *sc;
{
register int i;
struct mii_data *mii;
CSR_WRITE_4(sc, WB_NETCFG, 0);
CSR_WRITE_4(sc, WB_BUSCTL, 0);
CSR_WRITE_4(sc, WB_TXADDR, 0);
CSR_WRITE_4(sc, WB_RXADDR, 0);
WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
for (i = 0; i < WB_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET))
break;
}
if (i == WB_TIMEOUT)
printf("wb%d: reset never completed!\n", sc->wb_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
if (sc->wb_miibus == NULL)
return;
mii = device_get_softc(sc->wb_miibus);
if (mii == NULL)
return;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
return;
}
static void
wb_fixmedia(sc)
struct wb_softc *sc;
{
struct mii_data *mii = NULL;
struct ifnet *ifp;
u_int32_t media;
if (sc->wb_miibus == NULL)
return;
mii = device_get_softc(sc->wb_miibus);
ifp = sc->wb_ifp;
mii_pollstat(mii);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
media = mii->mii_media_active & ~IFM_10_T;
media |= IFM_100_TX;
} else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
media = mii->mii_media_active & ~IFM_100_TX;
media |= IFM_10_T;
} else
return;
ifmedia_set(&mii->mii_media, media);
return;
}
/*
* Probe for a Winbond chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
wb_probe(dev)
device_t dev;
{
struct wb_type *t;
t = wb_devs;
while(t->wb_name != NULL) {
if ((pci_get_vendor(dev) == t->wb_vid) &&
(pci_get_device(dev) == t->wb_did)) {
device_set_desc(dev, t->wb_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
wb_attach(dev)
device_t dev;
{
u_char eaddr[ETHER_ADDR_LEN];
struct wb_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
mtx_init(&sc->wb_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = WB_RID;
sc->wb_res = bus_alloc_resource_any(dev, WB_RES, &rid, RF_ACTIVE);
if (sc->wb_res == NULL) {
printf("wb%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->wb_btag = rman_get_bustag(sc->wb_res);
sc->wb_bhandle = rman_get_bushandle(sc->wb_res);
/* Allocate interrupt */
rid = 0;
sc->wb_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->wb_irq == NULL) {
printf("wb%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
/* Save the cache line size. */
sc->wb_cachesize = pci_read_config(dev, WB_PCI_CACHELEN, 4) & 0xFF;
/* Reset the adapter. */
wb_reset(sc);
/*
* Get station address from the EEPROM.
*/
wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0);
sc->wb_unit = unit;
sc->wb_ldata = contigmalloc(sizeof(struct wb_list_data) + 8, M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->wb_ldata == NULL) {
printf("wb%d: no memory for list buffers!\n", unit);
error = ENXIO;
goto fail;
}
bzero(sc->wb_ldata, sizeof(struct wb_list_data));
ifp = sc->wb_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
printf("wb%d: can not if_alloc()\n", unit);
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
IFF_NEEDSGIANT;
ifp->if_ioctl = wb_ioctl;
ifp->if_start = wb_start;
ifp->if_watchdog = wb_watchdog;
ifp->if_init = wb_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = WB_TX_LIST_CNT - 1;
/*
* Do MII setup.
*/
if (mii_phy_probe(dev, &sc->wb_miibus,
wb_ifmedia_upd, wb_ifmedia_sts)) {
error = ENXIO;
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->wb_irq, INTR_TYPE_NET,
wb_intr, sc, &sc->wb_intrhand);
if (error) {
printf("wb%d: couldn't set up irq\n", unit);
ether_ifdetach(ifp);
if_free(ifp);
goto fail;
}
fail:
if (error)
wb_detach(dev);
return(error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
wb_detach(dev)
device_t dev;
{
struct wb_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->wb_mtx), ("wb mutex not initialized"));
WB_LOCK(sc);
ifp = sc->wb_ifp;
/*
* Delete any miibus and phy devices attached to this interface.
* This should only be done if attach succeeded.
*/
if (device_is_attached(dev)) {
wb_stop(sc);
ether_ifdetach(ifp);
if_free(ifp);
}
if (sc->wb_miibus)
device_delete_child(dev, sc->wb_miibus);
bus_generic_detach(dev);
if (sc->wb_intrhand)
bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
if (sc->wb_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
if (sc->wb_res)
bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
if (sc->wb_ldata) {
contigfree(sc->wb_ldata, sizeof(struct wb_list_data) + 8,
M_DEVBUF);
}
WB_UNLOCK(sc);
mtx_destroy(&sc->wb_mtx);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int
wb_list_tx_init(sc)
struct wb_softc *sc;
{
struct wb_chain_data *cd;
struct wb_list_data *ld;
int i;
cd = &sc->wb_cdata;
ld = sc->wb_ldata;
for (i = 0; i < WB_TX_LIST_CNT; i++) {
cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
if (i == (WB_TX_LIST_CNT - 1)) {
cd->wb_tx_chain[i].wb_nextdesc =
&cd->wb_tx_chain[0];
} else {
cd->wb_tx_chain[i].wb_nextdesc =
&cd->wb_tx_chain[i + 1];
}
}
cd->wb_tx_free = &cd->wb_tx_chain[0];
cd->wb_tx_tail = cd->wb_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
wb_list_rx_init(sc)
struct wb_softc *sc;
{
struct wb_chain_data *cd;
struct wb_list_data *ld;
int i;
cd = &sc->wb_cdata;
ld = sc->wb_ldata;
for (i = 0; i < WB_RX_LIST_CNT; i++) {
cd->wb_rx_chain[i].wb_ptr =
(struct wb_desc *)&ld->wb_rx_list[i];
cd->wb_rx_chain[i].wb_buf = (void *)&ld->wb_rxbufs[i];
if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (WB_RX_LIST_CNT - 1)) {
cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[0];
ld->wb_rx_list[i].wb_next =
vtophys(&ld->wb_rx_list[0]);
} else {
cd->wb_rx_chain[i].wb_nextdesc =
&cd->wb_rx_chain[i + 1];
ld->wb_rx_list[i].wb_next =
vtophys(&ld->wb_rx_list[i + 1]);
}
}
cd->wb_rx_head = &cd->wb_rx_chain[0];
return(0);
}
static void
wb_bfree(buf, args)
void *buf;
void *args;
{
return;
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
wb_newbuf(sc, c, m)
struct wb_softc *sc;
struct wb_chain_onefrag *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(ENOBUFS);
m_new->m_data = c->wb_buf;
m_new->m_pkthdr.len = m_new->m_len = WB_BUFBYTES;
MEXTADD(m_new, c->wb_buf, WB_BUFBYTES, wb_bfree, NULL, 0,
EXT_NET_DRV);
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->wb_mbuf = m_new;
c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | 1536;
c->wb_ptr->wb_status = WB_RXSTAT;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
wb_rxeof(sc)
struct wb_softc *sc;
{
struct mbuf *m = NULL;
struct ifnet *ifp;
struct wb_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
WB_LOCK_ASSERT(sc);
ifp = sc->wb_ifp;
while(!((rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status) &
WB_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = sc->wb_cdata.wb_rx_head;
sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
m = cur_rx->wb_mbuf;
if ((rxstat & WB_RXSTAT_MIIERR) ||
(WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
(WB_RXBYTES(cur_rx->wb_ptr->wb_status) > 1536) ||
!(rxstat & WB_RXSTAT_LASTFRAG) ||
!(rxstat & WB_RXSTAT_RXCMP)) {
ifp->if_ierrors++;
wb_newbuf(sc, cur_rx, m);
printf("wb%x: receiver babbling: possible chip "
"bug, forcing reset\n", sc->wb_unit);
wb_fixmedia(sc);
wb_reset(sc);
wb_init(sc);
return;
}
if (rxstat & WB_RXSTAT_RXERR) {
ifp->if_ierrors++;
wb_newbuf(sc, cur_rx, m);
break;
}
/* No errors; receive the packet. */
total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
/*
* XXX The Winbond chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp,
NULL);
wb_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
break;
}
m = m0;
ifp->if_ipackets++;
WB_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
WB_LOCK(sc);
}
}
static void
wb_rxeoc(sc)
struct wb_softc *sc;
{
wb_rxeof(sc);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
wb_txeof(sc)
struct wb_softc *sc;
{
struct wb_chain *cur_tx;
struct ifnet *ifp;
ifp = sc->wb_ifp;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->wb_cdata.wb_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->wb_cdata.wb_tx_head;
txstat = WB_TXSTATUS(cur_tx);
if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
break;
if (txstat & WB_TXSTAT_TXERR) {
ifp->if_oerrors++;
if (txstat & WB_TXSTAT_ABORT)
ifp->if_collisions++;
if (txstat & WB_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
m_freem(cur_tx->wb_mbuf);
cur_tx->wb_mbuf = NULL;
if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
sc->wb_cdata.wb_tx_head = NULL;
sc->wb_cdata.wb_tx_tail = NULL;
break;
}
sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void
wb_txeoc(sc)
struct wb_softc *sc;
{
struct ifnet *ifp;
ifp = sc->wb_ifp;
ifp->if_timer = 0;
if (sc->wb_cdata.wb_tx_head == NULL) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->wb_cdata.wb_tx_tail = NULL;
} else {
if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
ifp->if_timer = 5;
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
}
}
return;
}
static void
wb_intr(arg)
void *arg;
{
struct wb_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
WB_LOCK(sc);
ifp = sc->wb_ifp;
if (!(ifp->if_flags & IFF_UP)) {
WB_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, WB_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, WB_ISR);
if (status)
CSR_WRITE_4(sc, WB_ISR, status);
if ((status & WB_INTRS) == 0)
break;
if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
ifp->if_ierrors++;
wb_reset(sc);
if (status & WB_ISR_RX_ERR)
wb_fixmedia(sc);
wb_init(sc);
continue;
}
if (status & WB_ISR_RX_OK)
wb_rxeof(sc);
if (status & WB_ISR_RX_IDLE)
wb_rxeoc(sc);
if (status & WB_ISR_TX_OK)
wb_txeof(sc);
if (status & WB_ISR_TX_NOBUF)
wb_txeoc(sc);
if (status & WB_ISR_TX_IDLE) {
wb_txeof(sc);
if (sc->wb_cdata.wb_tx_head != NULL) {
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
}
}
if (status & WB_ISR_TX_UNDERRUN) {
ifp->if_oerrors++;
wb_txeof(sc);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
/* Jack up TX threshold */
sc->wb_txthresh += WB_TXTHRESH_CHUNK;
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
}
if (status & WB_ISR_BUS_ERR) {
wb_reset(sc);
wb_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
wb_start(ifp);
}
WB_UNLOCK(sc);
return;
}
static void
wb_tick(xsc)
void *xsc;
{
struct wb_softc *sc;
struct mii_data *mii;
sc = xsc;
WB_LOCK(sc);
mii = device_get_softc(sc->wb_miibus);
mii_tick(mii);
sc->wb_stat_ch = timeout(wb_tick, sc, hz);
WB_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
wb_encap(sc, c, m_head)
struct wb_softc *sc;
struct wb_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct wb_desc *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == WB_MAXFRAGS)
break;
total_len += m->m_len;
f = &c->wb_ptr->wb_frag[frag];
f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
if (frag == 0) {
f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
f->wb_status = 0;
} else
f->wb_status = WB_TXSTAT_OWN;
f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
f->wb_data = vtophys(mtod(m, vm_offset_t));
frag++;
}
}
/*
* Handle special case: we used up all 16 fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(1);
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->wb_ptr->wb_frag[0];
f->wb_status = 0;
f->wb_data = vtophys(mtod(m_new, caddr_t));
f->wb_ctl = total_len = m_new->m_len;
f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
frag = 1;
}
if (total_len < WB_MIN_FRAMELEN) {
f = &c->wb_ptr->wb_frag[frag];
f->wb_ctl = WB_MIN_FRAMELEN - total_len;
f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
f->wb_ctl |= WB_TXCTL_TLINK;
f->wb_status = WB_TXSTAT_OWN;
frag++;
}
c->wb_mbuf = m_head;
c->wb_lastdesc = frag - 1;
WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
wb_start(ifp)
struct ifnet *ifp;
{
struct wb_softc *sc;
struct mbuf *m_head = NULL;
struct wb_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
WB_LOCK(sc);
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
WB_UNLOCK(sc);
return;
}
start_tx = sc->wb_cdata.wb_tx_free;
while(sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->wb_cdata.wb_tx_free;
sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
/* Pack the data into the descriptor. */
wb_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, cur_tx->wb_mbuf);
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL) {
WB_UNLOCK(sc);
return;
}
/*
* Place the request for the upload interrupt
* in the last descriptor in the chain. This way, if
* we're chaining several packets at once, we'll only
* get an interupt once for the whole chain rather than
* once for each packet.
*/
WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
sc->wb_cdata.wb_tx_tail = cur_tx;
if (sc->wb_cdata.wb_tx_head == NULL) {
sc->wb_cdata.wb_tx_head = start_tx;
WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
} else {
/*
* We need to distinguish between the case where
* the own bit is clear because the chip cleared it
* and where the own bit is clear because we haven't
* set it yet. The magic value WB_UNSET is just some
* ramdomly chosen number which doesn't have the own
* bit set. When we actually transmit the frame, the
* status word will have _only_ the own bit set, so
* the txeoc handler will be able to tell if it needs
* to initiate another transmission to flush out pending
* frames.
*/
WB_TXOWN(start_tx) = WB_UNSENT;
}
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
WB_UNLOCK(sc);
return;
}
static void
wb_init(xsc)
void *xsc;
{
struct wb_softc *sc = xsc;
struct ifnet *ifp = sc->wb_ifp;
int i;
struct mii_data *mii;
WB_LOCK(sc);
mii = device_get_softc(sc->wb_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
wb_stop(sc);
wb_reset(sc);
sc->wb_txthresh = WB_TXTHRESH_INIT;
/*
* Set cache alignment and burst length.
*/
#ifdef foo
CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
#endif
CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE|WB_BUSCTL_ARBITRATION);
WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
switch(sc->wb_cachesize) {
case 32:
WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
break;
case 16:
WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
break;
case 8:
WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
break;
case 0:
default:
WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
break;
}
/* This doesn't tend to work too well at 100Mbps. */
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, WB_NODE0 + i, IFP2ENADDR(sc->wb_ifp)[i]);
}
/* Init circular RX list. */
if (wb_list_rx_init(sc) == ENOBUFS) {
printf("wb%d: initialization failed: no "
"memory for rx buffers\n", sc->wb_unit);
wb_stop(sc);
WB_UNLOCK(sc);
return;
}
/* Init TX descriptors. */
wb_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
} else {
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
} else {
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
}
/*
* Program the multicast filter, if necessary.
*/
wb_setmulti(sc);
/*
* Load the address of the RX list.
*/
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->wb_stat_ch = timeout(wb_tick, sc, hz);
WB_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int
wb_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct wb_softc *sc;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
wb_init(sc);
return(0);
}
/*
* Report current media status.
*/
static void
wb_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct wb_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->wb_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
wb_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct wb_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
WB_LOCK(sc);
switch(command) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
wb_init(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
wb_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
wb_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->wb_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
WB_UNLOCK(sc);
return(error);
}
static void
wb_watchdog(ifp)
struct ifnet *ifp;
{
struct wb_softc *sc;
sc = ifp->if_softc;
WB_LOCK(sc);
ifp->if_oerrors++;
printf("wb%d: watchdog timeout\n", sc->wb_unit);
#ifdef foo
if (!(wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
printf("wb%d: no carrier - transceiver cable problem?\n",
sc->wb_unit);
#endif
wb_stop(sc);
wb_reset(sc);
wb_init(sc);
if (ifp->if_snd.ifq_head != NULL)
wb_start(ifp);
WB_UNLOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
wb_stop(sc)
struct wb_softc *sc;
{
register int i;
struct ifnet *ifp;
WB_LOCK(sc);
ifp = sc->wb_ifp;
ifp->if_timer = 0;
untimeout(wb_tick, sc, sc->wb_stat_ch);
WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON|WB_NETCFG_TX_ON));
CSR_WRITE_4(sc, WB_IMR, 0x00000000);
CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < WB_RX_LIST_CNT; i++) {
if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
}
}
bzero((char *)&sc->wb_ldata->wb_rx_list,
sizeof(sc->wb_ldata->wb_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < WB_TX_LIST_CNT; i++) {
if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
}
}
bzero((char *)&sc->wb_ldata->wb_tx_list,
sizeof(sc->wb_ldata->wb_tx_list));
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
WB_UNLOCK(sc);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
wb_shutdown(dev)
device_t dev;
{
struct wb_softc *sc;
sc = device_get_softc(dev);
wb_stop(sc);
return;
}