freebsd-skq/lib/libc/xdr/xdr.c
sheldonh a365f1d25a Do proper byte swapping in 64bit routines.
PR:		17681
Submitted by:	"David E. Cross" <crossd@cs.rpi.edu>
Obtained from:	NetBSD
2000-04-12 08:41:16 +00:00

785 lines
14 KiB
C

/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
#if defined(LIBC_SCCS) && !defined(lint)
/*static char *sccsid = "from: @(#)xdr.c 1.35 87/08/12";*/
/*static char *sccsid = "from: @(#)xdr.c 2.1 88/07/29 4.0 RPCSRC";*/
static char *rcsid = "$FreeBSD$";
#endif
/*
* xdr.c, Generic XDR routines implementation.
*
* Copyright (C) 1986, Sun Microsystems, Inc.
*
* These are the "generic" xdr routines used to serialize and de-serialize
* most common data items. See xdr.h for more info on the interface to
* xdr.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
/*
* constants specific to the xdr "protocol"
*/
#define XDR_FALSE ((long) 0)
#define XDR_TRUE ((long) 1)
#define LASTUNSIGNED ((u_int) 0-1)
/*
* for unit alignment
*/
static char xdr_zero[BYTES_PER_XDR_UNIT] = { 0, 0, 0, 0 };
/*
* Free a data structure using XDR
* Not a filter, but a convenient utility nonetheless
*/
void
xdr_free(proc, objp)
xdrproc_t proc;
char *objp;
{
XDR x;
x.x_op = XDR_FREE;
(*proc)(&x, objp);
}
/*
* XDR nothing
*/
bool_t
xdr_void(/* xdrs, addr */)
/* XDR *xdrs; */
/* caddr_t addr; */
{
return (TRUE);
}
/*
* XDR integers
*/
bool_t
xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;
{
long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (long) *ip;
return (XDR_PUTLONG(xdrs, &l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, &l)) {
return (FALSE);
}
*ip = (int) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR unsigned integers
*/
bool_t
xdr_u_int(xdrs, up)
XDR *xdrs;
u_int *up;
{
u_long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (u_long) *up;
return (XDR_PUTLONG(xdrs, (long *)&l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, (long *)&l)) {
return (FALSE);
}
*up = (u_int) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR long integers
* same as xdr_u_long - open coded to save a proc call!
*/
bool_t
xdr_long(xdrs, lp)
register XDR *xdrs;
long *lp;
{
switch (xdrs->x_op) {
case XDR_ENCODE:
return (XDR_PUTLONG(xdrs, lp));
case XDR_DECODE:
return (XDR_GETLONG(xdrs, lp));
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR unsigned long integers
* same as xdr_long - open coded to save a proc call!
*/
bool_t
xdr_u_long(xdrs, ulp)
register XDR *xdrs;
u_long *ulp;
{
switch (xdrs->x_op) {
case XDR_ENCODE:
return (XDR_PUTLONG(xdrs, (long *)ulp));
case XDR_DECODE:
return (XDR_GETLONG(xdrs, (long *)ulp));
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR 32-bit integers
* same as xdr_u_int32_t - open coded to save a proc call!
*/
bool_t
xdr_int32_t(xdrs, int32_p)
register XDR *xdrs;
int32_t *int32_p;
{
long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (long) *int32_p;
return (XDR_PUTLONG(xdrs, &l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, &l)) {
return (FALSE);
}
*int32_p = (int32_t) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR unsigned 32-bit integers
* same as xdr_int32_t - open coded to save a proc call!
*/
bool_t
xdr_u_int32_t(xdrs, u_int32_p)
register XDR *xdrs;
u_int32_t *u_int32_p;
{
u_long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (u_long) *u_int32_p;
return (XDR_PUTLONG(xdrs, (long *)&l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, (long *)&l)) {
return (FALSE);
}
*u_int32_p = (u_int32_t) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR 64-bit integers
*/
bool_t
xdr_int64_t(xdrs, int64_p)
register XDR *xdrs;
int64_t *int64_p;
{
u_long ul[2];
switch (xdrs->x_op) {
case XDR_ENCODE:
ul[0] = (u_long)((u_int64_t)*int64_p >> 32) & 0xffffffff;
ul[1] = (u_long)((u_int64_t)*int64_p) & 0xffffffff;
if (XDR_PUTLONG(xdrs, (long *)&ul[0]) == FALSE)
return (FALSE);
return (XDR_PUTLONG(xdrs, (long *)&ul[1]));
case XDR_DECODE:
if (XDR_GETLONG(xdrs, (long *)&ul[0]) == FALSE)
return (FALSE);
if (XDR_GETLONG(xdrs, (long *)&ul[1]) == FALSE)
return (FALSE);
*int64_p = (int64_t)
(((u_int64_t)ul[0] << 32) | ((u_int64_t)ul[1]));
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR unsigned 64-bit integers
*/
bool_t
xdr_u_int64_t(xdrs, uint64_p)
register XDR *xdrs;
u_int64_t *uint64_p;
{
u_long ul[2];
switch (xdrs->x_op) {
case XDR_ENCODE:
ul[0] = (u_long)(*uint64_p >> 32) & 0xffffffff;
ul[1] = (u_long)(*uint64_p) & 0xffffffff;
if (XDR_PUTLONG(xdrs, (long *)&ul[0]) == FALSE)
return (FALSE);
return (XDR_PUTLONG(xdrs, (long *)&ul[1]));
case XDR_DECODE:
if (XDR_GETLONG(xdrs, (long *)&ul[0]) == FALSE)
return (FALSE);
if (XDR_GETLONG(xdrs, (long *)&ul[1]) == FALSE)
return (FALSE);
*uint64_p = (u_int64_t)
(((u_int64_t)ul[0] << 32) | ((u_int64_t)ul[1]));
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR short integers
*/
bool_t
xdr_short(xdrs, sp)
register XDR *xdrs;
short *sp;
{
long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (long) *sp;
return (XDR_PUTLONG(xdrs, &l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, &l)) {
return (FALSE);
}
*sp = (short) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR unsigned short integers
*/
bool_t
xdr_u_short(xdrs, usp)
register XDR *xdrs;
u_short *usp;
{
u_long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (u_long) *usp;
return (XDR_PUTLONG(xdrs, (long *)&l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, (long *)&l)) {
return (FALSE);
}
*usp = (u_short) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR 16-bit integers
*/
bool_t
xdr_int16_t(xdrs, int16_p)
register XDR *xdrs;
int16_t *int16_p;
{
long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (long) *int16_p;
return (XDR_PUTLONG(xdrs, &l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, &l)) {
return (FALSE);
}
*int16_p = (int16_t) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR unsigned 16-bit integers
*/
bool_t
xdr_u_int16_t(xdrs, u_int16_p)
register XDR *xdrs;
u_int16_t *u_int16_p;
{
u_long l;
switch (xdrs->x_op) {
case XDR_ENCODE:
l = (u_long) *u_int16_p;
return (XDR_PUTLONG(xdrs, (long *)&l));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, (long *)&l)) {
return (FALSE);
}
*u_int16_p = (u_int16_t) l;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR a char
*/
bool_t
xdr_char(xdrs, cp)
XDR *xdrs;
char *cp;
{
int i;
i = (*cp);
if (!xdr_int(xdrs, &i)) {
return (FALSE);
}
*cp = i;
return (TRUE);
}
/*
* XDR an unsigned char
*/
bool_t
xdr_u_char(xdrs, cp)
XDR *xdrs;
u_char *cp;
{
u_int u;
u = (*cp);
if (!xdr_u_int(xdrs, &u)) {
return (FALSE);
}
*cp = u;
return (TRUE);
}
/*
* XDR booleans
*/
bool_t
xdr_bool(xdrs, bp)
register XDR *xdrs;
bool_t *bp;
{
long lb;
switch (xdrs->x_op) {
case XDR_ENCODE:
lb = *bp ? XDR_TRUE : XDR_FALSE;
return (XDR_PUTLONG(xdrs, &lb));
case XDR_DECODE:
if (!XDR_GETLONG(xdrs, &lb)) {
return (FALSE);
}
*bp = (lb == XDR_FALSE) ? FALSE : TRUE;
return (TRUE);
case XDR_FREE:
return (TRUE);
}
return (FALSE);
}
/*
* XDR enumerations
*/
bool_t
xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;
{
#ifndef lint
enum sizecheck { SIZEVAL }; /* used to find the size of an enum */
/*
* enums are treated as ints
*/
if (sizeof (enum sizecheck) == sizeof (long)) {
return (xdr_long(xdrs, (long *)ep));
} else if (sizeof (enum sizecheck) == sizeof (int)) {
return (xdr_int(xdrs, (int *)ep));
} else if (sizeof (enum sizecheck) == sizeof (short)) {
return (xdr_short(xdrs, (short *)ep));
} else {
return (FALSE);
}
#else
(void) (xdr_short(xdrs, (short *)ep));
(void) (xdr_int(xdrs, (int *)ep));
return (xdr_long(xdrs, (long *)ep));
#endif
}
/*
* XDR opaque data
* Allows the specification of a fixed size sequence of opaque bytes.
* cp points to the opaque object and cnt gives the byte length.
*/
bool_t
xdr_opaque(xdrs, cp, cnt)
register XDR *xdrs;
caddr_t cp;
register u_int cnt;
{
register u_int rndup;
static crud[BYTES_PER_XDR_UNIT];
/*
* if no data we are done
*/
if (cnt == 0)
return (TRUE);
/*
* round byte count to full xdr units
*/
rndup = cnt % BYTES_PER_XDR_UNIT;
if (rndup > 0)
rndup = BYTES_PER_XDR_UNIT - rndup;
if (xdrs->x_op == XDR_DECODE) {
if (!XDR_GETBYTES(xdrs, cp, cnt)) {
return (FALSE);
}
if (rndup == 0)
return (TRUE);
return (XDR_GETBYTES(xdrs, (caddr_t)crud, rndup));
}
if (xdrs->x_op == XDR_ENCODE) {
if (!XDR_PUTBYTES(xdrs, cp, cnt)) {
return (FALSE);
}
if (rndup == 0)
return (TRUE);
return (XDR_PUTBYTES(xdrs, xdr_zero, rndup));
}
if (xdrs->x_op == XDR_FREE) {
return (TRUE);
}
return (FALSE);
}
/*
* XDR counted bytes
* *cpp is a pointer to the bytes, *sizep is the count.
* If *cpp is NULL maxsize bytes are allocated
*/
bool_t
xdr_bytes(xdrs, cpp, sizep, maxsize)
register XDR *xdrs;
char **cpp;
register u_int *sizep;
u_int maxsize;
{
register char *sp = *cpp; /* sp is the actual string pointer */
register u_int nodesize;
/*
* first deal with the length since xdr bytes are counted
*/
if (! xdr_u_int(xdrs, sizep)) {
return (FALSE);
}
nodesize = *sizep;
if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE)) {
return (FALSE);
}
/*
* now deal with the actual bytes
*/
switch (xdrs->x_op) {
case XDR_DECODE:
if (nodesize == 0) {
return (TRUE);
}
if (sp == NULL) {
*cpp = sp = (char *)mem_alloc(nodesize);
}
if (sp == NULL) {
(void) fprintf(stderr, "xdr_bytes: out of memory\n");
return (FALSE);
}
/* fall into ... */
case XDR_ENCODE:
return (xdr_opaque(xdrs, sp, nodesize));
case XDR_FREE:
if (sp != NULL) {
mem_free(sp, nodesize);
*cpp = NULL;
}
return (TRUE);
}
return (FALSE);
}
/*
* Implemented here due to commonality of the object.
*/
bool_t
xdr_netobj(xdrs, np)
XDR *xdrs;
struct netobj *np;
{
return (xdr_bytes(xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ));
}
/*
* XDR a descriminated union
* Support routine for discriminated unions.
* You create an array of xdrdiscrim structures, terminated with
* an entry with a null procedure pointer. The routine gets
* the discriminant value and then searches the array of xdrdiscrims
* looking for that value. It calls the procedure given in the xdrdiscrim
* to handle the discriminant. If there is no specific routine a default
* routine may be called.
* If there is no specific or default routine an error is returned.
*/
bool_t
xdr_union(xdrs, dscmp, unp, choices, dfault)
register XDR *xdrs;
enum_t *dscmp; /* enum to decide which arm to work on */
char *unp; /* the union itself */
struct xdr_discrim *choices; /* [value, xdr proc] for each arm */
xdrproc_t dfault; /* default xdr routine */
{
register enum_t dscm;
/*
* we deal with the discriminator; it's an enum
*/
if (! xdr_enum(xdrs, dscmp)) {
return (FALSE);
}
dscm = *dscmp;
/*
* search choices for a value that matches the discriminator.
* if we find one, execute the xdr routine for that value.
*/
for (; choices->proc != NULL_xdrproc_t; choices++) {
if (choices->value == dscm)
return ((*(choices->proc))(xdrs, unp, LASTUNSIGNED));
}
/*
* no match - execute the default xdr routine if there is one
*/
return ((dfault == NULL_xdrproc_t) ? FALSE :
(*dfault)(xdrs, unp, LASTUNSIGNED));
}
/*
* Non-portable xdr primitives.
* Care should be taken when moving these routines to new architectures.
*/
/*
* XDR null terminated ASCII strings
* xdr_string deals with "C strings" - arrays of bytes that are
* terminated by a NULL character. The parameter cpp references a
* pointer to storage; If the pointer is null, then the necessary
* storage is allocated. The last parameter is the max allowed length
* of the string as specified by a protocol.
*/
bool_t
xdr_string(xdrs, cpp, maxsize)
register XDR *xdrs;
char **cpp;
u_int maxsize;
{
register char *sp = *cpp; /* sp is the actual string pointer */
u_int size;
u_int nodesize;
/*
* first deal with the length since xdr strings are counted-strings
*/
switch (xdrs->x_op) {
case XDR_FREE:
if (sp == NULL) {
return(TRUE); /* already free */
}
/* fall through... */
case XDR_ENCODE:
size = strlen(sp);
break;
}
if (! xdr_u_int(xdrs, &size)) {
return (FALSE);
}
if (size > maxsize) {
return (FALSE);
}
nodesize = size + 1;
/*
* now deal with the actual bytes
*/
switch (xdrs->x_op) {
case XDR_DECODE:
if (nodesize == 0) {
return (TRUE);
}
if (sp == NULL)
*cpp = sp = (char *)mem_alloc(nodesize);
if (sp == NULL) {
(void) fprintf(stderr, "xdr_string: out of memory\n");
return (FALSE);
}
sp[size] = 0;
/* fall into ... */
case XDR_ENCODE:
return (xdr_opaque(xdrs, sp, size));
case XDR_FREE:
mem_free(sp, nodesize);
*cpp = NULL;
return (TRUE);
}
return (FALSE);
}
/*
* Wrapper for xdr_string that can be called directly from
* routines like clnt_call
*/
bool_t
xdr_wrapstring(xdrs, cpp)
XDR *xdrs;
char **cpp;
{
return xdr_string(xdrs, cpp, LASTUNSIGNED);
}