freebsd-skq/sys/fs/nfsserver/nfs_fha_new.c
rmacklem 7ce2fd6603 Re-organize the NFS file handle affinity code for the NFS server.
The file handle affinity code was configured to be used by both the
old and new NFS servers. This no longer makes sense, since there is
only one NFS server.
This patch copies a majority of the code in sys/nfs/nfs_fha.c and
sys/nfs/nfs_fha.h into sys/fs/nfsserver/nfs_fha_new.c and
sys/fs/nfsserver/nfs_fha_new.h, so that the files in sys/nfs can be
deleted. The code is simplified by deleting the function callback pointers
used to call functions in either the old or new NFS server and they were
replaced by calls to the functions.

As well as a cleanup, this re-organization simplifies the changes
required for handling of external page mbufs, which is required for KERN_TLS.

This patch should not result in a semantic change to file handle affinity.
2020-04-14 00:01:26 +00:00

712 lines
18 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2008 Isilon Inc http://www.isilon.com/
* Copyright (c) 2013 Spectra Logic Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/mbuf.h>
#include <sys/sbuf.h>
#include <fs/nfs/nfsport.h>
#include <fs/nfsserver/nfs_fha_new.h>
#include <rpc/rpc.h>
static MALLOC_DEFINE(M_NFS_FHA, "NFS FHA", "NFS FHA");
static void fhanew_init(void *foo);
static void fhanew_uninit(void *foo);
static rpcproc_t fhanew_get_procnum(rpcproc_t procnum);
static int fhanew_get_fh(uint64_t *fh, int v3, struct mbuf **md,
caddr_t *dpos);
static int fhanew_is_read(rpcproc_t procnum);
static int fhanew_is_write(rpcproc_t procnum);
static int fhanew_get_offset(struct mbuf **md, caddr_t *dpos,
int v3, struct fha_info *info);
static int fhanew_no_offset(rpcproc_t procnum);
static void fhanew_set_locktype(rpcproc_t procnum,
struct fha_info *info);
static int fhenew_stats_sysctl(SYSCTL_HANDLER_ARGS);
static void fha_extract_info(struct svc_req *req,
struct fha_info *i);
static struct fha_params fhanew_softc;
SYSCTL_DECL(_vfs_nfsd);
extern int newnfs_nfsv3_procid[];
extern SVCPOOL *nfsrvd_pool;
SYSINIT(nfs_fhanew, SI_SUB_ROOT_CONF, SI_ORDER_ANY, fhanew_init, NULL);
SYSUNINIT(nfs_fhanew, SI_SUB_ROOT_CONF, SI_ORDER_ANY, fhanew_uninit, NULL);
static void
fhanew_init(void *foo)
{
struct fha_params *softc;
int i;
softc = &fhanew_softc;
bzero(softc, sizeof(*softc));
snprintf(softc->server_name, sizeof(softc->server_name),
FHANEW_SERVER_NAME);
softc->pool = &nfsrvd_pool;
/*
* Initialize the sysctl context list for the fha module.
*/
sysctl_ctx_init(&softc->sysctl_ctx);
softc->sysctl_tree = SYSCTL_ADD_NODE(&softc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_vfs_nfsd), OID_AUTO, "fha",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NFS File Handle Affinity (FHA)");
if (softc->sysctl_tree == NULL) {
printf("%s: unable to allocate sysctl tree\n", __func__);
return;
}
for (i = 0; i < FHA_HASH_SIZE; i++)
mtx_init(&softc->fha_hash[i].mtx, "fhalock", NULL, MTX_DEF);
/*
* Set the default tuning parameters.
*/
softc->ctls.enable = FHA_DEF_ENABLE;
softc->ctls.read = FHA_DEF_READ;
softc->ctls.write = FHA_DEF_WRITE;
softc->ctls.bin_shift = FHA_DEF_BIN_SHIFT;
softc->ctls.max_nfsds_per_fh = FHA_DEF_MAX_NFSDS_PER_FH;
softc->ctls.max_reqs_per_nfsd = FHA_DEF_MAX_REQS_PER_NFSD;
/*
* Add sysctls so the user can change the tuning parameters.
*/
SYSCTL_ADD_UINT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "enable", CTLFLAG_RWTUN,
&softc->ctls.enable, 0, "Enable NFS File Handle Affinity (FHA)");
SYSCTL_ADD_UINT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "read", CTLFLAG_RWTUN,
&softc->ctls.read, 0, "Enable NFS FHA read locality");
SYSCTL_ADD_UINT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "write", CTLFLAG_RWTUN,
&softc->ctls.write, 0, "Enable NFS FHA write locality");
SYSCTL_ADD_UINT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "bin_shift", CTLFLAG_RWTUN,
&softc->ctls.bin_shift, 0,
"Maximum locality distance 2^(bin_shift) bytes");
SYSCTL_ADD_UINT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "max_nfsds_per_fh", CTLFLAG_RWTUN,
&softc->ctls.max_nfsds_per_fh, 0, "Maximum nfsd threads that "
"should be working on requests for the same file handle");
SYSCTL_ADD_UINT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "max_reqs_per_nfsd", CTLFLAG_RWTUN,
&softc->ctls.max_reqs_per_nfsd, 0, "Maximum requests that "
"single nfsd thread should be working on at any time");
SYSCTL_ADD_OID(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree),
OID_AUTO, "fhe_stats", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
0, 0, fhenew_stats_sysctl, "A", "");
}
static void
fhanew_uninit(void *foo)
{
struct fha_params *softc;
int i;
softc = &fhanew_softc;
sysctl_ctx_free(&softc->sysctl_ctx);
for (i = 0; i < FHA_HASH_SIZE; i++)
mtx_destroy(&softc->fha_hash[i].mtx);
}
static rpcproc_t
fhanew_get_procnum(rpcproc_t procnum)
{
if (procnum > NFSV2PROC_STATFS)
return (-1);
return (newnfs_nfsv3_procid[procnum]);
}
static int
fhanew_get_fh(uint64_t *fh, int v3, struct mbuf **md, caddr_t *dpos)
{
struct nfsrv_descript lnd, *nd;
uint32_t *tl;
uint8_t *buf;
uint64_t t;
int error, len, i;
error = 0;
len = 0;
nd = &lnd;
nd->nd_md = *md;
nd->nd_dpos = *dpos;
if (v3) {
NFSM_DISSECT_NONBLOCK(tl, uint32_t *, NFSX_UNSIGNED);
if ((len = fxdr_unsigned(int, *tl)) <= 0 || len > NFSX_FHMAX) {
error = EBADRPC;
goto nfsmout;
}
} else {
len = NFSX_V2FH;
}
t = 0;
if (len != 0) {
NFSM_DISSECT_NONBLOCK(buf, uint8_t *, len);
for (i = 0; i < len; i++)
t ^= ((uint64_t)buf[i] << (i & 7) * 8);
}
*fh = t;
nfsmout:
*md = nd->nd_md;
*dpos = nd->nd_dpos;
return (error);
}
static int
fhanew_is_read(rpcproc_t procnum)
{
if (procnum == NFSPROC_READ)
return (1);
else
return (0);
}
static int
fhanew_is_write(rpcproc_t procnum)
{
if (procnum == NFSPROC_WRITE)
return (1);
else
return (0);
}
static int
fhanew_get_offset(struct mbuf **md, caddr_t *dpos, int v3,
struct fha_info *info)
{
struct nfsrv_descript lnd, *nd;
uint32_t *tl;
int error;
error = 0;
nd = &lnd;
nd->nd_md = *md;
nd->nd_dpos = *dpos;
if (v3) {
NFSM_DISSECT_NONBLOCK(tl, uint32_t *, 2 * NFSX_UNSIGNED);
info->offset = fxdr_hyper(tl);
} else {
NFSM_DISSECT_NONBLOCK(tl, uint32_t *, NFSX_UNSIGNED);
info->offset = fxdr_unsigned(uint32_t, *tl);
}
nfsmout:
*md = nd->nd_md;
*dpos = nd->nd_dpos;
return (error);
}
static int
fhanew_no_offset(rpcproc_t procnum)
{
if (procnum == NFSPROC_FSSTAT ||
procnum == NFSPROC_FSINFO ||
procnum == NFSPROC_PATHCONF ||
procnum == NFSPROC_NOOP ||
procnum == NFSPROC_NULL)
return (1);
else
return (0);
}
static void
fhanew_set_locktype(rpcproc_t procnum, struct fha_info *info)
{
switch (procnum) {
case NFSPROC_NULL:
case NFSPROC_GETATTR:
case NFSPROC_LOOKUP:
case NFSPROC_ACCESS:
case NFSPROC_READLINK:
case NFSPROC_READ:
case NFSPROC_READDIR:
case NFSPROC_READDIRPLUS:
case NFSPROC_WRITE:
info->locktype = LK_SHARED;
break;
case NFSPROC_SETATTR:
case NFSPROC_CREATE:
case NFSPROC_MKDIR:
case NFSPROC_SYMLINK:
case NFSPROC_MKNOD:
case NFSPROC_REMOVE:
case NFSPROC_RMDIR:
case NFSPROC_RENAME:
case NFSPROC_LINK:
case NFSPROC_FSSTAT:
case NFSPROC_FSINFO:
case NFSPROC_PATHCONF:
case NFSPROC_COMMIT:
case NFSPROC_NOOP:
info->locktype = LK_EXCLUSIVE;
break;
}
}
/*
* This just specifies that offsets should obey affinity when within
* the same 1Mbyte (1<<20) chunk for the file (reads only for now).
*/
static void
fha_extract_info(struct svc_req *req, struct fha_info *i)
{
struct mbuf *md;
caddr_t dpos;
static u_int64_t random_fh = 0;
int error;
int v3 = (req->rq_vers == 3);
rpcproc_t procnum;
/*
* We start off with a random fh. If we get a reasonable
* procnum, we set the fh. If there's a concept of offset
* that we're interested in, we set that.
*/
i->fh = ++random_fh;
i->offset = 0;
i->locktype = LK_EXCLUSIVE;
i->read = i->write = 0;
/*
* Extract the procnum and convert to v3 form if necessary,
* taking care to deal with out-of-range procnums. Caller will
* ensure that rq_vers is either 2 or 3.
*/
procnum = req->rq_proc;
if (!v3) {
rpcproc_t tmp_procnum;
tmp_procnum = fhanew_get_procnum(procnum);
if (tmp_procnum == -1)
goto out;
procnum = tmp_procnum;
}
/*
* We do affinity for most. However, we divide a realm of affinity
* by file offset so as to allow for concurrent random access. We
* only do this for reads today, but this may change when IFS supports
* efficient concurrent writes.
*/
if (fhanew_no_offset(procnum))
goto out;
i->read = fhanew_is_read(procnum);
i->write = fhanew_is_write(procnum);
error = newnfs_realign(&req->rq_args, M_NOWAIT);
if (error)
goto out;
md = req->rq_args;
dpos = mtod(md, caddr_t);
/* Grab the filehandle. */
error = fhanew_get_fh(&i->fh, v3, &md, &dpos);
if (error)
goto out;
/* Content ourselves with zero offset for all but reads. */
if (i->read || i->write)
fhanew_get_offset(&md, &dpos, v3, i);
out:
fhanew_set_locktype(procnum, i);
}
static struct fha_hash_entry *
fha_hash_entry_new(u_int64_t fh)
{
struct fha_hash_entry *e;
e = malloc(sizeof(*e), M_NFS_FHA, M_WAITOK);
e->fh = fh;
e->num_rw = 0;
e->num_exclusive = 0;
e->num_threads = 0;
LIST_INIT(&e->threads);
return (e);
}
static void
fha_hash_entry_destroy(struct fha_hash_entry *e)
{
mtx_assert(e->mtx, MA_OWNED);
KASSERT(e->num_rw == 0,
("%d reqs on destroyed fhe %p", e->num_rw, e));
KASSERT(e->num_exclusive == 0,
("%d exclusive reqs on destroyed fhe %p", e->num_exclusive, e));
KASSERT(e->num_threads == 0,
("%d threads on destroyed fhe %p", e->num_threads, e));
free(e, M_NFS_FHA);
}
static void
fha_hash_entry_remove(struct fha_hash_entry *e)
{
mtx_assert(e->mtx, MA_OWNED);
LIST_REMOVE(e, link);
fha_hash_entry_destroy(e);
}
static struct fha_hash_entry *
fha_hash_entry_lookup(struct fha_params *softc, u_int64_t fh)
{
struct fha_hash_slot *fhs;
struct fha_hash_entry *fhe, *new_fhe;
fhs = &softc->fha_hash[fh % FHA_HASH_SIZE];
new_fhe = fha_hash_entry_new(fh);
new_fhe->mtx = &fhs->mtx;
mtx_lock(&fhs->mtx);
LIST_FOREACH(fhe, &fhs->list, link)
if (fhe->fh == fh)
break;
if (!fhe) {
fhe = new_fhe;
LIST_INSERT_HEAD(&fhs->list, fhe, link);
} else
fha_hash_entry_destroy(new_fhe);
return (fhe);
}
static void
fha_hash_entry_add_thread(struct fha_hash_entry *fhe, SVCTHREAD *thread)
{
mtx_assert(fhe->mtx, MA_OWNED);
thread->st_p2 = 0;
LIST_INSERT_HEAD(&fhe->threads, thread, st_alink);
fhe->num_threads++;
}
static void
fha_hash_entry_remove_thread(struct fha_hash_entry *fhe, SVCTHREAD *thread)
{
mtx_assert(fhe->mtx, MA_OWNED);
KASSERT(thread->st_p2 == 0,
("%d reqs on removed thread %p", thread->st_p2, thread));
LIST_REMOVE(thread, st_alink);
fhe->num_threads--;
}
/*
* Account for an ongoing operation associated with this file.
*/
static void
fha_hash_entry_add_op(struct fha_hash_entry *fhe, int locktype, int count)
{
mtx_assert(fhe->mtx, MA_OWNED);
if (LK_EXCLUSIVE == locktype)
fhe->num_exclusive += count;
else
fhe->num_rw += count;
}
/*
* Get the service thread currently associated with the fhe that is
* appropriate to handle this operation.
*/
static SVCTHREAD *
fha_hash_entry_choose_thread(struct fha_params *softc,
struct fha_hash_entry *fhe, struct fha_info *i, SVCTHREAD *this_thread)
{
SVCTHREAD *thread, *min_thread = NULL;
int req_count, min_count = 0;
off_t offset1, offset2;
LIST_FOREACH(thread, &fhe->threads, st_alink) {
req_count = thread->st_p2;
/* If there are any writes in progress, use the first thread. */
if (fhe->num_exclusive) {
#if 0
ITRACE_CURPROC(ITRACE_NFS, ITRACE_INFO,
"fha: %p(%d)w", thread, req_count);
#endif
return (thread);
}
/* Check whether we should consider locality. */
if ((i->read && !softc->ctls.read) ||
(i->write && !softc->ctls.write))
goto noloc;
/*
* Check for locality, making sure that we won't
* exceed our per-thread load limit in the process.
*/
offset1 = i->offset;
offset2 = thread->st_p3;
if (((offset1 >= offset2)
&& ((offset1 - offset2) < (1 << softc->ctls.bin_shift)))
|| ((offset2 > offset1)
&& ((offset2 - offset1) < (1 << softc->ctls.bin_shift)))) {
if ((softc->ctls.max_reqs_per_nfsd == 0) ||
(req_count < softc->ctls.max_reqs_per_nfsd)) {
#if 0
ITRACE_CURPROC(ITRACE_NFS, ITRACE_INFO,
"fha: %p(%d)r", thread, req_count);
#endif
return (thread);
}
}
noloc:
/*
* We don't have a locality match, so skip this thread,
* but keep track of the most attractive thread in case
* we need to come back to it later.
*/
#if 0
ITRACE_CURPROC(ITRACE_NFS, ITRACE_INFO,
"fha: %p(%d)s off1 %llu off2 %llu", thread,
req_count, offset1, offset2);
#endif
if ((min_thread == NULL) || (req_count < min_count)) {
min_count = req_count;
min_thread = thread;
}
}
/*
* We didn't find a good match yet. See if we can add
* a new thread to this file handle entry's thread list.
*/
if ((softc->ctls.max_nfsds_per_fh == 0) ||
(fhe->num_threads < softc->ctls.max_nfsds_per_fh)) {
thread = this_thread;
#if 0
ITRACE_CURPROC(ITRACE_NFS, ITRACE_INFO,
"fha: %p(%d)t", thread, thread->st_p2);
#endif
fha_hash_entry_add_thread(fhe, thread);
} else {
/*
* We don't want to use any more threads for this file, so
* go back to the most attractive nfsd we're already using.
*/
thread = min_thread;
}
return (thread);
}
/*
* After getting a request, try to assign it to some thread. Usually we
* handle it ourselves.
*/
SVCTHREAD *
fhanew_assign(SVCTHREAD *this_thread, struct svc_req *req)
{
struct fha_params *softc = &fhanew_softc;
SVCTHREAD *thread;
struct fha_info i;
struct fha_hash_entry *fhe;
/* Check to see whether we're enabled. */
if (softc->ctls.enable == 0)
goto thist;
/*
* Only do placement if this is an NFS request.
*/
if (req->rq_prog != NFS_PROG)
goto thist;
if (req->rq_vers != 2 && req->rq_vers != 3)
goto thist;
fha_extract_info(req, &i);
/*
* We save the offset associated with this request for later
* nfsd matching.
*/
fhe = fha_hash_entry_lookup(softc, i.fh);
req->rq_p1 = fhe;
req->rq_p2 = i.locktype;
req->rq_p3 = i.offset;
/*
* Choose a thread, taking into consideration locality, thread load,
* and the number of threads already working on this file.
*/
thread = fha_hash_entry_choose_thread(softc, fhe, &i, this_thread);
KASSERT(thread, ("fha_assign: NULL thread!"));
fha_hash_entry_add_op(fhe, i.locktype, 1);
thread->st_p2++;
thread->st_p3 = i.offset;
/*
* Grab the pool lock here to not let chosen thread go away before
* the new request inserted to its queue while we drop fhe lock.
*/
mtx_lock(&thread->st_lock);
mtx_unlock(fhe->mtx);
return (thread);
thist:
req->rq_p1 = NULL;
mtx_lock(&this_thread->st_lock);
return (this_thread);
}
/*
* Called when we're done with an operation. The request has already
* been de-queued.
*/
void
fhanew_nd_complete(SVCTHREAD *thread, struct svc_req *req)
{
struct fha_hash_entry *fhe = req->rq_p1;
struct mtx *mtx;
/*
* This may be called for reqs that didn't go through
* fha_assign (e.g. extra NULL ops used for RPCSEC_GSS.
*/
if (!fhe)
return;
mtx = fhe->mtx;
mtx_lock(mtx);
fha_hash_entry_add_op(fhe, req->rq_p2, -1);
thread->st_p2--;
KASSERT(thread->st_p2 >= 0, ("Negative request count %d on %p",
thread->st_p2, thread));
if (thread->st_p2 == 0) {
fha_hash_entry_remove_thread(fhe, thread);
if (0 == fhe->num_rw + fhe->num_exclusive)
fha_hash_entry_remove(fhe);
}
mtx_unlock(mtx);
}
static int
fhenew_stats_sysctl(SYSCTL_HANDLER_ARGS)
{
struct fha_params *softc = &fhanew_softc;
int error, i;
struct sbuf sb;
struct fha_hash_entry *fhe;
bool_t first, hfirst;
SVCTHREAD *thread;
sbuf_new(&sb, NULL, 65536, SBUF_FIXEDLEN);
if (!*softc->pool) {
sbuf_printf(&sb, "NFSD not running\n");
goto out;
}
for (i = 0; i < FHA_HASH_SIZE; i++)
if (!LIST_EMPTY(&softc->fha_hash[i].list))
break;
if (i == FHA_HASH_SIZE) {
sbuf_printf(&sb, "No file handle entries.\n");
goto out;
}
hfirst = TRUE;
for (; i < FHA_HASH_SIZE; i++) {
mtx_lock(&softc->fha_hash[i].mtx);
if (LIST_EMPTY(&softc->fha_hash[i].list)) {
mtx_unlock(&softc->fha_hash[i].mtx);
continue;
}
sbuf_printf(&sb, "%shash %d: {\n", hfirst ? "" : ", ", i);
first = TRUE;
LIST_FOREACH(fhe, &softc->fha_hash[i].list, link) {
sbuf_printf(&sb, "%sfhe %p: {\n", first ? " " : ", ",
fhe);
sbuf_printf(&sb, " fh: %ju\n", (uintmax_t) fhe->fh);
sbuf_printf(&sb, " num_rw/exclusive: %d/%d\n",
fhe->num_rw, fhe->num_exclusive);
sbuf_printf(&sb, " num_threads: %d\n",
fhe->num_threads);
LIST_FOREACH(thread, &fhe->threads, st_alink) {
sbuf_printf(&sb, " thread %p offset %ju "
"reqs %d\n", thread,
thread->st_p3, thread->st_p2);
}
sbuf_printf(&sb, " }");
first = FALSE;
}
sbuf_printf(&sb, "\n}");
mtx_unlock(&softc->fha_hash[i].mtx);
hfirst = FALSE;
}
out:
sbuf_trim(&sb);
sbuf_finish(&sb);
error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
sbuf_delete(&sb);
return (error);
}