3841c28717
Key changes include reduced noise at end of failed build log and avoid evaluation of unnecessary terms in conditionals. In META MODE; a target flagged .META is out-of-date if meta file is missing MFC after: 1 week
1859 lines
51 KiB
C
1859 lines
51 KiB
C
/* $NetBSD: dir.c,v 1.76 2020/07/03 08:13:23 rillig Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1988, 1989, 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Adam de Boor.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1988, 1989 by Adam de Boor
|
|
* Copyright (c) 1989 by Berkeley Softworks
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Adam de Boor.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef MAKE_NATIVE
|
|
static char rcsid[] = "$NetBSD: dir.c,v 1.76 2020/07/03 08:13:23 rillig Exp $";
|
|
#else
|
|
#include <sys/cdefs.h>
|
|
#ifndef lint
|
|
#if 0
|
|
static char sccsid[] = "@(#)dir.c 8.2 (Berkeley) 1/2/94";
|
|
#else
|
|
__RCSID("$NetBSD: dir.c,v 1.76 2020/07/03 08:13:23 rillig Exp $");
|
|
#endif
|
|
#endif /* not lint */
|
|
#endif
|
|
|
|
/*-
|
|
* dir.c --
|
|
* Directory searching using wildcards and/or normal names...
|
|
* Used both for source wildcarding in the Makefile and for finding
|
|
* implicit sources.
|
|
*
|
|
* The interface for this module is:
|
|
* Dir_Init Initialize the module.
|
|
*
|
|
* Dir_InitCur Set the cur Path.
|
|
*
|
|
* Dir_InitDot Set the dot Path.
|
|
*
|
|
* Dir_End Cleanup the module.
|
|
*
|
|
* Dir_SetPATH Set ${.PATH} to reflect state of dirSearchPath.
|
|
*
|
|
* Dir_HasWildcards Returns TRUE if the name given it needs to
|
|
* be wildcard-expanded.
|
|
*
|
|
* Dir_Expand Given a pattern and a path, return a Lst of names
|
|
* which match the pattern on the search path.
|
|
*
|
|
* Dir_FindFile Searches for a file on a given search path.
|
|
* If it exists, the entire path is returned.
|
|
* Otherwise NULL is returned.
|
|
*
|
|
* Dir_FindHereOrAbove Search for a path in the current directory and
|
|
* then all the directories above it in turn until
|
|
* the path is found or we reach the root ("/").
|
|
*
|
|
* Dir_MTime Return the modification time of a node. The file
|
|
* is searched for along the default search path.
|
|
* The path and mtime fields of the node are filled
|
|
* in.
|
|
*
|
|
* Dir_AddDir Add a directory to a search path.
|
|
*
|
|
* Dir_MakeFlags Given a search path and a command flag, create
|
|
* a string with each of the directories in the path
|
|
* preceded by the command flag and all of them
|
|
* separated by a space.
|
|
*
|
|
* Dir_Destroy Destroy an element of a search path. Frees up all
|
|
* things that can be freed for the element as long
|
|
* as the element is no longer referenced by any other
|
|
* search path.
|
|
* Dir_ClearPath Resets a search path to the empty list.
|
|
*
|
|
* For debugging:
|
|
* Dir_PrintDirectories Print stats about the directory cache.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
|
|
#include "make.h"
|
|
#include "hash.h"
|
|
#include "dir.h"
|
|
#include "job.h"
|
|
|
|
/*
|
|
* A search path consists of a Lst of Path structures. A Path structure
|
|
* has in it the name of the directory and a hash table of all the files
|
|
* in the directory. This is used to cut down on the number of system
|
|
* calls necessary to find implicit dependents and their like. Since
|
|
* these searches are made before any actions are taken, we need not
|
|
* worry about the directory changing due to creation commands. If this
|
|
* hampers the style of some makefiles, they must be changed.
|
|
*
|
|
* A list of all previously-read directories is kept in the
|
|
* openDirectories Lst. This list is checked first before a directory
|
|
* is opened.
|
|
*
|
|
* The need for the caching of whole directories is brought about by
|
|
* the multi-level transformation code in suff.c, which tends to search
|
|
* for far more files than regular make does. In the initial
|
|
* implementation, the amount of time spent performing "stat" calls was
|
|
* truly astronomical. The problem with hashing at the start is,
|
|
* of course, that pmake doesn't then detect changes to these directories
|
|
* during the course of the make. Three possibilities suggest themselves:
|
|
*
|
|
* 1) just use stat to test for a file's existence. As mentioned
|
|
* above, this is very inefficient due to the number of checks
|
|
* engendered by the multi-level transformation code.
|
|
* 2) use readdir() and company to search the directories, keeping
|
|
* them open between checks. I have tried this and while it
|
|
* didn't slow down the process too much, it could severely
|
|
* affect the amount of parallelism available as each directory
|
|
* open would take another file descriptor out of play for
|
|
* handling I/O for another job. Given that it is only recently
|
|
* that UNIX OS's have taken to allowing more than 20 or 32
|
|
* file descriptors for a process, this doesn't seem acceptable
|
|
* to me.
|
|
* 3) record the mtime of the directory in the Path structure and
|
|
* verify the directory hasn't changed since the contents were
|
|
* hashed. This will catch the creation or deletion of files,
|
|
* but not the updating of files. However, since it is the
|
|
* creation and deletion that is the problem, this could be
|
|
* a good thing to do. Unfortunately, if the directory (say ".")
|
|
* were fairly large and changed fairly frequently, the constant
|
|
* rehashing could seriously degrade performance. It might be
|
|
* good in such cases to keep track of the number of rehashes
|
|
* and if the number goes over a (small) limit, resort to using
|
|
* stat in its place.
|
|
*
|
|
* An additional thing to consider is that pmake is used primarily
|
|
* to create C programs and until recently pcc-based compilers refused
|
|
* to allow you to specify where the resulting object file should be
|
|
* placed. This forced all objects to be created in the current
|
|
* directory. This isn't meant as a full excuse, just an explanation of
|
|
* some of the reasons for the caching used here.
|
|
*
|
|
* One more note: the location of a target's file is only performed
|
|
* on the downward traversal of the graph and then only for terminal
|
|
* nodes in the graph. This could be construed as wrong in some cases,
|
|
* but prevents inadvertent modification of files when the "installed"
|
|
* directory for a file is provided in the search path.
|
|
*
|
|
* Another data structure maintained by this module is an mtime
|
|
* cache used when the searching of cached directories fails to find
|
|
* a file. In the past, Dir_FindFile would simply perform an access()
|
|
* call in such a case to determine if the file could be found using
|
|
* just the name given. When this hit, however, all that was gained
|
|
* was the knowledge that the file existed. Given that an access() is
|
|
* essentially a stat() without the copyout() call, and that the same
|
|
* filesystem overhead would have to be incurred in Dir_MTime, it made
|
|
* sense to replace the access() with a stat() and record the mtime
|
|
* in a cache for when Dir_MTime was actually called.
|
|
*/
|
|
|
|
Lst dirSearchPath; /* main search path */
|
|
|
|
static Lst openDirectories; /* the list of all open directories */
|
|
|
|
/*
|
|
* Variables for gathering statistics on the efficiency of the hashing
|
|
* mechanism.
|
|
*/
|
|
static int hits, /* Found in directory cache */
|
|
misses, /* Sad, but not evil misses */
|
|
nearmisses, /* Found under search path */
|
|
bigmisses; /* Sought by itself */
|
|
|
|
static Path *dot; /* contents of current directory */
|
|
static Path *cur; /* contents of current directory, if not dot */
|
|
static Path *dotLast; /* a fake path entry indicating we need to
|
|
* look for . last */
|
|
static Hash_Table mtimes; /* Results of doing a last-resort stat in
|
|
* Dir_FindFile -- if we have to go to the
|
|
* system to find the file, we might as well
|
|
* have its mtime on record. XXX: If this is done
|
|
* way early, there's a chance other rules will
|
|
* have already updated the file, in which case
|
|
* we'll update it again. Generally, there won't
|
|
* be two rules to update a single file, so this
|
|
* should be ok, but... */
|
|
|
|
static Hash_Table lmtimes; /* same as mtimes but for lstat */
|
|
|
|
static int DirFindName(const void *, const void *);
|
|
static int DirMatchFiles(const char *, Path *, Lst);
|
|
static void DirExpandCurly(const char *, const char *, Lst, Lst);
|
|
static void DirExpandInt(const char *, Lst, Lst);
|
|
static int DirPrintWord(void *, void *);
|
|
static int DirPrintDir(void *, void *);
|
|
static char *DirLookup(Path *, const char *, const char *, Boolean);
|
|
static char *DirLookupSubdir(Path *, const char *);
|
|
static char *DirFindDot(Boolean, const char *, const char *);
|
|
static char *DirLookupAbs(Path *, const char *, const char *);
|
|
|
|
|
|
/*
|
|
* We use stat(2) a lot, cache the results
|
|
* mtime and mode are all we care about.
|
|
*/
|
|
struct cache_st {
|
|
time_t lmtime; /* lstat */
|
|
time_t mtime; /* stat */
|
|
mode_t mode;
|
|
};
|
|
|
|
/* minimize changes below */
|
|
#define CST_LSTAT 1
|
|
#define CST_UPDATE 2
|
|
|
|
static int
|
|
cached_stats(Hash_Table *htp, const char *pathname, struct stat *st, int flags)
|
|
{
|
|
Hash_Entry *entry;
|
|
struct cache_st *cst;
|
|
int rc;
|
|
|
|
if (!pathname || !pathname[0])
|
|
return -1;
|
|
|
|
entry = Hash_FindEntry(htp, pathname);
|
|
|
|
if (entry && (flags & CST_UPDATE) == 0) {
|
|
cst = entry->clientPtr;
|
|
|
|
memset(st, 0, sizeof(*st));
|
|
st->st_mode = cst->mode;
|
|
st->st_mtime = (flags & CST_LSTAT) ? cst->lmtime : cst->mtime;
|
|
if (st->st_mtime) {
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, "Using cached time %s for %s\n",
|
|
Targ_FmtTime(st->st_mtime), pathname);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
rc = (flags & CST_LSTAT) ? lstat(pathname, st) : stat(pathname, st);
|
|
if (rc == -1)
|
|
return -1;
|
|
|
|
if (st->st_mtime == 0)
|
|
st->st_mtime = 1; /* avoid confusion with missing file */
|
|
|
|
if (!entry)
|
|
entry = Hash_CreateEntry(htp, pathname, NULL);
|
|
if (!entry->clientPtr) {
|
|
entry->clientPtr = bmake_malloc(sizeof(*cst));
|
|
memset(entry->clientPtr, 0, sizeof(*cst));
|
|
}
|
|
cst = entry->clientPtr;
|
|
if ((flags & CST_LSTAT)) {
|
|
cst->lmtime = st->st_mtime;
|
|
} else {
|
|
cst->mtime = st->st_mtime;
|
|
}
|
|
cst->mode = st->st_mode;
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " Caching %s for %s\n",
|
|
Targ_FmtTime(st->st_mtime), pathname);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cached_stat(const char *pathname, void *st)
|
|
{
|
|
return cached_stats(&mtimes, pathname, st, 0);
|
|
}
|
|
|
|
int
|
|
cached_lstat(const char *pathname, void *st)
|
|
{
|
|
return cached_stats(&lmtimes, pathname, st, CST_LSTAT);
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_Init --
|
|
* initialize things for this module
|
|
*
|
|
* Results:
|
|
* none
|
|
*
|
|
* Side Effects:
|
|
* some directories may be opened.
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
void
|
|
Dir_Init(const char *cdname)
|
|
{
|
|
if (!cdname) {
|
|
dirSearchPath = Lst_Init(FALSE);
|
|
openDirectories = Lst_Init(FALSE);
|
|
Hash_InitTable(&mtimes, 0);
|
|
Hash_InitTable(&lmtimes, 0);
|
|
return;
|
|
}
|
|
Dir_InitCur(cdname);
|
|
|
|
dotLast = bmake_malloc(sizeof(Path));
|
|
dotLast->refCount = 1;
|
|
dotLast->hits = 0;
|
|
dotLast->name = bmake_strdup(".DOTLAST");
|
|
Hash_InitTable(&dotLast->files, -1);
|
|
}
|
|
|
|
/*
|
|
* Called by Dir_Init() and whenever .CURDIR is assigned to.
|
|
*/
|
|
void
|
|
Dir_InitCur(const char *cdname)
|
|
{
|
|
Path *p;
|
|
|
|
if (cdname != NULL) {
|
|
/*
|
|
* Our build directory is not the same as our source directory.
|
|
* Keep this one around too.
|
|
*/
|
|
if ((p = Dir_AddDir(NULL, cdname))) {
|
|
p->refCount += 1;
|
|
if (cur && cur != p) {
|
|
/*
|
|
* We've been here before, cleanup.
|
|
*/
|
|
cur->refCount -= 1;
|
|
Dir_Destroy(cur);
|
|
}
|
|
cur = p;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_InitDot --
|
|
* (re)initialize "dot" (current/object directory) path hash
|
|
*
|
|
* Results:
|
|
* none
|
|
*
|
|
* Side Effects:
|
|
* some directories may be opened.
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
void
|
|
Dir_InitDot(void)
|
|
{
|
|
if (dot != NULL) {
|
|
LstNode ln;
|
|
|
|
/* Remove old entry from openDirectories, but do not destroy. */
|
|
ln = Lst_Member(openDirectories, dot);
|
|
(void)Lst_Remove(openDirectories, ln);
|
|
}
|
|
|
|
dot = Dir_AddDir(NULL, ".");
|
|
|
|
if (dot == NULL) {
|
|
Error("Cannot open `.' (%s)", strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* We always need to have dot around, so we increment its reference count
|
|
* to make sure it's not destroyed.
|
|
*/
|
|
dot->refCount += 1;
|
|
Dir_SetPATH(); /* initialize */
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_End --
|
|
* cleanup things for this module
|
|
*
|
|
* Results:
|
|
* none
|
|
*
|
|
* Side Effects:
|
|
* none
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
void
|
|
Dir_End(void)
|
|
{
|
|
#ifdef CLEANUP
|
|
if (cur) {
|
|
cur->refCount -= 1;
|
|
Dir_Destroy(cur);
|
|
}
|
|
dot->refCount -= 1;
|
|
dotLast->refCount -= 1;
|
|
Dir_Destroy(dotLast);
|
|
Dir_Destroy(dot);
|
|
Dir_ClearPath(dirSearchPath);
|
|
Lst_Destroy(dirSearchPath, NULL);
|
|
Dir_ClearPath(openDirectories);
|
|
Lst_Destroy(openDirectories, NULL);
|
|
Hash_DeleteTable(&mtimes);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* We want ${.PATH} to indicate the order in which we will actually
|
|
* search, so we rebuild it after any .PATH: target.
|
|
* This is the simplest way to deal with the effect of .DOTLAST.
|
|
*/
|
|
void
|
|
Dir_SetPATH(void)
|
|
{
|
|
LstNode ln; /* a list element */
|
|
Path *p;
|
|
Boolean hasLastDot = FALSE; /* true we should search dot last */
|
|
|
|
Var_Delete(".PATH", VAR_GLOBAL);
|
|
|
|
if (Lst_Open(dirSearchPath) == SUCCESS) {
|
|
if ((ln = Lst_First(dirSearchPath)) != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
if (p == dotLast) {
|
|
hasLastDot = TRUE;
|
|
Var_Append(".PATH", dotLast->name, VAR_GLOBAL);
|
|
}
|
|
}
|
|
|
|
if (!hasLastDot) {
|
|
if (dot)
|
|
Var_Append(".PATH", dot->name, VAR_GLOBAL);
|
|
if (cur)
|
|
Var_Append(".PATH", cur->name, VAR_GLOBAL);
|
|
}
|
|
|
|
while ((ln = Lst_Next(dirSearchPath)) != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
if (p == dotLast)
|
|
continue;
|
|
if (p == dot && hasLastDot)
|
|
continue;
|
|
Var_Append(".PATH", p->name, VAR_GLOBAL);
|
|
}
|
|
|
|
if (hasLastDot) {
|
|
if (dot)
|
|
Var_Append(".PATH", dot->name, VAR_GLOBAL);
|
|
if (cur)
|
|
Var_Append(".PATH", cur->name, VAR_GLOBAL);
|
|
}
|
|
Lst_Close(dirSearchPath);
|
|
}
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* DirFindName --
|
|
* See if the Path structure describes the same directory as the
|
|
* given one by comparing their names. Called from Dir_AddDir via
|
|
* Lst_Find when searching the list of open directories.
|
|
*
|
|
* Input:
|
|
* p Current name
|
|
* dname Desired name
|
|
*
|
|
* Results:
|
|
* 0 if it is the same. Non-zero otherwise
|
|
*
|
|
* Side Effects:
|
|
* None
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
DirFindName(const void *p, const void *dname)
|
|
{
|
|
return strcmp(((const Path *)p)->name, dname);
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_HasWildcards --
|
|
* see if the given name has any wildcard characters in it
|
|
* be careful not to expand unmatching brackets or braces.
|
|
* XXX: This code is not 100% correct. ([^]] fails etc.)
|
|
* I really don't think that make(1) should be expanding
|
|
* patterns, because then you have to set a mechanism for
|
|
* escaping the expansion!
|
|
*
|
|
* Input:
|
|
* name name to check
|
|
*
|
|
* Results:
|
|
* returns TRUE if the word should be expanded, FALSE otherwise
|
|
*
|
|
* Side Effects:
|
|
* none
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
Boolean
|
|
Dir_HasWildcards(char *name)
|
|
{
|
|
char *cp;
|
|
int wild = 0, brace = 0, bracket = 0;
|
|
|
|
for (cp = name; *cp; cp++) {
|
|
switch(*cp) {
|
|
case '{':
|
|
brace++;
|
|
wild = 1;
|
|
break;
|
|
case '}':
|
|
brace--;
|
|
break;
|
|
case '[':
|
|
bracket++;
|
|
wild = 1;
|
|
break;
|
|
case ']':
|
|
bracket--;
|
|
break;
|
|
case '?':
|
|
case '*':
|
|
wild = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return wild && bracket == 0 && brace == 0;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* DirMatchFiles --
|
|
* Given a pattern and a Path structure, see if any files
|
|
* match the pattern and add their names to the 'expansions' list if
|
|
* any do. This is incomplete -- it doesn't take care of patterns like
|
|
* src / *src / *.c properly (just *.c on any of the directories), but it
|
|
* will do for now.
|
|
*
|
|
* Input:
|
|
* pattern Pattern to look for
|
|
* p Directory to search
|
|
* expansion Place to store the results
|
|
*
|
|
* Results:
|
|
* Always returns 0
|
|
*
|
|
* Side Effects:
|
|
* File names are added to the expansions lst. The directory will be
|
|
* fully hashed when this is done.
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
DirMatchFiles(const char *pattern, Path *p, Lst expansions)
|
|
{
|
|
Hash_Search search; /* Index into the directory's table */
|
|
Hash_Entry *entry; /* Current entry in the table */
|
|
Boolean isDot; /* TRUE if the directory being searched is . */
|
|
|
|
isDot = (*p->name == '.' && p->name[1] == '\0');
|
|
|
|
for (entry = Hash_EnumFirst(&p->files, &search);
|
|
entry != NULL;
|
|
entry = Hash_EnumNext(&search))
|
|
{
|
|
/*
|
|
* See if the file matches the given pattern. Note we follow the UNIX
|
|
* convention that dot files will only be found if the pattern
|
|
* begins with a dot (note also that as a side effect of the hashing
|
|
* scheme, .* won't match . or .. since they aren't hashed).
|
|
*/
|
|
if (Str_Match(entry->name, pattern) &&
|
|
((entry->name[0] != '.') ||
|
|
(pattern[0] == '.')))
|
|
{
|
|
(void)Lst_AtEnd(expansions,
|
|
(isDot ? bmake_strdup(entry->name) :
|
|
str_concat(p->name, entry->name,
|
|
STR_ADDSLASH)));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* DirExpandCurly --
|
|
* Expand curly braces like the C shell. Does this recursively.
|
|
* Note the special case: if after the piece of the curly brace is
|
|
* done there are no wildcard characters in the result, the result is
|
|
* placed on the list WITHOUT CHECKING FOR ITS EXISTENCE.
|
|
*
|
|
* Input:
|
|
* word Entire word to expand
|
|
* brace First curly brace in it
|
|
* path Search path to use
|
|
* expansions Place to store the expansions
|
|
*
|
|
* Results:
|
|
* None.
|
|
*
|
|
* Side Effects:
|
|
* The given list is filled with the expansions...
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
DirExpandCurly(const char *word, const char *brace, Lst path, Lst expansions)
|
|
{
|
|
const char *end; /* Character after the closing brace */
|
|
const char *cp; /* Current position in brace clause */
|
|
const char *start; /* Start of current piece of brace clause */
|
|
int bracelevel; /* Number of braces we've seen. If we see a
|
|
* right brace when this is 0, we've hit the
|
|
* end of the clause. */
|
|
char *file; /* Current expansion */
|
|
int otherLen; /* The length of the other pieces of the
|
|
* expansion (chars before and after the
|
|
* clause in 'word') */
|
|
char *cp2; /* Pointer for checking for wildcards in
|
|
* expansion before calling Dir_Expand */
|
|
|
|
start = brace+1;
|
|
|
|
/*
|
|
* Find the end of the brace clause first, being wary of nested brace
|
|
* clauses.
|
|
*/
|
|
for (end = start, bracelevel = 0; *end != '\0'; end++) {
|
|
if (*end == '{') {
|
|
bracelevel++;
|
|
} else if ((*end == '}') && (bracelevel-- == 0)) {
|
|
break;
|
|
}
|
|
}
|
|
if (*end == '\0') {
|
|
Error("Unterminated {} clause \"%s\"", start);
|
|
return;
|
|
} else {
|
|
end++;
|
|
}
|
|
otherLen = brace - word + strlen(end);
|
|
|
|
for (cp = start; cp < end; cp++) {
|
|
/*
|
|
* Find the end of this piece of the clause.
|
|
*/
|
|
bracelevel = 0;
|
|
while (*cp != ',') {
|
|
if (*cp == '{') {
|
|
bracelevel++;
|
|
} else if ((*cp == '}') && (bracelevel-- <= 0)) {
|
|
break;
|
|
}
|
|
cp++;
|
|
}
|
|
/*
|
|
* Allocate room for the combination and install the three pieces.
|
|
*/
|
|
file = bmake_malloc(otherLen + cp - start + 1);
|
|
if (brace != word) {
|
|
strncpy(file, word, brace-word);
|
|
}
|
|
if (cp != start) {
|
|
strncpy(&file[brace-word], start, cp-start);
|
|
}
|
|
strcpy(&file[(brace-word)+(cp-start)], end);
|
|
|
|
/*
|
|
* See if the result has any wildcards in it. If we find one, call
|
|
* Dir_Expand right away, telling it to place the result on our list
|
|
* of expansions.
|
|
*/
|
|
for (cp2 = file; *cp2 != '\0'; cp2++) {
|
|
switch(*cp2) {
|
|
case '*':
|
|
case '?':
|
|
case '{':
|
|
case '[':
|
|
Dir_Expand(file, path, expansions);
|
|
goto next;
|
|
}
|
|
}
|
|
if (*cp2 == '\0') {
|
|
/*
|
|
* Hit the end w/o finding any wildcards, so stick the expansion
|
|
* on the end of the list.
|
|
*/
|
|
(void)Lst_AtEnd(expansions, file);
|
|
} else {
|
|
next:
|
|
free(file);
|
|
}
|
|
start = cp+1;
|
|
}
|
|
}
|
|
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* DirExpandInt --
|
|
* Internal expand routine. Passes through the directories in the
|
|
* path one by one, calling DirMatchFiles for each. NOTE: This still
|
|
* doesn't handle patterns in directories...
|
|
*
|
|
* Input:
|
|
* word Word to expand
|
|
* path Path on which to look
|
|
* expansions Place to store the result
|
|
*
|
|
* Results:
|
|
* None.
|
|
*
|
|
* Side Effects:
|
|
* Things are added to the expansions list.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
DirExpandInt(const char *word, Lst path, Lst expansions)
|
|
{
|
|
LstNode ln; /* Current node */
|
|
Path *p; /* Directory in the node */
|
|
|
|
if (Lst_Open(path) == SUCCESS) {
|
|
while ((ln = Lst_Next(path)) != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
DirMatchFiles(word, p, expansions);
|
|
}
|
|
Lst_Close(path);
|
|
}
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* DirPrintWord --
|
|
* Print a word in the list of expansions. Callback for Dir_Expand
|
|
* when DEBUG(DIR), via Lst_ForEach.
|
|
*
|
|
* Results:
|
|
* === 0
|
|
*
|
|
* Side Effects:
|
|
* The passed word is printed, followed by a space.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
DirPrintWord(void *word, void *dummy MAKE_ATTR_UNUSED)
|
|
{
|
|
fprintf(debug_file, "%s ", (char *)word);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_Expand --
|
|
* Expand the given word into a list of words by globbing it looking
|
|
* in the directories on the given search path.
|
|
*
|
|
* Input:
|
|
* word the word to expand
|
|
* path the list of directories in which to find the
|
|
* resulting files
|
|
* expansions the list on which to place the results
|
|
*
|
|
* Results:
|
|
* A list of words consisting of the files which exist along the search
|
|
* path matching the given pattern.
|
|
*
|
|
* Side Effects:
|
|
* Directories may be opened. Who knows?
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
void
|
|
Dir_Expand(const char *word, Lst path, Lst expansions)
|
|
{
|
|
const char *cp;
|
|
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, "Expanding \"%s\"... ", word);
|
|
}
|
|
|
|
cp = strchr(word, '{');
|
|
if (cp) {
|
|
DirExpandCurly(word, cp, path, expansions);
|
|
} else {
|
|
cp = strchr(word, '/');
|
|
if (cp) {
|
|
/*
|
|
* The thing has a directory component -- find the first wildcard
|
|
* in the string.
|
|
*/
|
|
for (cp = word; *cp; cp++) {
|
|
if (*cp == '?' || *cp == '[' || *cp == '*' || *cp == '{') {
|
|
break;
|
|
}
|
|
}
|
|
if (*cp == '{') {
|
|
/*
|
|
* This one will be fun.
|
|
*/
|
|
DirExpandCurly(word, cp, path, expansions);
|
|
return;
|
|
} else if (*cp != '\0') {
|
|
/*
|
|
* Back up to the start of the component
|
|
*/
|
|
char *dirpath;
|
|
|
|
while (cp > word && *cp != '/') {
|
|
cp--;
|
|
}
|
|
if (cp != word) {
|
|
char sc;
|
|
/*
|
|
* If the glob isn't in the first component, try and find
|
|
* all the components up to the one with a wildcard.
|
|
*/
|
|
sc = cp[1];
|
|
((char *)UNCONST(cp))[1] = '\0';
|
|
dirpath = Dir_FindFile(word, path);
|
|
((char *)UNCONST(cp))[1] = sc;
|
|
/*
|
|
* dirpath is null if can't find the leading component
|
|
* XXX: Dir_FindFile won't find internal components.
|
|
* i.e. if the path contains ../Etc/Object and we're
|
|
* looking for Etc, it won't be found. Ah well.
|
|
* Probably not important.
|
|
*/
|
|
if (dirpath != NULL) {
|
|
char *dp = &dirpath[strlen(dirpath) - 1];
|
|
if (*dp == '/')
|
|
*dp = '\0';
|
|
path = Lst_Init(FALSE);
|
|
(void)Dir_AddDir(path, dirpath);
|
|
DirExpandInt(cp+1, path, expansions);
|
|
Lst_Destroy(path, NULL);
|
|
}
|
|
} else {
|
|
/*
|
|
* Start the search from the local directory
|
|
*/
|
|
DirExpandInt(word, path, expansions);
|
|
}
|
|
} else {
|
|
/*
|
|
* Return the file -- this should never happen.
|
|
*/
|
|
DirExpandInt(word, path, expansions);
|
|
}
|
|
} else {
|
|
/*
|
|
* First the files in dot
|
|
*/
|
|
DirMatchFiles(word, dot, expansions);
|
|
|
|
/*
|
|
* Then the files in every other directory on the path.
|
|
*/
|
|
DirExpandInt(word, path, expansions);
|
|
}
|
|
}
|
|
if (DEBUG(DIR)) {
|
|
Lst_ForEach(expansions, DirPrintWord, NULL);
|
|
fprintf(debug_file, "\n");
|
|
}
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* DirLookup --
|
|
* Find if the file with the given name exists in the given path.
|
|
*
|
|
* Results:
|
|
* The path to the file or NULL. This path is guaranteed to be in a
|
|
* different part of memory than name and so may be safely free'd.
|
|
*
|
|
* Side Effects:
|
|
* None.
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static char *
|
|
DirLookup(Path *p, const char *name MAKE_ATTR_UNUSED, const char *cp,
|
|
Boolean hasSlash MAKE_ATTR_UNUSED)
|
|
{
|
|
char *file; /* the current filename to check */
|
|
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " %s ...\n", p->name);
|
|
}
|
|
|
|
if (Hash_FindEntry(&p->files, cp) == NULL)
|
|
return NULL;
|
|
|
|
file = str_concat(p->name, cp, STR_ADDSLASH);
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " returning %s\n", file);
|
|
}
|
|
p->hits += 1;
|
|
hits += 1;
|
|
return file;
|
|
}
|
|
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* DirLookupSubdir --
|
|
* Find if the file with the given name exists in the given path.
|
|
*
|
|
* Results:
|
|
* The path to the file or NULL. This path is guaranteed to be in a
|
|
* different part of memory than name and so may be safely free'd.
|
|
*
|
|
* Side Effects:
|
|
* If the file is found, it is added in the modification times hash
|
|
* table.
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static char *
|
|
DirLookupSubdir(Path *p, const char *name)
|
|
{
|
|
struct stat stb; /* Buffer for stat, if necessary */
|
|
char *file; /* the current filename to check */
|
|
|
|
if (p != dot) {
|
|
file = str_concat(p->name, name, STR_ADDSLASH);
|
|
} else {
|
|
/*
|
|
* Checking in dot -- DON'T put a leading ./ on the thing.
|
|
*/
|
|
file = bmake_strdup(name);
|
|
}
|
|
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, "checking %s ...\n", file);
|
|
}
|
|
|
|
if (cached_stat(file, &stb) == 0) {
|
|
nearmisses += 1;
|
|
return file;
|
|
}
|
|
free(file);
|
|
return NULL;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* DirLookupAbs --
|
|
* Find if the file with the given name exists in the given path.
|
|
*
|
|
* Results:
|
|
* The path to the file, the empty string or NULL. If the file is
|
|
* the empty string, the search should be terminated.
|
|
* This path is guaranteed to be in a different part of memory
|
|
* than name and so may be safely free'd.
|
|
*
|
|
* Side Effects:
|
|
* None.
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static char *
|
|
DirLookupAbs(Path *p, const char *name, const char *cp)
|
|
{
|
|
char *p1; /* pointer into p->name */
|
|
const char *p2; /* pointer into name */
|
|
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " %s ...\n", p->name);
|
|
}
|
|
|
|
/*
|
|
* If the file has a leading path component and that component
|
|
* exactly matches the entire name of the current search
|
|
* directory, we can attempt another cache lookup. And if we don't
|
|
* have a hit, we can safely assume the file does not exist at all.
|
|
*/
|
|
for (p1 = p->name, p2 = name; *p1 && *p1 == *p2; p1++, p2++) {
|
|
continue;
|
|
}
|
|
if (*p1 != '\0' || p2 != cp - 1) {
|
|
return NULL;
|
|
}
|
|
|
|
if (Hash_FindEntry(&p->files, cp) == NULL) {
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " must be here but isn't -- returning\n");
|
|
}
|
|
/* Return empty string: terminates search */
|
|
return bmake_strdup("");
|
|
}
|
|
|
|
p->hits += 1;
|
|
hits += 1;
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " returning %s\n", name);
|
|
}
|
|
return bmake_strdup(name);
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* DirFindDot --
|
|
* Find the file given on "." or curdir
|
|
*
|
|
* Results:
|
|
* The path to the file or NULL. This path is guaranteed to be in a
|
|
* different part of memory than name and so may be safely free'd.
|
|
*
|
|
* Side Effects:
|
|
* Hit counts change
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
static char *
|
|
DirFindDot(Boolean hasSlash MAKE_ATTR_UNUSED, const char *name, const char *cp)
|
|
{
|
|
|
|
if (Hash_FindEntry(&dot->files, cp) != NULL) {
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " in '.'\n");
|
|
}
|
|
hits += 1;
|
|
dot->hits += 1;
|
|
return bmake_strdup(name);
|
|
}
|
|
if (cur &&
|
|
Hash_FindEntry(&cur->files, cp) != NULL) {
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " in ${.CURDIR} = %s\n", cur->name);
|
|
}
|
|
hits += 1;
|
|
cur->hits += 1;
|
|
return str_concat(cur->name, cp, STR_ADDSLASH);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_FindFile --
|
|
* Find the file with the given name along the given search path.
|
|
*
|
|
* Input:
|
|
* name the file to find
|
|
* path the Lst of directories to search
|
|
*
|
|
* Results:
|
|
* The path to the file or NULL. This path is guaranteed to be in a
|
|
* different part of memory than name and so may be safely free'd.
|
|
*
|
|
* Side Effects:
|
|
* If the file is found in a directory which is not on the path
|
|
* already (either 'name' is absolute or it is a relative path
|
|
* [ dir1/.../dirn/file ] which exists below one of the directories
|
|
* already on the search path), its directory is added to the end
|
|
* of the path on the assumption that there will be more files in
|
|
* that directory later on. Sometimes this is true. Sometimes not.
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
char *
|
|
Dir_FindFile(const char *name, Lst path)
|
|
{
|
|
LstNode ln; /* a list element */
|
|
char *file; /* the current filename to check */
|
|
Path *p; /* current path member */
|
|
const char *cp; /* Terminal name of file */
|
|
Boolean hasLastDot = FALSE; /* true we should search dot last */
|
|
Boolean hasSlash; /* true if 'name' contains a / */
|
|
struct stat stb; /* Buffer for stat, if necessary */
|
|
const char *trailing_dot = ".";
|
|
|
|
/*
|
|
* Find the final component of the name and note whether it has a
|
|
* slash in it (the name, I mean)
|
|
*/
|
|
cp = strrchr(name, '/');
|
|
if (cp) {
|
|
hasSlash = TRUE;
|
|
cp += 1;
|
|
} else {
|
|
hasSlash = FALSE;
|
|
cp = name;
|
|
}
|
|
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, "Searching for %s ...", name);
|
|
}
|
|
|
|
if (Lst_Open(path) == FAILURE) {
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, "couldn't open path, file not found\n");
|
|
}
|
|
misses += 1;
|
|
return NULL;
|
|
}
|
|
|
|
if ((ln = Lst_First(path)) != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
if (p == dotLast) {
|
|
hasLastDot = TRUE;
|
|
if (DEBUG(DIR))
|
|
fprintf(debug_file, "[dot last]...");
|
|
}
|
|
}
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, "\n");
|
|
}
|
|
|
|
/*
|
|
* If there's no leading directory components or if the leading
|
|
* directory component is exactly `./', consult the cached contents
|
|
* of each of the directories on the search path.
|
|
*/
|
|
if (!hasSlash || (cp - name == 2 && *name == '.')) {
|
|
/*
|
|
* We look through all the directories on the path seeking one which
|
|
* contains the final component of the given name. If such a beast
|
|
* is found, we concatenate the directory name and the final
|
|
* component and return the resulting string. If we don't find any
|
|
* such thing, we go on to phase two...
|
|
*
|
|
* No matter what, we always look for the file in the current
|
|
* directory before anywhere else (unless we found the magic
|
|
* DOTLAST path, in which case we search it last) and we *do not*
|
|
* add the ./ to it if it exists.
|
|
* This is so there are no conflicts between what the user
|
|
* specifies (fish.c) and what pmake finds (./fish.c).
|
|
*/
|
|
if (!hasLastDot &&
|
|
(file = DirFindDot(hasSlash, name, cp)) != NULL) {
|
|
Lst_Close(path);
|
|
return file;
|
|
}
|
|
|
|
while ((ln = Lst_Next(path)) != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
if (p == dotLast)
|
|
continue;
|
|
if ((file = DirLookup(p, name, cp, hasSlash)) != NULL) {
|
|
Lst_Close(path);
|
|
return file;
|
|
}
|
|
}
|
|
|
|
if (hasLastDot &&
|
|
(file = DirFindDot(hasSlash, name, cp)) != NULL) {
|
|
Lst_Close(path);
|
|
return file;
|
|
}
|
|
}
|
|
Lst_Close(path);
|
|
|
|
/*
|
|
* We didn't find the file on any directory in the search path.
|
|
* If the name doesn't contain a slash, that means it doesn't exist.
|
|
* If it *does* contain a slash, however, there is still hope: it
|
|
* could be in a subdirectory of one of the members of the search
|
|
* path. (eg. /usr/include and sys/types.h. The above search would
|
|
* fail to turn up types.h in /usr/include, but it *is* in
|
|
* /usr/include/sys/types.h).
|
|
* [ This no longer applies: If we find such a beast, we assume there
|
|
* will be more (what else can we assume?) and add all but the last
|
|
* component of the resulting name onto the search path (at the
|
|
* end).]
|
|
* This phase is only performed if the file is *not* absolute.
|
|
*/
|
|
if (!hasSlash) {
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " failed.\n");
|
|
}
|
|
misses += 1;
|
|
return NULL;
|
|
}
|
|
|
|
if (*cp == '\0') {
|
|
/* we were given a trailing "/" */
|
|
cp = trailing_dot;
|
|
}
|
|
|
|
if (name[0] != '/') {
|
|
Boolean checkedDot = FALSE;
|
|
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " Trying subdirectories...\n");
|
|
}
|
|
|
|
if (!hasLastDot) {
|
|
if (dot) {
|
|
checkedDot = TRUE;
|
|
if ((file = DirLookupSubdir(dot, name)) != NULL)
|
|
return file;
|
|
}
|
|
if (cur && (file = DirLookupSubdir(cur, name)) != NULL)
|
|
return file;
|
|
}
|
|
|
|
(void)Lst_Open(path);
|
|
while ((ln = Lst_Next(path)) != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
if (p == dotLast)
|
|
continue;
|
|
if (p == dot) {
|
|
if (checkedDot)
|
|
continue;
|
|
checkedDot = TRUE;
|
|
}
|
|
if ((file = DirLookupSubdir(p, name)) != NULL) {
|
|
Lst_Close(path);
|
|
return file;
|
|
}
|
|
}
|
|
Lst_Close(path);
|
|
|
|
if (hasLastDot) {
|
|
if (dot && !checkedDot) {
|
|
checkedDot = TRUE;
|
|
if ((file = DirLookupSubdir(dot, name)) != NULL)
|
|
return file;
|
|
}
|
|
if (cur && (file = DirLookupSubdir(cur, name)) != NULL)
|
|
return file;
|
|
}
|
|
|
|
if (checkedDot) {
|
|
/*
|
|
* Already checked by the given name, since . was in the path,
|
|
* so no point in proceeding...
|
|
*/
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " Checked . already, returning NULL\n");
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
} else { /* name[0] == '/' */
|
|
|
|
/*
|
|
* For absolute names, compare directory path prefix against the
|
|
* the directory path of each member on the search path for an exact
|
|
* match. If we have an exact match on any member of the search path,
|
|
* use the cached contents of that member to lookup the final file
|
|
* component. If that lookup fails we can safely assume that the
|
|
* file does not exist at all. This is signified by DirLookupAbs()
|
|
* returning an empty string.
|
|
*/
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " Trying exact path matches...\n");
|
|
}
|
|
|
|
if (!hasLastDot && cur && ((file = DirLookupAbs(cur, name, cp))
|
|
!= NULL)) {
|
|
if (file[0] == '\0') {
|
|
free(file);
|
|
return NULL;
|
|
}
|
|
return file;
|
|
}
|
|
|
|
(void)Lst_Open(path);
|
|
while ((ln = Lst_Next(path)) != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
if (p == dotLast)
|
|
continue;
|
|
if ((file = DirLookupAbs(p, name, cp)) != NULL) {
|
|
Lst_Close(path);
|
|
if (file[0] == '\0') {
|
|
free(file);
|
|
return NULL;
|
|
}
|
|
return file;
|
|
}
|
|
}
|
|
Lst_Close(path);
|
|
|
|
if (hasLastDot && cur && ((file = DirLookupAbs(cur, name, cp))
|
|
!= NULL)) {
|
|
if (file[0] == '\0') {
|
|
free(file);
|
|
return NULL;
|
|
}
|
|
return file;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Didn't find it that way, either. Sigh. Phase 3. Add its directory
|
|
* onto the search path in any case, just in case, then look for the
|
|
* thing in the hash table. If we find it, grand. We return a new
|
|
* copy of the name. Otherwise we sadly return a NULL pointer. Sigh.
|
|
* Note that if the directory holding the file doesn't exist, this will
|
|
* do an extra search of the final directory on the path. Unless something
|
|
* weird happens, this search won't succeed and life will be groovy.
|
|
*
|
|
* Sigh. We cannot add the directory onto the search path because
|
|
* of this amusing case:
|
|
* $(INSTALLDIR)/$(FILE): $(FILE)
|
|
*
|
|
* $(FILE) exists in $(INSTALLDIR) but not in the current one.
|
|
* When searching for $(FILE), we will find it in $(INSTALLDIR)
|
|
* b/c we added it here. This is not good...
|
|
*/
|
|
#ifdef notdef
|
|
if (cp == traling_dot) {
|
|
cp = strrchr(name, '/');
|
|
cp += 1;
|
|
}
|
|
cp[-1] = '\0';
|
|
(void)Dir_AddDir(path, name);
|
|
cp[-1] = '/';
|
|
|
|
bigmisses += 1;
|
|
ln = Lst_Last(path);
|
|
if (ln == NULL) {
|
|
return NULL;
|
|
} else {
|
|
p = (Path *)Lst_Datum(ln);
|
|
}
|
|
|
|
if (Hash_FindEntry(&p->files, cp) != NULL) {
|
|
return bmake_strdup(name);
|
|
} else {
|
|
return NULL;
|
|
}
|
|
#else /* !notdef */
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " Looking for \"%s\" ...\n", name);
|
|
}
|
|
|
|
bigmisses += 1;
|
|
if (cached_stat(name, &stb) == 0) {
|
|
return bmake_strdup(name);
|
|
}
|
|
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, " failed. Returning NULL\n");
|
|
}
|
|
return NULL;
|
|
#endif /* notdef */
|
|
}
|
|
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_FindHereOrAbove --
|
|
* search for a path starting at a given directory and then working
|
|
* our way up towards the root.
|
|
*
|
|
* Input:
|
|
* here starting directory
|
|
* search_path the path we are looking for
|
|
* result the result of a successful search is placed here
|
|
* rlen the length of the result buffer
|
|
* (typically MAXPATHLEN + 1)
|
|
*
|
|
* Results:
|
|
* 0 on failure, 1 on success [in which case the found path is put
|
|
* in the result buffer].
|
|
*
|
|
* Side Effects:
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
int
|
|
Dir_FindHereOrAbove(char *here, char *search_path, char *result, int rlen) {
|
|
|
|
struct stat st;
|
|
char dirbase[MAXPATHLEN + 1], *db_end;
|
|
char try[MAXPATHLEN + 1], *try_end;
|
|
|
|
/* copy out our starting point */
|
|
snprintf(dirbase, sizeof(dirbase), "%s", here);
|
|
db_end = dirbase + strlen(dirbase);
|
|
|
|
/* loop until we determine a result */
|
|
while (1) {
|
|
|
|
/* try and stat(2) it ... */
|
|
snprintf(try, sizeof(try), "%s/%s", dirbase, search_path);
|
|
if (cached_stat(try, &st) != -1) {
|
|
/*
|
|
* success! if we found a file, chop off
|
|
* the filename so we return a directory.
|
|
*/
|
|
if ((st.st_mode & S_IFMT) != S_IFDIR) {
|
|
try_end = try + strlen(try);
|
|
while (try_end > try && *try_end != '/')
|
|
try_end--;
|
|
if (try_end > try)
|
|
*try_end = 0; /* chop! */
|
|
}
|
|
|
|
/*
|
|
* done!
|
|
*/
|
|
snprintf(result, rlen, "%s", try);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* nope, we didn't find it. if we used up dirbase we've
|
|
* reached the root and failed.
|
|
*/
|
|
if (db_end == dirbase)
|
|
break; /* failed! */
|
|
|
|
/*
|
|
* truncate dirbase from the end to move up a dir
|
|
*/
|
|
while (db_end > dirbase && *db_end != '/')
|
|
db_end--;
|
|
*db_end = 0; /* chop! */
|
|
|
|
} /* while (1) */
|
|
|
|
/*
|
|
* we failed...
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_MTime --
|
|
* Find the modification time of the file described by gn along the
|
|
* search path dirSearchPath.
|
|
*
|
|
* Input:
|
|
* gn the file whose modification time is desired
|
|
*
|
|
* Results:
|
|
* The modification time or 0 if it doesn't exist
|
|
*
|
|
* Side Effects:
|
|
* The modification time is placed in the node's mtime slot.
|
|
* If the node didn't have a path entry before, and Dir_FindFile
|
|
* found one for it, the full name is placed in the path slot.
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
int
|
|
Dir_MTime(GNode *gn, Boolean recheck)
|
|
{
|
|
char *fullName; /* the full pathname of name */
|
|
struct stat stb; /* buffer for finding the mod time */
|
|
|
|
if (gn->type & OP_ARCHV) {
|
|
return Arch_MTime(gn);
|
|
} else if (gn->type & OP_PHONY) {
|
|
gn->mtime = 0;
|
|
return 0;
|
|
} else if (gn->path == NULL) {
|
|
if (gn->type & OP_NOPATH)
|
|
fullName = NULL;
|
|
else {
|
|
fullName = Dir_FindFile(gn->name, Suff_FindPath(gn));
|
|
if (fullName == NULL && gn->flags & FROM_DEPEND &&
|
|
!Lst_IsEmpty(gn->iParents)) {
|
|
char *cp;
|
|
|
|
cp = strrchr(gn->name, '/');
|
|
if (cp) {
|
|
/*
|
|
* This is an implied source, and it may have moved,
|
|
* see if we can find it via the current .PATH
|
|
*/
|
|
cp++;
|
|
|
|
fullName = Dir_FindFile(cp, Suff_FindPath(gn));
|
|
if (fullName) {
|
|
/*
|
|
* Put the found file in gn->path
|
|
* so that we give that to the compiler.
|
|
*/
|
|
gn->path = bmake_strdup(fullName);
|
|
if (!Job_RunTarget(".STALE", gn->fname))
|
|
fprintf(stdout,
|
|
"%s: %s, %d: ignoring stale %s for %s, "
|
|
"found %s\n", progname, gn->fname, gn->lineno,
|
|
makeDependfile, gn->name, fullName);
|
|
}
|
|
}
|
|
}
|
|
if (DEBUG(DIR))
|
|
fprintf(debug_file, "Found '%s' as '%s'\n",
|
|
gn->name, fullName ? fullName : "(not found)" );
|
|
}
|
|
} else {
|
|
fullName = gn->path;
|
|
}
|
|
|
|
if (fullName == NULL) {
|
|
fullName = bmake_strdup(gn->name);
|
|
}
|
|
|
|
if (cached_stats(&mtimes, fullName, &stb, recheck ? CST_UPDATE : 0) < 0) {
|
|
if (gn->type & OP_MEMBER) {
|
|
if (fullName != gn->path)
|
|
free(fullName);
|
|
return Arch_MemMTime(gn);
|
|
} else {
|
|
stb.st_mtime = 0;
|
|
}
|
|
}
|
|
|
|
if (fullName && gn->path == NULL) {
|
|
gn->path = fullName;
|
|
}
|
|
|
|
gn->mtime = stb.st_mtime;
|
|
return gn->mtime;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_AddDir --
|
|
* Add the given name to the end of the given path. The order of
|
|
* the arguments is backwards so ParseDoDependency can do a
|
|
* Lst_ForEach of its list of paths...
|
|
*
|
|
* Input:
|
|
* path the path to which the directory should be
|
|
* added
|
|
* name the name of the directory to add
|
|
*
|
|
* Results:
|
|
* none
|
|
*
|
|
* Side Effects:
|
|
* A structure is added to the list and the directory is
|
|
* read and hashed.
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
Path *
|
|
Dir_AddDir(Lst path, const char *name)
|
|
{
|
|
LstNode ln = NULL; /* node in case Path structure is found */
|
|
Path *p = NULL; /* pointer to new Path structure */
|
|
DIR *d; /* for reading directory */
|
|
struct dirent *dp; /* entry in directory */
|
|
|
|
if (strcmp(name, ".DOTLAST") == 0) {
|
|
ln = Lst_Find(path, name, DirFindName);
|
|
if (ln != NULL)
|
|
return (Path *)Lst_Datum(ln);
|
|
else {
|
|
dotLast->refCount += 1;
|
|
(void)Lst_AtFront(path, dotLast);
|
|
}
|
|
}
|
|
|
|
if (path)
|
|
ln = Lst_Find(openDirectories, name, DirFindName);
|
|
if (ln != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
if (path && Lst_Member(path, p) == NULL) {
|
|
p->refCount += 1;
|
|
(void)Lst_AtEnd(path, p);
|
|
}
|
|
} else {
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, "Caching %s ...", name);
|
|
}
|
|
|
|
if ((d = opendir(name)) != NULL) {
|
|
p = bmake_malloc(sizeof(Path));
|
|
p->name = bmake_strdup(name);
|
|
p->hits = 0;
|
|
p->refCount = 1;
|
|
Hash_InitTable(&p->files, -1);
|
|
|
|
while ((dp = readdir(d)) != NULL) {
|
|
#if defined(sun) && defined(d_ino) /* d_ino is a sunos4 #define for d_fileno */
|
|
/*
|
|
* The sun directory library doesn't check for a 0 inode
|
|
* (0-inode slots just take up space), so we have to do
|
|
* it ourselves.
|
|
*/
|
|
if (dp->d_fileno == 0) {
|
|
continue;
|
|
}
|
|
#endif /* sun && d_ino */
|
|
(void)Hash_CreateEntry(&p->files, dp->d_name, NULL);
|
|
}
|
|
(void)closedir(d);
|
|
(void)Lst_AtEnd(openDirectories, p);
|
|
if (path != NULL)
|
|
(void)Lst_AtEnd(path, p);
|
|
}
|
|
if (DEBUG(DIR)) {
|
|
fprintf(debug_file, "done\n");
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_CopyDir --
|
|
* Callback function for duplicating a search path via Lst_Duplicate.
|
|
* Ups the reference count for the directory.
|
|
*
|
|
* Results:
|
|
* Returns the Path it was given.
|
|
*
|
|
* Side Effects:
|
|
* The refCount of the path is incremented.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
void *
|
|
Dir_CopyDir(void *p)
|
|
{
|
|
((Path *)p)->refCount += 1;
|
|
|
|
return p;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_MakeFlags --
|
|
* Make a string by taking all the directories in the given search
|
|
* path and preceding them by the given flag. Used by the suffix
|
|
* module to create variables for compilers based on suffix search
|
|
* paths.
|
|
*
|
|
* Input:
|
|
* flag flag which should precede each directory
|
|
* path list of directories
|
|
*
|
|
* Results:
|
|
* The string mentioned above. Note that there is no space between
|
|
* the given flag and each directory. The empty string is returned if
|
|
* Things don't go well.
|
|
*
|
|
* Side Effects:
|
|
* None
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
char *
|
|
Dir_MakeFlags(const char *flag, Lst path)
|
|
{
|
|
char *str; /* the string which will be returned */
|
|
char *s1, *s2;/* the current directory preceded by 'flag' */
|
|
LstNode ln; /* the node of the current directory */
|
|
Path *p; /* the structure describing the current directory */
|
|
|
|
str = bmake_strdup("");
|
|
|
|
if (Lst_Open(path) == SUCCESS) {
|
|
while ((ln = Lst_Next(path)) != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
s2 = str_concat(flag, p->name, 0);
|
|
str = str_concat(s1 = str, s2, STR_ADDSPACE);
|
|
free(s1);
|
|
free(s2);
|
|
}
|
|
Lst_Close(path);
|
|
}
|
|
|
|
return str;
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_Destroy --
|
|
* Nuke a directory descriptor, if possible. Callback procedure
|
|
* for the suffixes module when destroying a search path.
|
|
*
|
|
* Input:
|
|
* pp The directory descriptor to nuke
|
|
*
|
|
* Results:
|
|
* None.
|
|
*
|
|
* Side Effects:
|
|
* If no other path references this directory (refCount == 0),
|
|
* the Path and all its data are freed.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
void
|
|
Dir_Destroy(void *pp)
|
|
{
|
|
Path *p = (Path *)pp;
|
|
p->refCount -= 1;
|
|
|
|
if (p->refCount == 0) {
|
|
LstNode ln;
|
|
|
|
ln = Lst_Member(openDirectories, p);
|
|
(void)Lst_Remove(openDirectories, ln);
|
|
|
|
Hash_DeleteTable(&p->files);
|
|
free(p->name);
|
|
free(p);
|
|
}
|
|
}
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_ClearPath --
|
|
* Clear out all elements of the given search path. This is different
|
|
* from destroying the list, notice.
|
|
*
|
|
* Input:
|
|
* path Path to clear
|
|
*
|
|
* Results:
|
|
* None.
|
|
*
|
|
* Side Effects:
|
|
* The path is set to the empty list.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
void
|
|
Dir_ClearPath(Lst path)
|
|
{
|
|
Path *p;
|
|
while (!Lst_IsEmpty(path)) {
|
|
p = (Path *)Lst_DeQueue(path);
|
|
Dir_Destroy(p);
|
|
}
|
|
}
|
|
|
|
|
|
/*-
|
|
*-----------------------------------------------------------------------
|
|
* Dir_Concat --
|
|
* Concatenate two paths, adding the second to the end of the first.
|
|
* Makes sure to avoid duplicates.
|
|
*
|
|
* Input:
|
|
* path1 Dest
|
|
* path2 Source
|
|
*
|
|
* Results:
|
|
* None
|
|
*
|
|
* Side Effects:
|
|
* Reference counts for added dirs are upped.
|
|
*
|
|
*-----------------------------------------------------------------------
|
|
*/
|
|
void
|
|
Dir_Concat(Lst path1, Lst path2)
|
|
{
|
|
LstNode ln;
|
|
Path *p;
|
|
|
|
for (ln = Lst_First(path2); ln != NULL; ln = Lst_Succ(ln)) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
if (Lst_Member(path1, p) == NULL) {
|
|
p->refCount += 1;
|
|
(void)Lst_AtEnd(path1, p);
|
|
}
|
|
}
|
|
}
|
|
|
|
/********** DEBUG INFO **********/
|
|
void
|
|
Dir_PrintDirectories(void)
|
|
{
|
|
LstNode ln;
|
|
Path *p;
|
|
|
|
fprintf(debug_file, "#*** Directory Cache:\n");
|
|
fprintf(debug_file, "# Stats: %d hits %d misses %d near misses %d losers (%d%%)\n",
|
|
hits, misses, nearmisses, bigmisses,
|
|
(hits+bigmisses+nearmisses ?
|
|
hits * 100 / (hits + bigmisses + nearmisses) : 0));
|
|
fprintf(debug_file, "# %-20s referenced\thits\n", "directory");
|
|
if (Lst_Open(openDirectories) == SUCCESS) {
|
|
while ((ln = Lst_Next(openDirectories)) != NULL) {
|
|
p = (Path *)Lst_Datum(ln);
|
|
fprintf(debug_file, "# %-20s %10d\t%4d\n", p->name, p->refCount, p->hits);
|
|
}
|
|
Lst_Close(openDirectories);
|
|
}
|
|
}
|
|
|
|
static int
|
|
DirPrintDir(void *p, void *dummy MAKE_ATTR_UNUSED)
|
|
{
|
|
fprintf(debug_file, "%s ", ((Path *)p)->name);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
Dir_PrintPath(Lst path)
|
|
{
|
|
Lst_ForEach(path, DirPrintDir, NULL);
|
|
}
|