34622ff1ab
disable and enable repeatedly, just do it once per call. It also reduces code duplication. Check all parameters early and fail immediately.
1009 lines
29 KiB
C
1009 lines
29 KiB
C
/*-
|
|
* Copyright (c) 2003-2007 Nate Lawson
|
|
* Copyright (c) 2000 Michael Smith
|
|
* Copyright (c) 2000 BSDi
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_acpi.h"
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/sx.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <contrib/dev/acpica/include/acpi.h>
|
|
#include <contrib/dev/acpica/include/accommon.h>
|
|
|
|
#include <dev/acpica/acpivar.h>
|
|
|
|
/* Hooks for the ACPI CA debugging infrastructure */
|
|
#define _COMPONENT ACPI_EC
|
|
ACPI_MODULE_NAME("EC")
|
|
|
|
/*
|
|
* EC_COMMAND:
|
|
* -----------
|
|
*/
|
|
typedef UINT8 EC_COMMAND;
|
|
|
|
#define EC_COMMAND_UNKNOWN ((EC_COMMAND) 0x00)
|
|
#define EC_COMMAND_READ ((EC_COMMAND) 0x80)
|
|
#define EC_COMMAND_WRITE ((EC_COMMAND) 0x81)
|
|
#define EC_COMMAND_BURST_ENABLE ((EC_COMMAND) 0x82)
|
|
#define EC_COMMAND_BURST_DISABLE ((EC_COMMAND) 0x83)
|
|
#define EC_COMMAND_QUERY ((EC_COMMAND) 0x84)
|
|
|
|
/*
|
|
* EC_STATUS:
|
|
* ----------
|
|
* The encoding of the EC status register is illustrated below.
|
|
* Note that a set bit (1) indicates the property is TRUE
|
|
* (e.g. if bit 0 is set then the output buffer is full).
|
|
* +-+-+-+-+-+-+-+-+
|
|
* |7|6|5|4|3|2|1|0|
|
|
* +-+-+-+-+-+-+-+-+
|
|
* | | | | | | | |
|
|
* | | | | | | | +- Output Buffer Full?
|
|
* | | | | | | +--- Input Buffer Full?
|
|
* | | | | | +----- <reserved>
|
|
* | | | | +------- Data Register is Command Byte?
|
|
* | | | +--------- Burst Mode Enabled?
|
|
* | | +----------- SCI Event?
|
|
* | +------------- SMI Event?
|
|
* +--------------- <reserved>
|
|
*
|
|
*/
|
|
typedef UINT8 EC_STATUS;
|
|
|
|
#define EC_FLAG_OUTPUT_BUFFER ((EC_STATUS) 0x01)
|
|
#define EC_FLAG_INPUT_BUFFER ((EC_STATUS) 0x02)
|
|
#define EC_FLAG_DATA_IS_CMD ((EC_STATUS) 0x08)
|
|
#define EC_FLAG_BURST_MODE ((EC_STATUS) 0x10)
|
|
|
|
/*
|
|
* EC_EVENT:
|
|
* ---------
|
|
*/
|
|
typedef UINT8 EC_EVENT;
|
|
|
|
#define EC_EVENT_UNKNOWN ((EC_EVENT) 0x00)
|
|
#define EC_EVENT_OUTPUT_BUFFER_FULL ((EC_EVENT) 0x01)
|
|
#define EC_EVENT_INPUT_BUFFER_EMPTY ((EC_EVENT) 0x02)
|
|
#define EC_EVENT_SCI ((EC_EVENT) 0x20)
|
|
#define EC_EVENT_SMI ((EC_EVENT) 0x40)
|
|
|
|
/* Data byte returned after burst enable indicating it was successful. */
|
|
#define EC_BURST_ACK 0x90
|
|
|
|
/*
|
|
* Register access primitives
|
|
*/
|
|
#define EC_GET_DATA(sc) \
|
|
bus_space_read_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0)
|
|
|
|
#define EC_SET_DATA(sc, v) \
|
|
bus_space_write_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0, (v))
|
|
|
|
#define EC_GET_CSR(sc) \
|
|
bus_space_read_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0)
|
|
|
|
#define EC_SET_CSR(sc, v) \
|
|
bus_space_write_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0, (v))
|
|
|
|
/* Additional params to pass from the probe routine */
|
|
struct acpi_ec_params {
|
|
int glk;
|
|
int gpe_bit;
|
|
ACPI_HANDLE gpe_handle;
|
|
int uid;
|
|
};
|
|
|
|
/*
|
|
* Driver softc.
|
|
*/
|
|
struct acpi_ec_softc {
|
|
device_t ec_dev;
|
|
ACPI_HANDLE ec_handle;
|
|
int ec_uid;
|
|
ACPI_HANDLE ec_gpehandle;
|
|
UINT8 ec_gpebit;
|
|
|
|
int ec_data_rid;
|
|
struct resource *ec_data_res;
|
|
bus_space_tag_t ec_data_tag;
|
|
bus_space_handle_t ec_data_handle;
|
|
|
|
int ec_csr_rid;
|
|
struct resource *ec_csr_res;
|
|
bus_space_tag_t ec_csr_tag;
|
|
bus_space_handle_t ec_csr_handle;
|
|
|
|
int ec_glk;
|
|
int ec_glkhandle;
|
|
int ec_burstactive;
|
|
int ec_sci_pend;
|
|
u_int ec_gencount;
|
|
int ec_suspending;
|
|
};
|
|
|
|
/*
|
|
* XXX njl
|
|
* I couldn't find it in the spec but other implementations also use a
|
|
* value of 1 ms for the time to acquire global lock.
|
|
*/
|
|
#define EC_LOCK_TIMEOUT 1000
|
|
|
|
/* Default delay in microseconds between each run of the status polling loop. */
|
|
#define EC_POLL_DELAY 5
|
|
|
|
/* Total time in ms spent waiting for a response from EC. */
|
|
#define EC_TIMEOUT 750
|
|
|
|
#define EVENT_READY(event, status) \
|
|
(((event) == EC_EVENT_OUTPUT_BUFFER_FULL && \
|
|
((status) & EC_FLAG_OUTPUT_BUFFER) != 0) || \
|
|
((event) == EC_EVENT_INPUT_BUFFER_EMPTY && \
|
|
((status) & EC_FLAG_INPUT_BUFFER) == 0))
|
|
|
|
ACPI_SERIAL_DECL(ec, "ACPI embedded controller");
|
|
|
|
SYSCTL_DECL(_debug_acpi);
|
|
SYSCTL_NODE(_debug_acpi, OID_AUTO, ec, CTLFLAG_RD, NULL, "EC debugging");
|
|
|
|
static int ec_burst_mode;
|
|
TUNABLE_INT("debug.acpi.ec.burst", &ec_burst_mode);
|
|
SYSCTL_INT(_debug_acpi_ec, OID_AUTO, burst, CTLFLAG_RW, &ec_burst_mode, 0,
|
|
"Enable use of burst mode (faster for nearly all systems)");
|
|
static int ec_polled_mode;
|
|
TUNABLE_INT("debug.acpi.ec.polled", &ec_polled_mode);
|
|
SYSCTL_INT(_debug_acpi_ec, OID_AUTO, polled, CTLFLAG_RW, &ec_polled_mode, 0,
|
|
"Force use of polled mode (only if interrupt mode doesn't work)");
|
|
static int ec_timeout = EC_TIMEOUT;
|
|
TUNABLE_INT("debug.acpi.ec.timeout", &ec_timeout);
|
|
SYSCTL_INT(_debug_acpi_ec, OID_AUTO, timeout, CTLFLAG_RW, &ec_timeout,
|
|
EC_TIMEOUT, "Total time spent waiting for a response (poll+sleep)");
|
|
|
|
static ACPI_STATUS
|
|
EcLock(struct acpi_ec_softc *sc)
|
|
{
|
|
ACPI_STATUS status;
|
|
|
|
/* If _GLK is non-zero, acquire the global lock. */
|
|
status = AE_OK;
|
|
if (sc->ec_glk) {
|
|
status = AcpiAcquireGlobalLock(EC_LOCK_TIMEOUT, &sc->ec_glkhandle);
|
|
if (ACPI_FAILURE(status))
|
|
return (status);
|
|
}
|
|
ACPI_SERIAL_BEGIN(ec);
|
|
return (status);
|
|
}
|
|
|
|
static void
|
|
EcUnlock(struct acpi_ec_softc *sc)
|
|
{
|
|
ACPI_SERIAL_END(ec);
|
|
if (sc->ec_glk)
|
|
AcpiReleaseGlobalLock(sc->ec_glkhandle);
|
|
}
|
|
|
|
static uint32_t EcGpeHandler(void *Context);
|
|
static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function,
|
|
void *Context, void **return_Context);
|
|
static ACPI_STATUS EcSpaceHandler(UINT32 Function,
|
|
ACPI_PHYSICAL_ADDRESS Address,
|
|
UINT32 Width, UINT64 *Value,
|
|
void *Context, void *RegionContext);
|
|
static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event,
|
|
u_int gen_count);
|
|
static ACPI_STATUS EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd);
|
|
static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address,
|
|
UINT8 *Data);
|
|
static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address,
|
|
UINT8 Data);
|
|
static int acpi_ec_probe(device_t dev);
|
|
static int acpi_ec_attach(device_t dev);
|
|
static int acpi_ec_suspend(device_t dev);
|
|
static int acpi_ec_resume(device_t dev);
|
|
static int acpi_ec_shutdown(device_t dev);
|
|
static int acpi_ec_read_method(device_t dev, u_int addr,
|
|
UINT64 *val, int width);
|
|
static int acpi_ec_write_method(device_t dev, u_int addr,
|
|
UINT64 val, int width);
|
|
|
|
static device_method_t acpi_ec_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, acpi_ec_probe),
|
|
DEVMETHOD(device_attach, acpi_ec_attach),
|
|
DEVMETHOD(device_suspend, acpi_ec_suspend),
|
|
DEVMETHOD(device_resume, acpi_ec_resume),
|
|
DEVMETHOD(device_shutdown, acpi_ec_shutdown),
|
|
|
|
/* Embedded controller interface */
|
|
DEVMETHOD(acpi_ec_read, acpi_ec_read_method),
|
|
DEVMETHOD(acpi_ec_write, acpi_ec_write_method),
|
|
|
|
{0, 0}
|
|
};
|
|
|
|
static driver_t acpi_ec_driver = {
|
|
"acpi_ec",
|
|
acpi_ec_methods,
|
|
sizeof(struct acpi_ec_softc),
|
|
};
|
|
|
|
static devclass_t acpi_ec_devclass;
|
|
DRIVER_MODULE(acpi_ec, acpi, acpi_ec_driver, acpi_ec_devclass, 0, 0);
|
|
MODULE_DEPEND(acpi_ec, acpi, 1, 1, 1);
|
|
|
|
/*
|
|
* Look for an ECDT and if we find one, set up default GPE and
|
|
* space handlers to catch attempts to access EC space before
|
|
* we have a real driver instance in place.
|
|
*
|
|
* TODO: Some old Gateway laptops need us to fake up an ECDT or
|
|
* otherwise attach early so that _REG methods can run.
|
|
*/
|
|
void
|
|
acpi_ec_ecdt_probe(device_t parent)
|
|
{
|
|
ACPI_TABLE_ECDT *ecdt;
|
|
ACPI_STATUS status;
|
|
device_t child;
|
|
ACPI_HANDLE h;
|
|
struct acpi_ec_params *params;
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
/* Find and validate the ECDT. */
|
|
status = AcpiGetTable(ACPI_SIG_ECDT, 1, (ACPI_TABLE_HEADER **)&ecdt);
|
|
if (ACPI_FAILURE(status) ||
|
|
ecdt->Control.BitWidth != 8 ||
|
|
ecdt->Data.BitWidth != 8) {
|
|
return;
|
|
}
|
|
|
|
/* Create the child device with the given unit number. */
|
|
child = BUS_ADD_CHILD(parent, 0, "acpi_ec", ecdt->Uid);
|
|
if (child == NULL) {
|
|
printf("%s: can't add child\n", __func__);
|
|
return;
|
|
}
|
|
|
|
/* Find and save the ACPI handle for this device. */
|
|
status = AcpiGetHandle(NULL, ecdt->Id, &h);
|
|
if (ACPI_FAILURE(status)) {
|
|
device_delete_child(parent, child);
|
|
printf("%s: can't get handle\n", __func__);
|
|
return;
|
|
}
|
|
acpi_set_handle(child, h);
|
|
|
|
/* Set the data and CSR register addresses. */
|
|
bus_set_resource(child, SYS_RES_IOPORT, 0, ecdt->Data.Address,
|
|
/*count*/1);
|
|
bus_set_resource(child, SYS_RES_IOPORT, 1, ecdt->Control.Address,
|
|
/*count*/1);
|
|
|
|
/*
|
|
* Store values for the probe/attach routines to use. Store the
|
|
* ECDT GPE bit and set the global lock flag according to _GLK.
|
|
* Note that it is not perfectly correct to be evaluating a method
|
|
* before initializing devices, but in practice this function
|
|
* should be safe to call at this point.
|
|
*/
|
|
params = malloc(sizeof(struct acpi_ec_params), M_TEMP, M_WAITOK | M_ZERO);
|
|
params->gpe_handle = NULL;
|
|
params->gpe_bit = ecdt->Gpe;
|
|
params->uid = ecdt->Uid;
|
|
acpi_GetInteger(h, "_GLK", ¶ms->glk);
|
|
acpi_set_private(child, params);
|
|
|
|
/* Finish the attach process. */
|
|
if (device_probe_and_attach(child) != 0)
|
|
device_delete_child(parent, child);
|
|
}
|
|
|
|
static int
|
|
acpi_ec_probe(device_t dev)
|
|
{
|
|
ACPI_BUFFER buf;
|
|
ACPI_HANDLE h;
|
|
ACPI_OBJECT *obj;
|
|
ACPI_STATUS status;
|
|
device_t peer;
|
|
char desc[64];
|
|
int ecdt;
|
|
int ret;
|
|
struct acpi_ec_params *params;
|
|
static char *ec_ids[] = { "PNP0C09", NULL };
|
|
|
|
/* Check that this is a device and that EC is not disabled. */
|
|
if (acpi_get_type(dev) != ACPI_TYPE_DEVICE || acpi_disabled("ec"))
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* If probed via ECDT, set description and continue. Otherwise,
|
|
* we can access the namespace and make sure this is not a
|
|
* duplicate probe.
|
|
*/
|
|
ret = ENXIO;
|
|
ecdt = 0;
|
|
buf.Pointer = NULL;
|
|
buf.Length = ACPI_ALLOCATE_BUFFER;
|
|
params = acpi_get_private(dev);
|
|
if (params != NULL) {
|
|
ecdt = 1;
|
|
ret = 0;
|
|
} else if (ACPI_ID_PROBE(device_get_parent(dev), dev, ec_ids)) {
|
|
params = malloc(sizeof(struct acpi_ec_params), M_TEMP,
|
|
M_WAITOK | M_ZERO);
|
|
h = acpi_get_handle(dev);
|
|
|
|
/*
|
|
* Read the unit ID to check for duplicate attach and the
|
|
* global lock value to see if we should acquire it when
|
|
* accessing the EC.
|
|
*/
|
|
status = acpi_GetInteger(h, "_UID", ¶ms->uid);
|
|
if (ACPI_FAILURE(status))
|
|
params->uid = 0;
|
|
status = acpi_GetInteger(h, "_GLK", ¶ms->glk);
|
|
if (ACPI_FAILURE(status))
|
|
params->glk = 0;
|
|
|
|
/*
|
|
* Evaluate the _GPE method to find the GPE bit used by the EC to
|
|
* signal status (SCI). If it's a package, it contains a reference
|
|
* and GPE bit, similar to _PRW.
|
|
*/
|
|
status = AcpiEvaluateObject(h, "_GPE", NULL, &buf);
|
|
if (ACPI_FAILURE(status)) {
|
|
device_printf(dev, "can't evaluate _GPE - %s\n",
|
|
AcpiFormatException(status));
|
|
goto out;
|
|
}
|
|
obj = (ACPI_OBJECT *)buf.Pointer;
|
|
if (obj == NULL)
|
|
goto out;
|
|
|
|
switch (obj->Type) {
|
|
case ACPI_TYPE_INTEGER:
|
|
params->gpe_handle = NULL;
|
|
params->gpe_bit = obj->Integer.Value;
|
|
break;
|
|
case ACPI_TYPE_PACKAGE:
|
|
if (!ACPI_PKG_VALID(obj, 2))
|
|
goto out;
|
|
params->gpe_handle =
|
|
acpi_GetReference(NULL, &obj->Package.Elements[0]);
|
|
if (params->gpe_handle == NULL ||
|
|
acpi_PkgInt32(obj, 1, ¶ms->gpe_bit) != 0)
|
|
goto out;
|
|
break;
|
|
default:
|
|
device_printf(dev, "_GPE has invalid type %d\n", obj->Type);
|
|
goto out;
|
|
}
|
|
|
|
/* Store the values we got from the namespace for attach. */
|
|
acpi_set_private(dev, params);
|
|
|
|
/*
|
|
* Check for a duplicate probe. This can happen when a probe
|
|
* via ECDT succeeded already. If this is a duplicate, disable
|
|
* this device.
|
|
*/
|
|
peer = devclass_get_device(acpi_ec_devclass, params->uid);
|
|
if (peer == NULL || !device_is_alive(peer))
|
|
ret = 0;
|
|
else
|
|
device_disable(dev);
|
|
}
|
|
|
|
out:
|
|
if (ret == 0) {
|
|
snprintf(desc, sizeof(desc), "Embedded Controller: GPE %#x%s%s",
|
|
params->gpe_bit, (params->glk) ? ", GLK" : "",
|
|
ecdt ? ", ECDT" : "");
|
|
device_set_desc_copy(dev, desc);
|
|
}
|
|
|
|
if (ret > 0 && params)
|
|
free(params, M_TEMP);
|
|
if (buf.Pointer)
|
|
AcpiOsFree(buf.Pointer);
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
acpi_ec_attach(device_t dev)
|
|
{
|
|
struct acpi_ec_softc *sc;
|
|
struct acpi_ec_params *params;
|
|
ACPI_STATUS Status;
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
/* Fetch/initialize softc (assumes softc is pre-zeroed). */
|
|
sc = device_get_softc(dev);
|
|
params = acpi_get_private(dev);
|
|
sc->ec_dev = dev;
|
|
sc->ec_handle = acpi_get_handle(dev);
|
|
|
|
/* Retrieve previously probed values via device ivars. */
|
|
sc->ec_glk = params->glk;
|
|
sc->ec_gpebit = params->gpe_bit;
|
|
sc->ec_gpehandle = params->gpe_handle;
|
|
sc->ec_uid = params->uid;
|
|
sc->ec_suspending = FALSE;
|
|
acpi_set_private(dev, NULL);
|
|
free(params, M_TEMP);
|
|
|
|
/* Attach bus resources for data and command/status ports. */
|
|
sc->ec_data_rid = 0;
|
|
sc->ec_data_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT,
|
|
&sc->ec_data_rid, RF_ACTIVE);
|
|
if (sc->ec_data_res == NULL) {
|
|
device_printf(dev, "can't allocate data port\n");
|
|
goto error;
|
|
}
|
|
sc->ec_data_tag = rman_get_bustag(sc->ec_data_res);
|
|
sc->ec_data_handle = rman_get_bushandle(sc->ec_data_res);
|
|
|
|
sc->ec_csr_rid = 1;
|
|
sc->ec_csr_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT,
|
|
&sc->ec_csr_rid, RF_ACTIVE);
|
|
if (sc->ec_csr_res == NULL) {
|
|
device_printf(dev, "can't allocate command/status port\n");
|
|
goto error;
|
|
}
|
|
sc->ec_csr_tag = rman_get_bustag(sc->ec_csr_res);
|
|
sc->ec_csr_handle = rman_get_bushandle(sc->ec_csr_res);
|
|
|
|
/*
|
|
* Install a handler for this EC's GPE bit. We want edge-triggered
|
|
* behavior.
|
|
*/
|
|
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching GPE handler\n"));
|
|
Status = AcpiInstallGpeHandler(sc->ec_gpehandle, sc->ec_gpebit,
|
|
ACPI_GPE_EDGE_TRIGGERED, &EcGpeHandler, sc);
|
|
if (ACPI_FAILURE(Status)) {
|
|
device_printf(dev, "can't install GPE handler for %s - %s\n",
|
|
acpi_name(sc->ec_handle), AcpiFormatException(Status));
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Install address space handler
|
|
*/
|
|
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching address space handler\n"));
|
|
Status = AcpiInstallAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC,
|
|
&EcSpaceHandler, &EcSpaceSetup, sc);
|
|
if (ACPI_FAILURE(Status)) {
|
|
device_printf(dev, "can't install address space handler for %s - %s\n",
|
|
acpi_name(sc->ec_handle), AcpiFormatException(Status));
|
|
goto error;
|
|
}
|
|
|
|
/* Enable runtime GPEs for the handler. */
|
|
Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit);
|
|
if (ACPI_FAILURE(Status)) {
|
|
device_printf(dev, "AcpiEnableGpe failed: %s\n",
|
|
AcpiFormatException(Status));
|
|
goto error;
|
|
}
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "acpi_ec_attach complete\n"));
|
|
return (0);
|
|
|
|
error:
|
|
AcpiRemoveGpeHandler(sc->ec_gpehandle, sc->ec_gpebit, &EcGpeHandler);
|
|
AcpiRemoveAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC,
|
|
EcSpaceHandler);
|
|
if (sc->ec_csr_res)
|
|
bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_csr_rid,
|
|
sc->ec_csr_res);
|
|
if (sc->ec_data_res)
|
|
bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_data_rid,
|
|
sc->ec_data_res);
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
acpi_ec_suspend(device_t dev)
|
|
{
|
|
struct acpi_ec_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->ec_suspending = TRUE;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_ec_resume(device_t dev)
|
|
{
|
|
struct acpi_ec_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->ec_suspending = FALSE;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_ec_shutdown(device_t dev)
|
|
{
|
|
struct acpi_ec_softc *sc;
|
|
|
|
/* Disable the GPE so we don't get EC events during shutdown. */
|
|
sc = device_get_softc(dev);
|
|
AcpiDisableGpe(sc->ec_gpehandle, sc->ec_gpebit);
|
|
return (0);
|
|
}
|
|
|
|
/* Methods to allow other devices (e.g., smbat) to read/write EC space. */
|
|
static int
|
|
acpi_ec_read_method(device_t dev, u_int addr, UINT64 *val, int width)
|
|
{
|
|
struct acpi_ec_softc *sc;
|
|
ACPI_STATUS status;
|
|
|
|
sc = device_get_softc(dev);
|
|
status = EcSpaceHandler(ACPI_READ, addr, width * 8, val, sc, NULL);
|
|
if (ACPI_FAILURE(status))
|
|
return (ENXIO);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_ec_write_method(device_t dev, u_int addr, UINT64 val, int width)
|
|
{
|
|
struct acpi_ec_softc *sc;
|
|
ACPI_STATUS status;
|
|
|
|
sc = device_get_softc(dev);
|
|
status = EcSpaceHandler(ACPI_WRITE, addr, width * 8, &val, sc, NULL);
|
|
if (ACPI_FAILURE(status))
|
|
return (ENXIO);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
EcGpeQueryHandler(void *Context)
|
|
{
|
|
struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context;
|
|
UINT8 Data;
|
|
ACPI_STATUS Status;
|
|
char qxx[5];
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
KASSERT(Context != NULL, ("EcGpeQueryHandler called with NULL"));
|
|
|
|
/* Serialize user access with EcSpaceHandler(). */
|
|
Status = EcLock(sc);
|
|
if (ACPI_FAILURE(Status)) {
|
|
device_printf(sc->ec_dev, "GpeQuery lock error: %s\n",
|
|
AcpiFormatException(Status));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Send a query command to the EC to find out which _Qxx call it
|
|
* wants to make. This command clears the SCI bit and also the
|
|
* interrupt source since we are edge-triggered. To prevent the GPE
|
|
* that may arise from running the query from causing another query
|
|
* to be queued, we clear the pending flag only after running it.
|
|
*/
|
|
Status = EcCommand(sc, EC_COMMAND_QUERY);
|
|
sc->ec_sci_pend = FALSE;
|
|
if (ACPI_FAILURE(Status)) {
|
|
EcUnlock(sc);
|
|
device_printf(sc->ec_dev, "GPE query failed: %s\n",
|
|
AcpiFormatException(Status));
|
|
return;
|
|
}
|
|
Data = EC_GET_DATA(sc);
|
|
|
|
/*
|
|
* We have to unlock before running the _Qxx method below since that
|
|
* method may attempt to read/write from EC address space, causing
|
|
* recursive acquisition of the lock.
|
|
*/
|
|
EcUnlock(sc);
|
|
|
|
/* Ignore the value for "no outstanding event". (13.3.5) */
|
|
CTR2(KTR_ACPI, "ec query ok,%s running _Q%02X", Data ? "" : " not", Data);
|
|
if (Data == 0)
|
|
return;
|
|
|
|
/* Evaluate _Qxx to respond to the controller. */
|
|
snprintf(qxx, sizeof(qxx), "_Q%02X", Data);
|
|
AcpiUtStrupr(qxx);
|
|
Status = AcpiEvaluateObject(sc->ec_handle, qxx, NULL, NULL);
|
|
if (ACPI_FAILURE(Status) && Status != AE_NOT_FOUND) {
|
|
device_printf(sc->ec_dev, "evaluation of query method %s failed: %s\n",
|
|
qxx, AcpiFormatException(Status));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The GPE handler is called when IBE/OBF or SCI events occur. We are
|
|
* called from an unknown lock context.
|
|
*/
|
|
static uint32_t
|
|
EcGpeHandler(void *Context)
|
|
{
|
|
struct acpi_ec_softc *sc = Context;
|
|
ACPI_STATUS Status;
|
|
EC_STATUS EcStatus;
|
|
|
|
KASSERT(Context != NULL, ("EcGpeHandler called with NULL"));
|
|
CTR0(KTR_ACPI, "ec gpe handler start");
|
|
|
|
/*
|
|
* Notify EcWaitEvent() that the status register is now fresh. If we
|
|
* didn't do this, it wouldn't be possible to distinguish an old IBE
|
|
* from a new one, for example when doing a write transaction (writing
|
|
* address and then data values.)
|
|
*/
|
|
atomic_add_int(&sc->ec_gencount, 1);
|
|
wakeup(&sc->ec_gencount);
|
|
|
|
/*
|
|
* If the EC_SCI bit of the status register is set, queue a query handler.
|
|
* It will run the query and _Qxx method later, under the lock.
|
|
*/
|
|
EcStatus = EC_GET_CSR(sc);
|
|
if ((EcStatus & EC_EVENT_SCI) && !sc->ec_sci_pend) {
|
|
CTR0(KTR_ACPI, "ec gpe queueing query handler");
|
|
Status = AcpiOsExecute(OSL_GPE_HANDLER, EcGpeQueryHandler, Context);
|
|
if (ACPI_SUCCESS(Status))
|
|
sc->ec_sci_pend = TRUE;
|
|
else
|
|
printf("EcGpeHandler: queuing GPE query handler failed\n");
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context,
|
|
void **RegionContext)
|
|
{
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
/*
|
|
* If deactivating a region, always set the output to NULL. Otherwise,
|
|
* just pass the context through.
|
|
*/
|
|
if (Function == ACPI_REGION_DEACTIVATE)
|
|
*RegionContext = NULL;
|
|
else
|
|
*RegionContext = Context;
|
|
|
|
return_ACPI_STATUS (AE_OK);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
EcSpaceHandler(UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 Width,
|
|
UINT64 *Value, void *Context, void *RegionContext)
|
|
{
|
|
struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context;
|
|
ACPI_PHYSICAL_ADDRESS EcAddr;
|
|
UINT8 *EcData;
|
|
ACPI_STATUS Status;
|
|
|
|
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, (UINT32)Address);
|
|
|
|
if (Function != ACPI_READ && Function != ACPI_WRITE)
|
|
return_ACPI_STATUS (AE_BAD_PARAMETER);
|
|
if (Width % 8 != 0 || Value == NULL || Context == NULL)
|
|
return_ACPI_STATUS (AE_BAD_PARAMETER);
|
|
if (Address + Width / 8 > 256)
|
|
return_ACPI_STATUS (AE_BAD_ADDRESS);
|
|
|
|
/*
|
|
* If booting, check if we need to run the query handler. If so, we
|
|
* we call it directly here since our thread taskq is not active yet.
|
|
*/
|
|
if (cold || rebooting || sc->ec_suspending) {
|
|
if ((EC_GET_CSR(sc) & EC_EVENT_SCI)) {
|
|
CTR0(KTR_ACPI, "ec running gpe handler directly");
|
|
EcGpeQueryHandler(sc);
|
|
}
|
|
}
|
|
|
|
/* Serialize with EcGpeQueryHandler() at transaction granularity. */
|
|
Status = EcLock(sc);
|
|
if (ACPI_FAILURE(Status))
|
|
return_ACPI_STATUS (Status);
|
|
|
|
/* If we can't start burst mode, continue anyway. */
|
|
Status = EcCommand(sc, EC_COMMAND_BURST_ENABLE);
|
|
if (ACPI_SUCCESS(Status)) {
|
|
if (EC_GET_DATA(sc) == EC_BURST_ACK) {
|
|
CTR0(KTR_ACPI, "ec burst enabled");
|
|
sc->ec_burstactive = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Perform the transaction(s), based on Width. */
|
|
EcAddr = Address;
|
|
EcData = (UINT8 *)Value;
|
|
if (Function == ACPI_READ)
|
|
*Value = 0;
|
|
do {
|
|
switch (Function) {
|
|
case ACPI_READ:
|
|
Status = EcRead(sc, EcAddr, EcData);
|
|
break;
|
|
case ACPI_WRITE:
|
|
Status = EcWrite(sc, EcAddr, *EcData);
|
|
break;
|
|
}
|
|
if (ACPI_FAILURE(Status))
|
|
break;
|
|
EcAddr++;
|
|
EcData++;
|
|
} while (EcAddr < Address + Width / 8);
|
|
|
|
if (sc->ec_burstactive) {
|
|
sc->ec_burstactive = FALSE;
|
|
if (ACPI_SUCCESS(EcCommand(sc, EC_COMMAND_BURST_DISABLE)))
|
|
CTR0(KTR_ACPI, "ec disabled burst ok");
|
|
}
|
|
|
|
EcUnlock(sc);
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
EcCheckStatus(struct acpi_ec_softc *sc, const char *msg, EC_EVENT event)
|
|
{
|
|
ACPI_STATUS status;
|
|
EC_STATUS ec_status;
|
|
|
|
status = AE_NO_HARDWARE_RESPONSE;
|
|
ec_status = EC_GET_CSR(sc);
|
|
if (sc->ec_burstactive && !(ec_status & EC_FLAG_BURST_MODE)) {
|
|
CTR1(KTR_ACPI, "ec burst disabled in waitevent (%s)", msg);
|
|
sc->ec_burstactive = FALSE;
|
|
}
|
|
if (EVENT_READY(event, ec_status)) {
|
|
CTR2(KTR_ACPI, "ec %s wait ready, status %#x", msg, ec_status);
|
|
status = AE_OK;
|
|
}
|
|
return (status);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event, u_int gen_count)
|
|
{
|
|
ACPI_STATUS Status;
|
|
int count, i, slp_ival;
|
|
|
|
ACPI_SERIAL_ASSERT(ec);
|
|
Status = AE_NO_HARDWARE_RESPONSE;
|
|
int need_poll = cold || rebooting || ec_polled_mode || sc->ec_suspending;
|
|
/*
|
|
* The main CPU should be much faster than the EC. So the status should
|
|
* be "not ready" when we start waiting. But if the main CPU is really
|
|
* slow, it's possible we see the current "ready" response. Since that
|
|
* can't be distinguished from the previous response in polled mode,
|
|
* this is a potential issue. We really should have interrupts enabled
|
|
* during boot so there is no ambiguity in polled mode.
|
|
*
|
|
* If this occurs, we add an additional delay before actually entering
|
|
* the status checking loop, hopefully to allow the EC to go to work
|
|
* and produce a non-stale status.
|
|
*/
|
|
if (need_poll) {
|
|
static int once;
|
|
|
|
if (EcCheckStatus(sc, "pre-check", Event) == AE_OK) {
|
|
if (!once) {
|
|
device_printf(sc->ec_dev,
|
|
"warning: EC done before starting event wait\n");
|
|
once = 1;
|
|
}
|
|
AcpiOsStall(10);
|
|
}
|
|
}
|
|
|
|
/* Wait for event by polling or GPE (interrupt). */
|
|
if (need_poll) {
|
|
count = (ec_timeout * 1000) / EC_POLL_DELAY;
|
|
if (count == 0)
|
|
count = 1;
|
|
for (i = 0; i < count; i++) {
|
|
Status = EcCheckStatus(sc, "poll", Event);
|
|
if (Status == AE_OK)
|
|
break;
|
|
AcpiOsStall(EC_POLL_DELAY);
|
|
}
|
|
} else {
|
|
slp_ival = hz / 1000;
|
|
if (slp_ival != 0) {
|
|
count = ec_timeout;
|
|
} else {
|
|
/* hz has less than 1 ms resolution so scale timeout. */
|
|
slp_ival = 1;
|
|
count = ec_timeout / (1000 / hz);
|
|
}
|
|
|
|
/*
|
|
* Wait for the GPE to signal the status changed, checking the
|
|
* status register each time we get one. It's possible to get a
|
|
* GPE for an event we're not interested in here (i.e., SCI for
|
|
* EC query).
|
|
*/
|
|
for (i = 0; i < count; i++) {
|
|
if (gen_count != sc->ec_gencount) {
|
|
/*
|
|
* Record new generation count. It's possible the GPE was
|
|
* just to notify us that a query is needed and we need to
|
|
* wait for a second GPE to signal the completion of the
|
|
* event we are actually waiting for.
|
|
*/
|
|
gen_count = sc->ec_gencount;
|
|
Status = EcCheckStatus(sc, "sleep", Event);
|
|
if (Status == AE_OK)
|
|
break;
|
|
}
|
|
tsleep(&sc->ec_gencount, PZERO, "ecgpe", slp_ival);
|
|
}
|
|
|
|
/*
|
|
* We finished waiting for the GPE and it never arrived. Try to
|
|
* read the register once and trust whatever value we got. This is
|
|
* the best we can do at this point. Then, force polled mode on
|
|
* since this system doesn't appear to generate GPEs.
|
|
*/
|
|
if (Status != AE_OK) {
|
|
Status = EcCheckStatus(sc, "sleep_end", Event);
|
|
device_printf(sc->ec_dev,
|
|
"wait timed out (%sresponse), forcing polled mode\n",
|
|
Status == AE_OK ? "" : "no ");
|
|
ec_polled_mode = TRUE;
|
|
}
|
|
}
|
|
if (Status != AE_OK)
|
|
CTR0(KTR_ACPI, "error: ec wait timed out");
|
|
return (Status);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd)
|
|
{
|
|
ACPI_STATUS status;
|
|
EC_EVENT event;
|
|
EC_STATUS ec_status;
|
|
u_int gen_count;
|
|
|
|
ACPI_SERIAL_ASSERT(ec);
|
|
|
|
/* Don't use burst mode if user disabled it. */
|
|
if (!ec_burst_mode && cmd == EC_COMMAND_BURST_ENABLE)
|
|
return (AE_ERROR);
|
|
|
|
/* Decide what to wait for based on command type. */
|
|
switch (cmd) {
|
|
case EC_COMMAND_READ:
|
|
case EC_COMMAND_WRITE:
|
|
case EC_COMMAND_BURST_DISABLE:
|
|
event = EC_EVENT_INPUT_BUFFER_EMPTY;
|
|
break;
|
|
case EC_COMMAND_QUERY:
|
|
case EC_COMMAND_BURST_ENABLE:
|
|
event = EC_EVENT_OUTPUT_BUFFER_FULL;
|
|
break;
|
|
default:
|
|
device_printf(sc->ec_dev, "EcCommand: invalid command %#x\n", cmd);
|
|
return (AE_BAD_PARAMETER);
|
|
}
|
|
|
|
/* Run the command and wait for the chosen event. */
|
|
CTR1(KTR_ACPI, "ec running command %#x", cmd);
|
|
gen_count = sc->ec_gencount;
|
|
EC_SET_CSR(sc, cmd);
|
|
status = EcWaitEvent(sc, event, gen_count);
|
|
if (ACPI_SUCCESS(status)) {
|
|
/* If we succeeded, burst flag should now be present. */
|
|
if (cmd == EC_COMMAND_BURST_ENABLE) {
|
|
ec_status = EC_GET_CSR(sc);
|
|
if ((ec_status & EC_FLAG_BURST_MODE) == 0)
|
|
status = AE_ERROR;
|
|
}
|
|
} else
|
|
device_printf(sc->ec_dev, "EcCommand: no response to %#x\n", cmd);
|
|
return (status);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data)
|
|
{
|
|
ACPI_STATUS status;
|
|
u_int gen_count;
|
|
|
|
ACPI_SERIAL_ASSERT(ec);
|
|
CTR1(KTR_ACPI, "ec read from %#x", Address);
|
|
|
|
status = EcCommand(sc, EC_COMMAND_READ);
|
|
if (ACPI_FAILURE(status))
|
|
return (status);
|
|
|
|
gen_count = sc->ec_gencount;
|
|
EC_SET_DATA(sc, Address);
|
|
status = EcWaitEvent(sc, EC_EVENT_OUTPUT_BUFFER_FULL, gen_count);
|
|
if (ACPI_FAILURE(status)) {
|
|
device_printf(sc->ec_dev, "EcRead: failed waiting to get data\n");
|
|
return (status);
|
|
}
|
|
*Data = EC_GET_DATA(sc);
|
|
|
|
return (AE_OK);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 Data)
|
|
{
|
|
ACPI_STATUS status;
|
|
u_int gen_count;
|
|
|
|
ACPI_SERIAL_ASSERT(ec);
|
|
CTR2(KTR_ACPI, "ec write to %#x, data %#x", Address, Data);
|
|
|
|
status = EcCommand(sc, EC_COMMAND_WRITE);
|
|
if (ACPI_FAILURE(status))
|
|
return (status);
|
|
|
|
gen_count = sc->ec_gencount;
|
|
EC_SET_DATA(sc, Address);
|
|
status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY, gen_count);
|
|
if (ACPI_FAILURE(status)) {
|
|
device_printf(sc->ec_dev, "EcRead: failed waiting for sent address\n");
|
|
return (status);
|
|
}
|
|
|
|
gen_count = sc->ec_gencount;
|
|
EC_SET_DATA(sc, Data);
|
|
status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY, gen_count);
|
|
if (ACPI_FAILURE(status)) {
|
|
device_printf(sc->ec_dev, "EcWrite: failed waiting for sent data\n");
|
|
return (status);
|
|
}
|
|
|
|
return (AE_OK);
|
|
}
|