freebsd-skq/lib/libthr/thread/thr_mutex.c
marcel 622fe058c9 Change the thread ID (thr_id_t) used for 1:1 threading from being a
pointer to the corresponding struct thread to the thread ID (lwpid_t)
assigned to that thread. The primary reason for this change is that
libthr now internally uses the same ID as the debugger and the kernel
when referencing to a kernel thread. This allows us to implement the
support for debugging without additional translations and/or mappings.

To preserve the ABI, the 1:1 threading syscalls, including the umtx
locking API have not been changed to work on a lwpid_t. Instead the
1:1 threading syscalls operate on long and the umtx locking API has
not been changed except for the contested bit. Previously this was
the least significant bit. Now it's the most significant bit. Since
the contested bit should not be tested by userland, this change is
not expected to be visible. Just to be sure, UMTX_CONTESTED has been
removed from <sys/umtx.h>.

Reviewed by: mtm@
ABI preservation tested on: i386, ia64
2004-07-02 00:40:07 +00:00

915 lines
23 KiB
C

/*
* Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John Birrell.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <pthread.h>
#include <time.h>
#include "thr_private.h"
#if defined(_PTHREADS_INVARIANTS)
#define _MUTEX_INIT_LINK(m) do { \
(m)->m_qe.tqe_prev = NULL; \
(m)->m_qe.tqe_next = NULL; \
} while (0)
#define _MUTEX_ASSERT_IS_OWNED(m) do { \
if ((m)->m_qe.tqe_prev == NULL) \
PANIC("mutex is not on list"); \
} while (0)
#define _MUTEX_ASSERT_NOT_OWNED(m) do { \
if (((m)->m_qe.tqe_prev != NULL) || \
((m)->m_qe.tqe_next != NULL)) \
PANIC("mutex is on list"); \
} while (0)
#else
#define _MUTEX_INIT_LINK(m)
#define _MUTEX_ASSERT_IS_OWNED(m)
#define _MUTEX_ASSERT_NOT_OWNED(m)
#endif
/*
* Prototypes
*/
static void acquire_mutex(struct pthread_mutex *, struct pthread *);
static int get_mcontested(pthread_mutex_t,
const struct timespec *);
static void mutex_attach_to_next_pthread(struct pthread_mutex *);
static int mutex_init(pthread_mutex_t *, int);
static int mutex_lock_common(pthread_mutex_t *, int,
const struct timespec *);
static inline int mutex_self_lock(pthread_mutex_t, int);
static inline int mutex_unlock_common(pthread_mutex_t *, int);
static inline pthread_t mutex_queue_deq(pthread_mutex_t);
static inline void mutex_queue_remove(pthread_mutex_t, pthread_t);
static inline void mutex_queue_enq(pthread_mutex_t, pthread_t);
static void restore_prio_inheritance(struct pthread *);
static void restore_prio_protection(struct pthread *);
static spinlock_t static_init_lock = _SPINLOCK_INITIALIZER;
static struct pthread_mutex_attr static_mutex_attr =
PTHREAD_MUTEXATTR_STATIC_INITIALIZER;
static pthread_mutexattr_t static_mattr = &static_mutex_attr;
/* Single underscore versions provided for libc internal usage: */
__weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock);
__weak_reference(__pthread_mutex_lock, pthread_mutex_lock);
__weak_reference(__pthread_mutex_unlock, pthread_mutex_unlock);
/* No difference between libc and application usage of these: */
__weak_reference(_pthread_mutex_init, pthread_mutex_init);
__weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy);
__weak_reference(_pthread_mutex_timedlock, pthread_mutex_timedlock);
/*
* Reinitialize a private mutex; this is only used for internal mutexes.
*/
int
_mutex_reinit(pthread_mutex_t * mutex)
{
int ret = 0;
if (mutex == NULL)
ret = EINVAL;
else if (*mutex == PTHREAD_MUTEX_INITIALIZER)
ret = _pthread_mutex_init(mutex, NULL);
else {
/*
* Initialize the mutex structure:
*/
(*mutex)->m_type = PTHREAD_MUTEX_DEFAULT;
(*mutex)->m_protocol = PTHREAD_PRIO_NONE;
TAILQ_INIT(&(*mutex)->m_queue);
(*mutex)->m_owner = NULL;
(*mutex)->m_data.m_count = 0;
(*mutex)->m_flags |= MUTEX_FLAGS_INITED | MUTEX_FLAGS_PRIVATE;
(*mutex)->m_refcount = 0;
(*mutex)->m_prio = 0;
(*mutex)->m_saved_prio = 0;
_MUTEX_INIT_LINK(*mutex);
memset(&(*mutex)->lock, 0, sizeof((*mutex)->lock));
}
return (ret);
}
int
_pthread_mutex_init(pthread_mutex_t * mutex,
const pthread_mutexattr_t * mutex_attr)
{
struct pthread_mutex_attr default_attr = {PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_PRIO_NONE, PTHREAD_MAX_PRIORITY, 0 };
struct pthread_mutex_attr *attr;
if (mutex_attr == NULL) {
attr = &default_attr;
} else {
/*
* Check that the given mutex attribute is valid.
*/
if (((*mutex_attr)->m_type < PTHREAD_MUTEX_ERRORCHECK) ||
((*mutex_attr)->m_type >= MUTEX_TYPE_MAX))
return (EINVAL);
else if (((*mutex_attr)->m_protocol < PTHREAD_PRIO_NONE) ||
((*mutex_attr)->m_protocol > PTHREAD_MUTEX_RECURSIVE))
return (EINVAL);
attr = *mutex_attr;
}
if ((*mutex =
(pthread_mutex_t)malloc(sizeof(struct pthread_mutex))) == NULL)
return (ENOMEM);
memset((void *)(*mutex), 0, sizeof(struct pthread_mutex));
/* Initialise the rest of the mutex: */
TAILQ_INIT(&(*mutex)->m_queue);
_MUTEX_INIT_LINK(*mutex);
(*mutex)->m_protocol = attr->m_protocol;
(*mutex)->m_flags = (attr->m_flags | MUTEX_FLAGS_INITED);
(*mutex)->m_type = attr->m_type;
if ((*mutex)->m_protocol == PTHREAD_PRIO_PROTECT)
(*mutex)->m_prio = attr->m_ceiling;
return (0);
}
int
_pthread_mutex_destroy(pthread_mutex_t * mutex)
{
if (mutex == NULL)
return (EINVAL);
/*
* If this mutex was statically initialized, don't bother
* initializing it in order to destroy it immediately.
*/
if (*mutex == PTHREAD_MUTEX_INITIALIZER)
return (0);
/* Lock the mutex structure: */
_SPINLOCK(&(*mutex)->lock);
/*
* Check to see if this mutex is in use:
*/
if (((*mutex)->m_owner != NULL) ||
(TAILQ_FIRST(&(*mutex)->m_queue) != NULL) ||
((*mutex)->m_refcount != 0)) {
/* Unlock the mutex structure: */
_SPINUNLOCK(&(*mutex)->lock);
return (EBUSY);
}
/*
* Free the memory allocated for the mutex
* structure:
*/
_MUTEX_ASSERT_NOT_OWNED(*mutex);
_SPINUNLOCK(&(*mutex)->lock);
free(*mutex);
/*
* Leave the caller's pointer NULL now that
* the mutex has been destroyed:
*/
*mutex = NULL;
return (0);
}
static int
mutex_init(pthread_mutex_t *mutex, int private)
{
pthread_mutexattr_t *pma;
int error;
error = 0;
pma = private ? &static_mattr : NULL;
_SPINLOCK(&static_init_lock);
if (*mutex == PTHREAD_MUTEX_INITIALIZER)
error = _pthread_mutex_init(mutex, pma);
_SPINUNLOCK(&static_init_lock);
return (error);
}
/*
* Acquires a mutex for the current thread. The caller must
* lock the mutex before calling this function.
*/
static void
acquire_mutex(struct pthread_mutex *mtx, struct pthread *ptd)
{
mtx->m_owner = ptd;
_MUTEX_ASSERT_NOT_OWNED(mtx);
PTHREAD_LOCK(ptd);
TAILQ_INSERT_TAIL(&ptd->mutexq, mtx, m_qe);
PTHREAD_UNLOCK(ptd);
}
/*
* Releases a mutex from the current thread. The owner must
* lock the mutex. The next thread on the queue will be returned
* locked by the current thread. The caller must take care to
* unlock it.
*/
static void
mutex_attach_to_next_pthread(struct pthread_mutex *mtx)
{
struct pthread *ptd;
_MUTEX_ASSERT_IS_OWNED(mtx);
TAILQ_REMOVE(&mtx->m_owner->mutexq, (mtx), m_qe);
_MUTEX_INIT_LINK(mtx);
/*
* Deque next thread waiting for this mutex and attach
* the mutex to it. The thread will already be locked.
*/
if ((ptd = mutex_queue_deq(mtx)) != NULL) {
TAILQ_INSERT_TAIL(&ptd->mutexq, mtx, m_qe);
ptd->data.mutex = NULL;
PTHREAD_WAKE(ptd);
}
mtx->m_owner = ptd;
}
int
__pthread_mutex_trylock(pthread_mutex_t *mutex)
{
int ret = 0;
if (mutex == NULL)
ret = EINVAL;
/*
* If the mutex is statically initialized, perform the dynamic
* initialization:
*/
else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) ||
(ret = mutex_init(mutex, 0)) == 0)
ret = mutex_lock_common(mutex, 1, NULL);
return (ret);
}
/*
* Libc internal.
*/
int
_pthread_mutex_trylock(pthread_mutex_t *mutex)
{
int ret = 0;
_thread_sigblock();
if (mutex == NULL)
ret = EINVAL;
/*
* If the mutex is statically initialized, perform the dynamic
* initialization marking the mutex private (delete safe):
*/
else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) ||
(ret = mutex_init(mutex, 1)) == 0)
ret = mutex_lock_common(mutex, 1, NULL);
if (ret != 0)
_thread_sigunblock();
return (ret);
}
static int
mutex_lock_common(pthread_mutex_t * mutex, int nonblock,
const struct timespec *abstime)
{
int error;
error = 0;
PTHREAD_ASSERT((mutex != NULL) && (*mutex != NULL),
"Uninitialized mutex in mutex_lock_common");
PTHREAD_ASSERT(((*mutex)->m_protocol >= PTHREAD_PRIO_NONE &&
(*mutex)->m_protocol <= PTHREAD_PRIO_PROTECT),
"Invalid mutex protocol");
_SPINLOCK(&(*mutex)->lock);
/*
* If the mutex was statically allocated, properly
* initialize the tail queue.
*/
if (((*mutex)->m_flags & MUTEX_FLAGS_INITED) == 0) {
TAILQ_INIT(&(*mutex)->m_queue);
(*mutex)->m_flags |= MUTEX_FLAGS_INITED;
_MUTEX_INIT_LINK(*mutex);
}
retry:
/*
* If the mutex is a priority protected mutex the thread's
* priority may not be higher than that of the mutex.
*/
if ((*mutex)->m_protocol == PTHREAD_PRIO_PROTECT &&
curthread->active_priority > (*mutex)->m_prio) {
_SPINUNLOCK(&(*mutex)->lock);
return (EINVAL);
}
if ((*mutex)->m_owner == NULL) {
/*
* Mutex is currently unowned.
*/
acquire_mutex(*mutex, curthread);
} else if ((*mutex)->m_owner == curthread) {
/*
* Mutex is owned by curthread. We must test against
* certain conditions in such a case.
*/
if ((error = mutex_self_lock((*mutex), nonblock)) != 0) {
_SPINUNLOCK(&(*mutex)->lock);
return (error);
}
} else {
if (nonblock) {
error = EBUSY;
goto out;
}
/*
* Another thread owns the mutex. This thread must
* wait for that thread to unlock the mutex. This
* thread must not return to the caller if it was
* interrupted by a signal.
*/
error = get_mcontested(*mutex, abstime);
if (error == EINTR)
goto retry;
else if (error == ETIMEDOUT)
goto out;
}
if ((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE)
(*mutex)->m_data.m_count++;
/*
* The mutex is now owned by curthread.
*/
PTHREAD_LOCK(curthread);
/*
* The mutex's priority may have changed while waiting for it.
*/
if ((*mutex)->m_protocol == PTHREAD_PRIO_PROTECT &&
curthread->active_priority > (*mutex)->m_prio) {
mutex_attach_to_next_pthread(*mutex);
if ((*mutex)->m_owner != NULL)
PTHREAD_UNLOCK((*mutex)->m_owner);
PTHREAD_UNLOCK(curthread);
_SPINUNLOCK(&(*mutex)->lock);
return (EINVAL);
}
switch ((*mutex)->m_protocol) {
case PTHREAD_PRIO_INHERIT:
curthread->prio_inherit_count++;
break;
case PTHREAD_PRIO_PROTECT:
PTHREAD_ASSERT((curthread->active_priority <=
(*mutex)->m_prio), "priority protection violation");
curthread->prio_protect_count++;
if ((*mutex)->m_prio > curthread->active_priority) {
curthread->inherited_priority = (*mutex)->m_prio;
curthread->active_priority = (*mutex)->m_prio;
}
break;
default:
/* Nothing */
break;
}
PTHREAD_UNLOCK(curthread);
out:
_SPINUNLOCK(&(*mutex)->lock);
return (error);
}
/*
* Caller must lock thread.
*/
void
adjust_prio_inheritance(struct pthread *ptd)
{
struct pthread_mutex *tempMtx;
struct pthread *tempTd;
/*
* Scan owned mutexes's wait queue and execute at the
* higher of thread's current priority or the priority of
* the highest priority thread waiting on any of the the
* mutexes the thread owns. Note: the highest priority thread
* on a queue is always at the head of the queue.
*/
TAILQ_FOREACH(tempMtx, &ptd->mutexq, m_qe) {
if (tempMtx->m_protocol != PTHREAD_PRIO_INHERIT)
continue;
/*
* XXX LOR with respect to tempMtx and ptd.
* Order should be: 1. mutex
* 2. pthread
*/
_SPINLOCK(&tempMtx->lock);
tempTd = TAILQ_FIRST(&tempMtx->m_queue);
if (tempTd != NULL) {
PTHREAD_LOCK(tempTd);
if (tempTd->active_priority > ptd->active_priority) {
ptd->inherited_priority =
tempTd->active_priority;
ptd->active_priority =
tempTd->active_priority;
}
PTHREAD_UNLOCK(tempTd);
}
_SPINUNLOCK(&tempMtx->lock);
}
}
/*
* Caller must lock thread.
*/
static void
restore_prio_inheritance(struct pthread *ptd)
{
ptd->inherited_priority = PTHREAD_MIN_PRIORITY;
ptd->active_priority = ptd->base_priority;
adjust_prio_inheritance(ptd);
}
/*
* Caller must lock thread.
*/
void
adjust_prio_protection(struct pthread *ptd)
{
struct pthread_mutex *tempMtx;
/*
* The thread shall execute at the higher of its priority or
* the highest priority ceiling of all the priority protection
* mutexes it owns.
*/
TAILQ_FOREACH(tempMtx, &ptd->mutexq, m_qe) {
if (tempMtx->m_protocol != PTHREAD_PRIO_PROTECT)
continue;
if (ptd->active_priority < tempMtx->m_prio) {
ptd->inherited_priority = tempMtx->m_prio;
ptd->active_priority = tempMtx->m_prio;
}
}
}
/*
* Caller must lock thread.
*/
static void
restore_prio_protection(struct pthread *ptd)
{
ptd->inherited_priority = PTHREAD_MIN_PRIORITY;
ptd->active_priority = ptd->base_priority;
adjust_prio_protection(ptd);
}
int
__pthread_mutex_lock(pthread_mutex_t *mutex)
{
int ret = 0;
if (_thread_initial == NULL)
_thread_init();
if (mutex == NULL)
ret = EINVAL;
/*
* If the mutex is statically initialized, perform the dynamic
* initialization:
*/
else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) ||
((ret = mutex_init(mutex, 0)) == 0))
ret = mutex_lock_common(mutex, 0, NULL);
return (ret);
}
/*
* Libc internal.
*/
int
_pthread_mutex_lock(pthread_mutex_t *mutex)
{
int ret = 0;
if (_thread_initial == NULL)
_thread_init();
_thread_sigblock();
if (mutex == NULL)
ret = EINVAL;
/*
* If the mutex is statically initialized, perform the dynamic
* initialization marking it private (delete safe):
*/
else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) ||
((ret = mutex_init(mutex, 1)) == 0))
ret = mutex_lock_common(mutex, 0, NULL);
if (ret != 0)
_thread_sigunblock();
return (ret);
}
int
_pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *abstime)
{
int error;
error = 0;
if (_thread_initial == NULL)
_thread_init();
/*
* Initialize it if it's a valid statically inited mutex.
*/
if (mutex == NULL)
error = EINVAL;
else if ((*mutex != PTHREAD_MUTEX_INITIALIZER) ||
((error = mutex_init(mutex, 0)) == 0))
error = mutex_lock_common(mutex, 0, abstime);
PTHREAD_ASSERT(error != EINTR, "According to SUSv3 this function shall not return an error code of EINTR");
return (error);
}
int
__pthread_mutex_unlock(pthread_mutex_t * mutex)
{
return (mutex_unlock_common(mutex, /* add reference */ 0));
}
/*
* Libc internal
*/
int
_pthread_mutex_unlock(pthread_mutex_t * mutex)
{
int error;
if ((error = mutex_unlock_common(mutex, /* add reference */ 0)) == 0)
_thread_sigunblock();
return (error);
}
int
_mutex_cv_unlock(pthread_mutex_t * mutex)
{
return (mutex_unlock_common(mutex, /* add reference */ 1));
}
int
_mutex_cv_lock(pthread_mutex_t * mutex)
{
int ret;
if ((ret = _pthread_mutex_lock(mutex)) == 0)
(*mutex)->m_refcount--;
return (ret);
}
/*
* Caller must lock mutex and then disable signals and lock curthread.
*/
static inline int
mutex_self_lock(pthread_mutex_t mutex, int noblock)
{
switch (mutex->m_type) {
case PTHREAD_MUTEX_ERRORCHECK:
/*
* POSIX specifies that mutexes should return EDEADLK if a
* recursive lock is detected.
*/
if (noblock)
return (EBUSY);
return (EDEADLK);
break;
case PTHREAD_MUTEX_NORMAL:
/*
* What SS2 define as a 'normal' mutex. Intentionally
* deadlock on attempts to get a lock you already own.
*/
if (noblock)
return (EBUSY);
curthread->isdeadlocked = 1;
_SPINUNLOCK(&(mutex)->lock);
_thread_suspend(curthread, NULL);
PANIC("Shouldn't resume here?\n");
break;
default:
/* Do Nothing */
break;
}
return (0);
}
static inline int
mutex_unlock_common(pthread_mutex_t * mutex, int add_reference)
{
/*
* Error checking.
*/
if (*mutex == NULL)
return (EINVAL);
if ((*mutex)->m_owner != curthread)
return (EPERM);
PTHREAD_ASSERT(((*mutex)->m_protocol >= PTHREAD_PRIO_NONE &&
(*mutex)->m_protocol <= PTHREAD_PRIO_PROTECT),
"Invalid mutex protocol");
_SPINLOCK(&(*mutex)->lock);
if ((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) {
(*mutex)->m_data.m_count--;
PTHREAD_ASSERT((*mutex)->m_data.m_count >= 0,
"The mutex recurse count cannot be less than zero");
if ((*mutex)->m_data.m_count > 0) {
_SPINUNLOCK(&(*mutex)->lock);
return (0);
}
}
/*
* Release the mutex from this thread and attach it to
* the next thread in the queue, if there is one waiting.
*/
PTHREAD_LOCK(curthread);
mutex_attach_to_next_pthread(*mutex);
if ((*mutex)->m_owner != NULL)
PTHREAD_UNLOCK((*mutex)->m_owner);
if (add_reference != 0) {
/* Increment the reference count: */
(*mutex)->m_refcount++;
}
_SPINUNLOCK(&(*mutex)->lock);
/*
* Fix priority of the thread that just released the mutex.
*/
switch ((*mutex)->m_protocol) {
case PTHREAD_PRIO_INHERIT:
curthread->prio_inherit_count--;
PTHREAD_ASSERT(curthread->prio_inherit_count >= 0,
"priority inheritance counter cannot be less than zero");
restore_prio_inheritance(curthread);
if (curthread->prio_protect_count > 0)
restore_prio_protection(curthread);
break;
case PTHREAD_PRIO_PROTECT:
curthread->prio_protect_count--;
PTHREAD_ASSERT(curthread->prio_protect_count >= 0,
"priority protection counter cannot be less than zero");
restore_prio_protection(curthread);
if (curthread->prio_inherit_count > 0)
restore_prio_inheritance(curthread);
break;
default:
/* Nothing */
break;
}
PTHREAD_UNLOCK(curthread);
return (0);
}
void
_mutex_unlock_private(pthread_t pthread)
{
struct pthread_mutex *m, *m_next;
for (m = TAILQ_FIRST(&pthread->mutexq); m != NULL; m = m_next) {
m_next = TAILQ_NEXT(m, m_qe);
if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0)
_pthread_mutex_unlock(&m);
}
}
void
_mutex_lock_backout(pthread_t pthread)
{
struct pthread_mutex *mutex;
mutex = pthread->data.mutex;
if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) {
mutex_queue_remove(mutex, pthread);
/* This thread is no longer waiting for the mutex: */
pthread->data.mutex = NULL;
}
}
/*
* Dequeue a waiting thread from the head of a mutex queue in descending
* priority order. This funtion will return with the thread locked.
*/
static inline pthread_t
mutex_queue_deq(pthread_mutex_t mutex)
{
pthread_t pthread;
while ((pthread = TAILQ_FIRST(&mutex->m_queue)) != NULL) {
PTHREAD_LOCK(pthread);
TAILQ_REMOVE(&mutex->m_queue, pthread, sqe);
pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ;
/*
* Only exit the loop if the thread hasn't been
* asynchronously cancelled.
*/
if (pthread->cancelmode == M_ASYNC &&
pthread->cancellation != CS_NULL)
continue;
else
break;
}
return (pthread);
}
/*
* Remove a waiting thread from a mutex queue in descending priority order.
*/
static inline void
mutex_queue_remove(pthread_mutex_t mutex, pthread_t pthread)
{
if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) {
TAILQ_REMOVE(&mutex->m_queue, pthread, sqe);
pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ;
}
}
/*
* Enqueue a waiting thread to a queue in descending priority order.
*/
static inline void
mutex_queue_enq(pthread_mutex_t mutex, pthread_t pthread)
{
pthread_t tid = TAILQ_LAST(&mutex->m_queue, mutex_head);
char *name;
name = pthread->name ? pthread->name : "unknown";
if ((pthread->flags & PTHREAD_FLAGS_IN_CONDQ) != 0)
_thread_printf(2, "Thread (%s:%ld) already on condq\n",
pthread->name, pthread->thr_id);
if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0)
_thread_printf(2, "Thread (%s:%ld) already on mutexq\n",
pthread->name, pthread->thr_id);
PTHREAD_ASSERT_NOT_IN_SYNCQ(pthread);
/*
* For the common case of all threads having equal priority,
* we perform a quick check against the priority of the thread
* at the tail of the queue.
*/
if ((tid == NULL) || (pthread->active_priority <= tid->active_priority))
TAILQ_INSERT_TAIL(&mutex->m_queue, pthread, sqe);
else {
tid = TAILQ_FIRST(&mutex->m_queue);
while (pthread->active_priority <= tid->active_priority)
tid = TAILQ_NEXT(tid, sqe);
TAILQ_INSERT_BEFORE(tid, pthread, sqe);
}
if (mutex->m_protocol == PTHREAD_PRIO_INHERIT &&
pthread == TAILQ_FIRST(&mutex->m_queue)) {
PTHREAD_LOCK(mutex->m_owner);
if (pthread->active_priority >
mutex->m_owner->active_priority) {
mutex->m_owner->inherited_priority =
pthread->active_priority;
mutex->m_owner->active_priority =
pthread->active_priority;
}
PTHREAD_UNLOCK(mutex->m_owner);
}
pthread->flags |= PTHREAD_FLAGS_IN_MUTEXQ;
}
/*
* Caller must lock mutex and pthread.
*/
void
readjust_priorities(struct pthread *pthread, struct pthread_mutex *mtx)
{
if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) {
mutex_queue_remove(mtx, pthread);
mutex_queue_enq(mtx, pthread);
PTHREAD_LOCK(mtx->m_owner);
adjust_prio_inheritance(mtx->m_owner);
if (mtx->m_owner->prio_protect_count > 0)
adjust_prio_protection(mtx->m_owner);
PTHREAD_UNLOCK(mtx->m_owner);
}
if (pthread->prio_inherit_count > 0)
adjust_prio_inheritance(pthread);
if (pthread->prio_protect_count > 0)
adjust_prio_protection(pthread);
}
/*
* Returns with the lock owned and on the thread's mutexq. If
* the mutex is currently owned by another thread it will sleep
* until it is available.
*/
static int
get_mcontested(pthread_mutex_t mutexp, const struct timespec *abstime)
{
int error;
/*
* If the timeout is invalid this thread is not allowed
* to block;
*/
if (abstime != NULL) {
if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
return (EINVAL);
}
/*
* Put this thread on the mutex's list of waiting threads.
* The lock on the thread ensures atomic (as far as other
* threads are concerned) setting of the thread state with
* it's status on the mutex queue.
*/
PTHREAD_LOCK(curthread);
mutex_queue_enq(mutexp, curthread);
do {
if (curthread->cancelmode == M_ASYNC &&
curthread->cancellation != CS_NULL) {
mutex_queue_remove(mutexp, curthread);
PTHREAD_UNLOCK(curthread);
_SPINUNLOCK(&mutexp->lock);
pthread_testcancel();
}
curthread->data.mutex = mutexp;
PTHREAD_UNLOCK(curthread);
_SPINUNLOCK(&mutexp->lock);
error = _thread_suspend(curthread, abstime);
if (error != 0 && error != ETIMEDOUT && error != EINTR)
PANIC("Cannot suspend on mutex.");
_SPINLOCK(&mutexp->lock);
PTHREAD_LOCK(curthread);
if (error == ETIMEDOUT) {
/*
* Between the timeout and when the mutex was
* locked the previous owner may have released
* the mutex to this thread. Or not.
*/
if (mutexp->m_owner == curthread)
error = 0;
else
_mutex_lock_backout(curthread);
}
} while ((curthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0);
PTHREAD_UNLOCK(curthread);
return (error);
}