2d3d4776cd
* Failall is now named just that. * Add TX ok and TX fail, for aggregate frame sub-frames. This will break athstats; a followup commit wil resolve this. Sponsored by: Hobnob, Inc.
3940 lines
108 KiB
C
3940 lines
108 KiB
C
/*-
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
#include <net80211/ieee80211_superg.h>
|
|
#endif
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <net80211/ieee80211_tdma.h>
|
|
#endif
|
|
#include <net80211/ieee80211_ht.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
|
|
#include <dev/ath/ath_hal/ah_diagcodes.h>
|
|
|
|
#include <dev/ath/if_ath_debug.h>
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_ath_misc.h>
|
|
#include <dev/ath/if_ath_tx.h>
|
|
#include <dev/ath/if_ath_tx_ht.h>
|
|
|
|
/*
|
|
* How many retries to perform in software
|
|
*/
|
|
#define SWMAX_RETRIES 10
|
|
|
|
static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
|
|
int tid);
|
|
static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
|
|
int tid);
|
|
static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
|
|
struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
|
|
static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
|
|
struct ieee80211_node *ni, struct mbuf *m0, int *tid);
|
|
|
|
/*
|
|
* Whether to use the 11n rate scenario functions or not
|
|
*/
|
|
static inline int
|
|
ath_tx_is_11n(struct ath_softc *sc)
|
|
{
|
|
return (sc->sc_ah->ah_magic == 0x20065416);
|
|
}
|
|
|
|
/*
|
|
* Obtain the current TID from the given frame.
|
|
*
|
|
* Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
|
|
* This has implications for which AC/priority the packet is placed
|
|
* in.
|
|
*/
|
|
static int
|
|
ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
|
|
{
|
|
const struct ieee80211_frame *wh;
|
|
int pri = M_WME_GETAC(m0);
|
|
|
|
wh = mtod(m0, const struct ieee80211_frame *);
|
|
if (! IEEE80211_QOS_HAS_SEQ(wh))
|
|
return IEEE80211_NONQOS_TID;
|
|
else
|
|
return WME_AC_TO_TID(pri);
|
|
}
|
|
|
|
/*
|
|
* Determine what the correct AC queue for the given frame
|
|
* should be.
|
|
*
|
|
* This code assumes that the TIDs map consistently to
|
|
* the underlying hardware (or software) ath_txq.
|
|
* Since the sender may try to set an AC which is
|
|
* arbitrary, non-QoS TIDs may end up being put on
|
|
* completely different ACs. There's no way to put a
|
|
* TID into multiple ath_txq's for scheduling, so
|
|
* for now we override the AC/TXQ selection and set
|
|
* non-QOS TID frames into the BE queue.
|
|
*
|
|
* This may be completely incorrect - specifically,
|
|
* some management frames may end up out of order
|
|
* compared to the QoS traffic they're controlling.
|
|
* I'll look into this later.
|
|
*/
|
|
static int
|
|
ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
|
|
{
|
|
const struct ieee80211_frame *wh;
|
|
int pri = M_WME_GETAC(m0);
|
|
wh = mtod(m0, const struct ieee80211_frame *);
|
|
if (IEEE80211_QOS_HAS_SEQ(wh))
|
|
return pri;
|
|
|
|
return WME_AC_BE;
|
|
}
|
|
|
|
void
|
|
ath_txfrag_cleanup(struct ath_softc *sc,
|
|
ath_bufhead *frags, struct ieee80211_node *ni)
|
|
{
|
|
struct ath_buf *bf, *next;
|
|
|
|
ATH_TXBUF_LOCK_ASSERT(sc);
|
|
|
|
TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
|
|
/* NB: bf assumed clean */
|
|
TAILQ_REMOVE(frags, bf, bf_list);
|
|
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
|
|
ieee80211_node_decref(ni);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup xmit of a fragmented frame. Allocate a buffer
|
|
* for each frag and bump the node reference count to
|
|
* reflect the held reference to be setup by ath_tx_start.
|
|
*/
|
|
int
|
|
ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
|
|
struct mbuf *m0, struct ieee80211_node *ni)
|
|
{
|
|
struct mbuf *m;
|
|
struct ath_buf *bf;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
|
|
bf = _ath_getbuf_locked(sc);
|
|
if (bf == NULL) { /* out of buffers, cleanup */
|
|
ath_txfrag_cleanup(sc, frags, ni);
|
|
break;
|
|
}
|
|
ieee80211_node_incref(ni);
|
|
TAILQ_INSERT_TAIL(frags, bf, bf_list);
|
|
}
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
|
|
return !TAILQ_EMPTY(frags);
|
|
}
|
|
|
|
/*
|
|
* Reclaim mbuf resources. For fragmented frames we
|
|
* need to claim each frag chained with m_nextpkt.
|
|
*/
|
|
void
|
|
ath_freetx(struct mbuf *m)
|
|
{
|
|
struct mbuf *next;
|
|
|
|
do {
|
|
next = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
m_freem(m);
|
|
} while ((m = next) != NULL);
|
|
}
|
|
|
|
static int
|
|
ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
/* XXX packet requires too many descriptors */
|
|
bf->bf_nseg = ATH_TXDESC+1;
|
|
} else if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
ath_freetx(m0);
|
|
return error;
|
|
}
|
|
/*
|
|
* Discard null packets and check for packets that
|
|
* require too many TX descriptors. We try to convert
|
|
* the latter to a cluster.
|
|
*/
|
|
if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
|
|
sc->sc_stats.ast_tx_linear++;
|
|
m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
|
|
if (m == NULL) {
|
|
ath_freetx(m0);
|
|
sc->sc_stats.ast_tx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
m0 = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
ath_freetx(m0);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg <= ATH_TXDESC,
|
|
("too many segments after defrag; nseg %u", bf->bf_nseg));
|
|
} else if (bf->bf_nseg == 0) { /* null packet, discard */
|
|
sc->sc_stats.ast_tx_nodata++;
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
|
|
__func__, m0, m0->m_pkthdr.len);
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
bf->bf_m = m0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Chain together segments+descriptors for a non-11n frame.
|
|
*/
|
|
static void
|
|
ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds, *ds0;
|
|
int i;
|
|
|
|
/*
|
|
* Fillin the remainder of the descriptor info.
|
|
*/
|
|
ds0 = ds = bf->bf_desc;
|
|
for (i = 0; i < bf->bf_nseg; i++, ds++) {
|
|
ds->ds_data = bf->bf_segs[i].ds_addr;
|
|
if (i == bf->bf_nseg - 1)
|
|
ds->ds_link = 0;
|
|
else
|
|
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
|
|
ath_hal_filltxdesc(ah, ds
|
|
, bf->bf_segs[i].ds_len /* segment length */
|
|
, i == 0 /* first segment */
|
|
, i == bf->bf_nseg - 1 /* last segment */
|
|
, ds0 /* first descriptor */
|
|
);
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: %d: %08x %08x %08x %08x %08x %08x\n",
|
|
__func__, i, ds->ds_link, ds->ds_data,
|
|
ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
|
|
bf->bf_lastds = ds;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in the descriptor list for a aggregate subframe.
|
|
*
|
|
* The subframe is returned with the ds_link field in the last subframe
|
|
* pointing to 0.
|
|
*/
|
|
static void
|
|
ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds, *ds0;
|
|
int i;
|
|
|
|
ds0 = ds = bf->bf_desc;
|
|
|
|
/*
|
|
* There's no need to call ath_hal_setupfirsttxdesc here;
|
|
* That's only going to occur for the first frame in an aggregate.
|
|
*/
|
|
for (i = 0; i < bf->bf_nseg; i++, ds++) {
|
|
ds->ds_data = bf->bf_segs[i].ds_addr;
|
|
if (i == bf->bf_nseg - 1)
|
|
ds->ds_link = 0;
|
|
else
|
|
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
|
|
|
|
/*
|
|
* This performs the setup for an aggregate frame.
|
|
* This includes enabling the aggregate flags if needed.
|
|
*/
|
|
ath_hal_chaintxdesc(ah, ds,
|
|
bf->bf_state.bfs_pktlen,
|
|
bf->bf_state.bfs_hdrlen,
|
|
HAL_PKT_TYPE_AMPDU, /* forces aggregate bits to be set */
|
|
bf->bf_state.bfs_keyix,
|
|
0, /* cipher, calculated from keyix */
|
|
bf->bf_state.bfs_ndelim,
|
|
bf->bf_segs[i].ds_len, /* segment length */
|
|
i == 0, /* first segment */
|
|
i == bf->bf_nseg - 1 /* last segment */
|
|
);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: %d: %08x %08x %08x %08x %08x %08x\n",
|
|
__func__, i, ds->ds_link, ds->ds_data,
|
|
ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
|
|
bf->bf_lastds = ds;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup segments+descriptors for an 11n aggregate.
|
|
* bf_first is the first buffer in the aggregate.
|
|
* The descriptor list must already been linked together using
|
|
* bf->bf_next.
|
|
*/
|
|
static void
|
|
ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
|
|
{
|
|
struct ath_buf *bf, *bf_prev = NULL;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
|
|
__func__, bf_first->bf_state.bfs_nframes,
|
|
bf_first->bf_state.bfs_al);
|
|
|
|
/*
|
|
* Setup all descriptors of all subframes.
|
|
*/
|
|
bf = bf_first;
|
|
while (bf != NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
|
|
__func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
|
|
SEQNO(bf->bf_state.bfs_seqno));
|
|
|
|
/* Sub-frame setup */
|
|
ath_tx_chaindesclist_subframe(sc, bf);
|
|
|
|
/*
|
|
* Link the last descriptor of the previous frame
|
|
* to the beginning descriptor of this frame.
|
|
*/
|
|
if (bf_prev != NULL)
|
|
bf_prev->bf_lastds->ds_link = bf->bf_daddr;
|
|
|
|
/* Save a copy so we can link the next descriptor in */
|
|
bf_prev = bf;
|
|
bf = bf->bf_next;
|
|
}
|
|
|
|
/*
|
|
* Setup first descriptor of first frame.
|
|
* chaintxdesc() overwrites the descriptor entries;
|
|
* setupfirsttxdesc() merges in things.
|
|
* Otherwise various fields aren't set correctly (eg flags).
|
|
*/
|
|
ath_hal_setupfirsttxdesc(sc->sc_ah,
|
|
bf_first->bf_desc,
|
|
bf_first->bf_state.bfs_al,
|
|
bf_first->bf_state.bfs_flags | HAL_TXDESC_INTREQ,
|
|
bf_first->bf_state.bfs_txpower,
|
|
bf_first->bf_state.bfs_txrate0,
|
|
bf_first->bf_state.bfs_try0,
|
|
bf_first->bf_state.bfs_txantenna,
|
|
bf_first->bf_state.bfs_ctsrate,
|
|
bf_first->bf_state.bfs_ctsduration);
|
|
|
|
/*
|
|
* Setup the last descriptor in the list.
|
|
* bf_prev points to the last; bf is NULL here.
|
|
*/
|
|
ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_desc, bf_first->bf_desc);
|
|
|
|
/*
|
|
* Set the first descriptor bf_lastds field to point to
|
|
* the last descriptor in the last subframe, that's where
|
|
* the status update will occur.
|
|
*/
|
|
bf_first->bf_lastds = bf_prev->bf_lastds;
|
|
|
|
/*
|
|
* And bf_last in the first descriptor points to the end of
|
|
* the aggregate list.
|
|
*/
|
|
bf_first->bf_last = bf_prev;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
|
|
}
|
|
|
|
static void
|
|
ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
|
|
("%s: busy status 0x%x", __func__, bf->bf_flags));
|
|
if (txq->axq_link != NULL) {
|
|
struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s);
|
|
struct ieee80211_frame *wh;
|
|
|
|
/* mark previous frame */
|
|
wh = mtod(last->bf_m, struct ieee80211_frame *);
|
|
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
|
|
bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* link descriptor */
|
|
*txq->axq_link = bf->bf_daddr;
|
|
}
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
txq->axq_link = &bf->bf_lastds->ds_link;
|
|
}
|
|
|
|
/*
|
|
* Hand-off packet to a hardware queue.
|
|
*/
|
|
static void
|
|
ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
/*
|
|
* Insert the frame on the outbound list and pass it on
|
|
* to the hardware. Multicast frames buffered for power
|
|
* save stations and transmit from the CAB queue are stored
|
|
* on a s/w only queue and loaded on to the CAB queue in
|
|
* the SWBA handler since frames only go out on DTIM and
|
|
* to avoid possible races.
|
|
*/
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
|
|
("%s: busy status 0x%x", __func__, bf->bf_flags));
|
|
KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
|
|
("ath_tx_handoff_hw called for mcast queue"));
|
|
|
|
#if 0
|
|
/*
|
|
* This causes a LOR. Find out where the PCU lock is being
|
|
* held whilst the TXQ lock is grabbed - that shouldn't
|
|
* be occuring.
|
|
*/
|
|
ATH_PCU_LOCK(sc);
|
|
if (sc->sc_inreset_cnt) {
|
|
ATH_PCU_UNLOCK(sc);
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: called with sc_in_reset != 0\n",
|
|
__func__);
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: queued: TXDP[%u] = %p (%p) depth %d\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc,
|
|
txq->axq_depth);
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
if (bf->bf_state.bfs_aggr)
|
|
txq->axq_aggr_depth++;
|
|
/*
|
|
* There's no need to update axq_link; the hardware
|
|
* is in reset and once the reset is complete, any
|
|
* non-empty queues will simply have DMA restarted.
|
|
*/
|
|
return;
|
|
}
|
|
ATH_PCU_UNLOCK(sc);
|
|
#endif
|
|
|
|
/* For now, so not to generate whitespace diffs */
|
|
if (1) {
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
int qbusy;
|
|
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
|
|
if (txq->axq_link == NULL) {
|
|
/*
|
|
* Be careful writing the address to TXDP. If
|
|
* the tx q is enabled then this write will be
|
|
* ignored. Normally this is not an issue but
|
|
* when tdma is in use and the q is beacon gated
|
|
* this race can occur. If the q is busy then
|
|
* defer the work to later--either when another
|
|
* packet comes along or when we prepare a beacon
|
|
* frame at SWBA.
|
|
*/
|
|
if (!qbusy) {
|
|
ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
|
|
txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: TXDP[%u] = %p (%p) depth %d\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc,
|
|
txq->axq_depth);
|
|
} else {
|
|
txq->axq_flags |= ATH_TXQ_PUTPENDING;
|
|
DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
|
|
"%s: Q%u busy, defer enable\n", __func__,
|
|
txq->axq_qnum);
|
|
}
|
|
} else {
|
|
*txq->axq_link = bf->bf_daddr;
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
|
|
txq->axq_qnum, txq->axq_link,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
|
|
if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
|
|
/*
|
|
* The q was busy when we previously tried
|
|
* to write the address of the first buffer
|
|
* in the chain. Since it's not busy now
|
|
* handle this chore. We are certain the
|
|
* buffer at the front is the right one since
|
|
* axq_link is NULL only when the buffer list
|
|
* is/was empty.
|
|
*/
|
|
ath_hal_puttxbuf(ah, txq->axq_qnum,
|
|
TAILQ_FIRST(&txq->axq_q)->bf_daddr);
|
|
txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
|
|
DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
|
|
"%s: Q%u restarted\n", __func__,
|
|
txq->axq_qnum);
|
|
}
|
|
}
|
|
#else
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
if (txq->axq_link == NULL) {
|
|
ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: TXDP[%u] = %p (%p) depth %d\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc,
|
|
txq->axq_depth);
|
|
} else {
|
|
*txq->axq_link = bf->bf_daddr;
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
|
|
txq->axq_qnum, txq->axq_link,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
|
|
}
|
|
#endif /* IEEE80211_SUPPORT_TDMA */
|
|
if (bf->bf_state.bfs_aggr)
|
|
txq->axq_aggr_depth++;
|
|
txq->axq_link = &bf->bf_lastds->ds_link;
|
|
ath_hal_txstart(ah, txq->axq_qnum);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restart TX DMA for the given TXQ.
|
|
*
|
|
* This must be called whether the queue is empty or not.
|
|
*/
|
|
void
|
|
ath_txq_restart_dma(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
/* This is always going to be cleared, empty or not */
|
|
txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
|
|
|
|
bf = TAILQ_FIRST(&txq->axq_q);
|
|
if (bf == NULL)
|
|
return;
|
|
|
|
ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
|
|
txq->axq_link = &bf->bf_lastds->ds_link;
|
|
ath_hal_txstart(ah, txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Hand off a packet to the hardware (or mcast queue.)
|
|
*
|
|
* The relevant hardware txq should be locked.
|
|
*/
|
|
static void
|
|
ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
|
|
{
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
if (txq->axq_qnum == ATH_TXQ_SWQ)
|
|
ath_tx_handoff_mcast(sc, txq, bf);
|
|
else
|
|
ath_tx_handoff_hw(sc, txq, bf);
|
|
}
|
|
|
|
static int
|
|
ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, int *keyix)
|
|
{
|
|
if (iswep) {
|
|
const struct ieee80211_cipher *cip;
|
|
struct ieee80211_key *k;
|
|
|
|
/*
|
|
* Construct the 802.11 header+trailer for an encrypted
|
|
* frame. The only reason this can fail is because of an
|
|
* unknown or unsupported cipher/key type.
|
|
*/
|
|
k = ieee80211_crypto_encap(ni, m0);
|
|
if (k == NULL) {
|
|
/*
|
|
* This can happen when the key is yanked after the
|
|
* frame was queued. Just discard the frame; the
|
|
* 802.11 layer counts failures and provides
|
|
* debugging/diagnostics.
|
|
*/
|
|
return 0;
|
|
}
|
|
/*
|
|
* Adjust the packet + header lengths for the crypto
|
|
* additions and calculate the h/w key index. When
|
|
* a s/w mic is done the frame will have had any mic
|
|
* added to it prior to entry so m0->m_pkthdr.len will
|
|
* account for it. Otherwise we need to add it to the
|
|
* packet length.
|
|
*/
|
|
cip = k->wk_cipher;
|
|
(*hdrlen) += cip->ic_header;
|
|
(*pktlen) += cip->ic_header + cip->ic_trailer;
|
|
/* NB: frags always have any TKIP MIC done in s/w */
|
|
if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
|
|
(*pktlen) += cip->ic_miclen;
|
|
(*keyix) = k->wk_keyix;
|
|
} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
|
|
/*
|
|
* Use station key cache slot, if assigned.
|
|
*/
|
|
(*keyix) = ni->ni_ucastkey.wk_keyix;
|
|
if ((*keyix) == IEEE80211_KEYIX_NONE)
|
|
(*keyix) = HAL_TXKEYIX_INVALID;
|
|
} else
|
|
(*keyix) = HAL_TXKEYIX_INVALID;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static uint8_t
|
|
ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
|
|
int cix, int shortPreamble)
|
|
{
|
|
uint8_t ctsrate;
|
|
|
|
/*
|
|
* CTS transmit rate is derived from the transmit rate
|
|
* by looking in the h/w rate table. We must also factor
|
|
* in whether or not a short preamble is to be used.
|
|
*/
|
|
/* NB: cix is set above where RTS/CTS is enabled */
|
|
KASSERT(cix != 0xff, ("cix not setup"));
|
|
ctsrate = rt->info[cix].rateCode;
|
|
|
|
/* XXX this should only matter for legacy rates */
|
|
if (shortPreamble)
|
|
ctsrate |= rt->info[cix].shortPreamble;
|
|
|
|
return ctsrate;
|
|
}
|
|
|
|
/*
|
|
* Calculate the RTS/CTS duration for legacy frames.
|
|
*/
|
|
static int
|
|
ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
|
|
int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
|
|
int flags)
|
|
{
|
|
int ctsduration = 0;
|
|
|
|
/* This mustn't be called for HT modes */
|
|
if (rt->info[cix].phy == IEEE80211_T_HT) {
|
|
printf("%s: HT rate where it shouldn't be (0x%x)\n",
|
|
__func__, rt->info[cix].rateCode);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Compute the transmit duration based on the frame
|
|
* size and the size of an ACK frame. We call into the
|
|
* HAL to do the computation since it depends on the
|
|
* characteristics of the actual PHY being used.
|
|
*
|
|
* NB: CTS is assumed the same size as an ACK so we can
|
|
* use the precalculated ACK durations.
|
|
*/
|
|
if (shortPreamble) {
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].spAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_TRUE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].spAckDuration;
|
|
} else {
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].lpAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_FALSE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].lpAckDuration;
|
|
}
|
|
|
|
return ctsduration;
|
|
}
|
|
|
|
/*
|
|
* Update the given ath_buf with updated rts/cts setup and duration
|
|
* values.
|
|
*
|
|
* To support rate lookups for each software retry, the rts/cts rate
|
|
* and cts duration must be re-calculated.
|
|
*
|
|
* This function assumes the RTS/CTS flags have been set as needed;
|
|
* mrr has been disabled; and the rate control lookup has been done.
|
|
*
|
|
* XXX TODO: MRR need only be disabled for the pre-11n NICs.
|
|
* XXX The 11n NICs support per-rate RTS/CTS configuration.
|
|
*/
|
|
static void
|
|
ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
uint16_t ctsduration = 0;
|
|
uint8_t ctsrate = 0;
|
|
uint8_t rix = bf->bf_state.bfs_rc[0].rix;
|
|
uint8_t cix = 0;
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
|
|
/*
|
|
* No RTS/CTS enabled? Don't bother.
|
|
*/
|
|
if ((bf->bf_state.bfs_flags &
|
|
(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
|
|
/* XXX is this really needed? */
|
|
bf->bf_state.bfs_ctsrate = 0;
|
|
bf->bf_state.bfs_ctsduration = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If protection is enabled, use the protection rix control
|
|
* rate. Otherwise use the rate0 control rate.
|
|
*/
|
|
if (bf->bf_state.bfs_doprot)
|
|
rix = sc->sc_protrix;
|
|
else
|
|
rix = bf->bf_state.bfs_rc[0].rix;
|
|
|
|
/*
|
|
* If the raw path has hard-coded ctsrate0 to something,
|
|
* use it.
|
|
*/
|
|
if (bf->bf_state.bfs_ctsrate0 != 0)
|
|
cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
|
|
else
|
|
/* Control rate from above */
|
|
cix = rt->info[rix].controlRate;
|
|
|
|
/* Calculate the rtscts rate for the given cix */
|
|
ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
|
|
bf->bf_state.bfs_shpream);
|
|
|
|
/* The 11n chipsets do ctsduration calculations for you */
|
|
if (! ath_tx_is_11n(sc))
|
|
ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
|
|
bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
|
|
rt, bf->bf_state.bfs_flags);
|
|
|
|
/* Squirrel away in ath_buf */
|
|
bf->bf_state.bfs_ctsrate = ctsrate;
|
|
bf->bf_state.bfs_ctsduration = ctsduration;
|
|
|
|
/*
|
|
* Must disable multi-rate retry when using RTS/CTS.
|
|
* XXX TODO: only for pre-11n NICs.
|
|
*/
|
|
bf->bf_state.bfs_ismrr = 0;
|
|
bf->bf_state.bfs_try0 =
|
|
bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
|
|
}
|
|
|
|
/*
|
|
* Setup the descriptor chain for a normal or fast-frame
|
|
* frame.
|
|
*/
|
|
static void
|
|
ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_desc *ds = bf->bf_desc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ath_hal_setuptxdesc(ah, ds
|
|
, bf->bf_state.bfs_pktlen /* packet length */
|
|
, bf->bf_state.bfs_hdrlen /* header length */
|
|
, bf->bf_state.bfs_atype /* Atheros packet type */
|
|
, bf->bf_state.bfs_txpower /* txpower */
|
|
, bf->bf_state.bfs_txrate0
|
|
, bf->bf_state.bfs_try0 /* series 0 rate/tries */
|
|
, bf->bf_state.bfs_keyix /* key cache index */
|
|
, bf->bf_state.bfs_txantenna /* antenna mode */
|
|
, bf->bf_state.bfs_flags /* flags */
|
|
, bf->bf_state.bfs_ctsrate /* rts/cts rate */
|
|
, bf->bf_state.bfs_ctsduration /* rts/cts duration */
|
|
);
|
|
|
|
/*
|
|
* This will be overriden when the descriptor chain is written.
|
|
*/
|
|
bf->bf_lastds = ds;
|
|
bf->bf_last = bf;
|
|
|
|
/* XXX TODO: Setup descriptor chain */
|
|
}
|
|
|
|
/*
|
|
* Do a rate lookup.
|
|
*
|
|
* This performs a rate lookup for the given ath_buf only if it's required.
|
|
* Non-data frames and raw frames don't require it.
|
|
*
|
|
* This populates the primary and MRR entries; MRR values are
|
|
* then disabled later on if something requires it (eg RTS/CTS on
|
|
* pre-11n chipsets.
|
|
*
|
|
* This needs to be done before the RTS/CTS fields are calculated
|
|
* as they may depend upon the rate chosen.
|
|
*/
|
|
static void
|
|
ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
uint8_t rate, rix;
|
|
int try0;
|
|
|
|
if (! bf->bf_state.bfs_doratelookup)
|
|
return;
|
|
|
|
/* Get rid of any previous state */
|
|
bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
|
|
|
|
ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
|
|
ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
|
|
bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
|
|
|
|
/* In case MRR is disabled, make sure rc[0] is setup correctly */
|
|
bf->bf_state.bfs_rc[0].rix = rix;
|
|
bf->bf_state.bfs_rc[0].ratecode = rate;
|
|
bf->bf_state.bfs_rc[0].tries = try0;
|
|
|
|
if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
|
|
ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
|
|
bf->bf_state.bfs_rc);
|
|
ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
|
|
|
|
sc->sc_txrix = rix; /* for LED blinking */
|
|
sc->sc_lastdatarix = rix; /* for fast frames */
|
|
bf->bf_state.bfs_try0 = try0;
|
|
bf->bf_state.bfs_txrate0 = rate;
|
|
}
|
|
|
|
/*
|
|
* Set the rate control fields in the given descriptor based on
|
|
* the bf_state fields and node state.
|
|
*
|
|
* The bfs fields should already be set with the relevant rate
|
|
* control information, including whether MRR is to be enabled.
|
|
*
|
|
* Since the FreeBSD HAL currently sets up the first TX rate
|
|
* in ath_hal_setuptxdesc(), this will setup the MRR
|
|
* conditionally for the pre-11n chips, and call ath_buf_set_rate
|
|
* unconditionally for 11n chips. These require the 11n rate
|
|
* scenario to be set if MCS rates are enabled, so it's easier
|
|
* to just always call it. The caller can then only set rates 2, 3
|
|
* and 4 if multi-rate retry is needed.
|
|
*/
|
|
static void
|
|
ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ath_rc_series *rc = bf->bf_state.bfs_rc;
|
|
|
|
/* If mrr is disabled, blank tries 1, 2, 3 */
|
|
if (! bf->bf_state.bfs_ismrr)
|
|
rc[1].tries = rc[2].tries = rc[3].tries = 0;
|
|
|
|
/*
|
|
* Always call - that way a retried descriptor will
|
|
* have the MRR fields overwritten.
|
|
*
|
|
* XXX TODO: see if this is really needed - setting up
|
|
* the first descriptor should set the MRR fields to 0
|
|
* for us anyway.
|
|
*/
|
|
if (ath_tx_is_11n(sc)) {
|
|
ath_buf_set_rate(sc, ni, bf);
|
|
} else {
|
|
ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
|
|
, rc[1].ratecode, rc[1].tries
|
|
, rc[2].ratecode, rc[2].tries
|
|
, rc[3].ratecode, rc[3].tries
|
|
);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transmit the given frame to the hardware.
|
|
*
|
|
* The frame must already be setup; rate control must already have
|
|
* been done.
|
|
*
|
|
* XXX since the TXQ lock is being held here (and I dislike holding
|
|
* it for this long when not doing software aggregation), later on
|
|
* break this function into "setup_normal" and "xmit_normal". The
|
|
* lock only needs to be held for the ath_tx_handoff call.
|
|
*/
|
|
static void
|
|
ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
/* Setup the descriptor before handoff */
|
|
ath_tx_do_ratelookup(sc, bf);
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_setds(sc, bf);
|
|
ath_tx_set_ratectrl(sc, bf->bf_node, bf);
|
|
ath_tx_chaindesclist(sc, bf);
|
|
|
|
/* Hand off to hardware */
|
|
ath_tx_handoff(sc, txq, bf);
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
|
|
int error, iswep, ismcast, isfrag, ismrr;
|
|
int keyix, hdrlen, pktlen, try0 = 0;
|
|
u_int8_t rix = 0, txrate = 0;
|
|
struct ath_desc *ds;
|
|
struct ath_txq *txq;
|
|
struct ieee80211_frame *wh;
|
|
u_int subtype, flags;
|
|
HAL_PKT_TYPE atype;
|
|
const HAL_RATE_TABLE *rt;
|
|
HAL_BOOL shortPreamble;
|
|
struct ath_node *an;
|
|
u_int pri;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
isfrag = m0->m_flags & M_FRAG;
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
/*
|
|
* Packet length must not include any
|
|
* pad bytes; deduct them here.
|
|
*/
|
|
pktlen = m0->m_pkthdr.len - (hdrlen & 3);
|
|
|
|
/* Handle encryption twiddling if needed */
|
|
if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
|
|
&pktlen, &keyix)) {
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
pktlen += IEEE80211_CRC_LEN;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = ath_tx_dmasetup(sc, bf, m0);
|
|
if (error != 0)
|
|
return error;
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
m0 = bf->bf_m; /* NB: may have changed */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
|
|
/*
|
|
* NB: the 802.11 layer marks whether or not we should
|
|
* use short preamble based on the current mode and
|
|
* negotiated parameters.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
|
|
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
|
|
shortPreamble = AH_TRUE;
|
|
sc->sc_stats.ast_tx_shortpre++;
|
|
} else {
|
|
shortPreamble = AH_FALSE;
|
|
}
|
|
|
|
an = ATH_NODE(ni);
|
|
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
|
|
ismrr = 0; /* default no multi-rate retry*/
|
|
pri = M_WME_GETAC(m0); /* honor classification */
|
|
/* XXX use txparams instead of fixed values */
|
|
/*
|
|
* Calculate Atheros packet type from IEEE80211 packet header,
|
|
* setup for rate calculations, and select h/w transmit queue.
|
|
*/
|
|
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
|
|
case IEEE80211_FC0_TYPE_MGT:
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
|
|
atype = HAL_PKT_TYPE_BEACON;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
atype = HAL_PKT_TYPE_PROBE_RESP;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
|
|
atype = HAL_PKT_TYPE_ATIM;
|
|
else
|
|
atype = HAL_PKT_TYPE_NORMAL; /* XXX */
|
|
rix = an->an_mgmtrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMGTTRY;
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_CTL:
|
|
atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
|
|
rix = an->an_mgmtrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMGTTRY;
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_DATA:
|
|
atype = HAL_PKT_TYPE_NORMAL; /* default */
|
|
/*
|
|
* Data frames: multicast frames go out at a fixed rate,
|
|
* EAPOL frames use the mgmt frame rate; otherwise consult
|
|
* the rate control module for the rate to use.
|
|
*/
|
|
if (ismcast) {
|
|
rix = an->an_mcastrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = 1;
|
|
} else if (m0->m_flags & M_EAPOL) {
|
|
/* XXX? maybe always use long preamble? */
|
|
rix = an->an_mgmtrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMAXTRY; /* XXX?too many? */
|
|
} else {
|
|
/*
|
|
* Do rate lookup on each TX, rather than using
|
|
* the hard-coded TX information decided here.
|
|
*/
|
|
ismrr = 1;
|
|
bf->bf_state.bfs_doratelookup = 1;
|
|
}
|
|
if (cap->cap_wmeParams[pri].wmep_noackPolicy)
|
|
flags |= HAL_TXDESC_NOACK;
|
|
break;
|
|
default:
|
|
if_printf(ifp, "bogus frame type 0x%x (%s)\n",
|
|
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
|
|
/* XXX statistic */
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
txq = sc->sc_ac2q[pri];
|
|
|
|
/*
|
|
* When servicing one or more stations in power-save mode
|
|
* (or) if there is some mcast data waiting on the mcast
|
|
* queue (to prevent out of order delivery) multicast
|
|
* frames must be buffered until after the beacon.
|
|
*/
|
|
if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
|
|
txq = &avp->av_mcastq;
|
|
|
|
/*
|
|
* Calculate miscellaneous flags.
|
|
*/
|
|
if (ismcast) {
|
|
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
|
|
} else if (pktlen > vap->iv_rtsthreshold &&
|
|
(ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
|
|
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
|
|
sc->sc_stats.ast_tx_rts++;
|
|
}
|
|
if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
|
|
sc->sc_stats.ast_tx_noack++;
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_TDMA,
|
|
"%s: discard frame, ACK required w/ TDMA\n", __func__);
|
|
sc->sc_stats.ast_tdma_ack++;
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If 802.11g protection is enabled, determine whether
|
|
* to use RTS/CTS or just CTS. Note that this is only
|
|
* done for OFDM unicast frames.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
|
|
rt->info[rix].phy == IEEE80211_T_OFDM &&
|
|
(flags & HAL_TXDESC_NOACK) == 0) {
|
|
bf->bf_state.bfs_doprot = 1;
|
|
/* XXX fragments must use CCK rates w/ protection */
|
|
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
|
|
flags |= HAL_TXDESC_RTSENA;
|
|
} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
|
|
flags |= HAL_TXDESC_CTSENA;
|
|
}
|
|
/*
|
|
* For frags it would be desirable to use the
|
|
* highest CCK rate for RTS/CTS. But stations
|
|
* farther away may detect it at a lower CCK rate
|
|
* so use the configured protection rate instead
|
|
* (for now).
|
|
*/
|
|
sc->sc_stats.ast_tx_protect++;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* If 11n protection is enabled and it's a HT frame,
|
|
* enable RTS.
|
|
*
|
|
* XXX ic_htprotmode or ic_curhtprotmode?
|
|
* XXX should it_htprotmode only matter if ic_curhtprotmode
|
|
* XXX indicates it's not a HT pure environment?
|
|
*/
|
|
if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
|
|
rt->info[rix].phy == IEEE80211_T_HT &&
|
|
(flags & HAL_TXDESC_NOACK) == 0) {
|
|
cix = rt->info[sc->sc_protrix].controlRate;
|
|
flags |= HAL_TXDESC_RTSENA;
|
|
sc->sc_stats.ast_tx_htprotect++;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Calculate duration. This logically belongs in the 802.11
|
|
* layer but it lacks sufficient information to calculate it.
|
|
*/
|
|
if ((flags & HAL_TXDESC_NOACK) == 0 &&
|
|
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
|
|
u_int16_t dur;
|
|
if (shortPreamble)
|
|
dur = rt->info[rix].spAckDuration;
|
|
else
|
|
dur = rt->info[rix].lpAckDuration;
|
|
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
|
|
dur += dur; /* additional SIFS+ACK */
|
|
KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
|
|
/*
|
|
* Include the size of next fragment so NAV is
|
|
* updated properly. The last fragment uses only
|
|
* the ACK duration
|
|
*/
|
|
dur += ath_hal_computetxtime(ah, rt,
|
|
m0->m_nextpkt->m_pkthdr.len,
|
|
rix, shortPreamble);
|
|
}
|
|
if (isfrag) {
|
|
/*
|
|
* Force hardware to use computed duration for next
|
|
* fragment by disabling multi-rate retry which updates
|
|
* duration based on the multi-rate duration table.
|
|
*/
|
|
ismrr = 0;
|
|
try0 = ATH_TXMGTTRY; /* XXX? */
|
|
}
|
|
*(u_int16_t *)wh->i_dur = htole16(dur);
|
|
}
|
|
|
|
/*
|
|
* Determine if a tx interrupt should be generated for
|
|
* this descriptor. We take a tx interrupt to reap
|
|
* descriptors when the h/w hits an EOL condition or
|
|
* when the descriptor is specifically marked to generate
|
|
* an interrupt. We periodically mark descriptors in this
|
|
* way to insure timely replenishing of the supply needed
|
|
* for sending frames. Defering interrupts reduces system
|
|
* load and potentially allows more concurrent work to be
|
|
* done but if done to aggressively can cause senders to
|
|
* backup.
|
|
*
|
|
* NB: use >= to deal with sc_txintrperiod changing
|
|
* dynamically through sysctl.
|
|
*/
|
|
if (flags & HAL_TXDESC_INTREQ) {
|
|
txq->axq_intrcnt = 0;
|
|
} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
|
|
flags |= HAL_TXDESC_INTREQ;
|
|
txq->axq_intrcnt = 0;
|
|
}
|
|
|
|
/* This point forward is actual TX bits */
|
|
|
|
/*
|
|
* At this point we are committed to sending the frame
|
|
* and we don't need to look at m_nextpkt; clear it in
|
|
* case this frame is part of frag chain.
|
|
*/
|
|
m0->m_nextpkt = NULL;
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
|
|
ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
|
|
sc->sc_hwmap[rix].ieeerate, -1);
|
|
|
|
if (ieee80211_radiotap_active_vap(vap)) {
|
|
u_int64_t tsf = ath_hal_gettsf64(ah);
|
|
|
|
sc->sc_tx_th.wt_tsf = htole64(tsf);
|
|
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
|
|
if (iswep)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
if (isfrag)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
|
|
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
|
|
sc->sc_tx_th.wt_txpower = ni->ni_txpower;
|
|
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
|
|
|
|
ieee80211_radiotap_tx(vap, m0);
|
|
}
|
|
|
|
/* Blank the legacy rate array */
|
|
bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
|
|
|
|
/*
|
|
* ath_buf_set_rate needs at least one rate/try to setup
|
|
* the rate scenario.
|
|
*/
|
|
bf->bf_state.bfs_rc[0].rix = rix;
|
|
bf->bf_state.bfs_rc[0].tries = try0;
|
|
bf->bf_state.bfs_rc[0].ratecode = txrate;
|
|
|
|
/* Store the decided rate index values away */
|
|
bf->bf_state.bfs_pktlen = pktlen;
|
|
bf->bf_state.bfs_hdrlen = hdrlen;
|
|
bf->bf_state.bfs_atype = atype;
|
|
bf->bf_state.bfs_txpower = ni->ni_txpower;
|
|
bf->bf_state.bfs_txrate0 = txrate;
|
|
bf->bf_state.bfs_try0 = try0;
|
|
bf->bf_state.bfs_keyix = keyix;
|
|
bf->bf_state.bfs_txantenna = sc->sc_txantenna;
|
|
bf->bf_state.bfs_flags = flags;
|
|
bf->bf_txflags = flags;
|
|
bf->bf_state.bfs_shpream = shortPreamble;
|
|
|
|
/* XXX this should be done in ath_tx_setrate() */
|
|
bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */
|
|
bf->bf_state.bfs_ctsrate = 0; /* calculated later */
|
|
bf->bf_state.bfs_ctsduration = 0;
|
|
bf->bf_state.bfs_ismrr = ismrr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Direct-dispatch the current frame to the hardware.
|
|
*
|
|
* This can be called by the net80211 code.
|
|
*
|
|
* XXX what about locking? Or, push the seqno assign into the
|
|
* XXX aggregate scheduler so its serialised?
|
|
*/
|
|
int
|
|
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
int r;
|
|
u_int pri;
|
|
int tid;
|
|
struct ath_txq *txq;
|
|
int ismcast;
|
|
const struct ieee80211_frame *wh;
|
|
int is_ampdu, is_ampdu_tx, is_ampdu_pending;
|
|
ieee80211_seq seqno;
|
|
uint8_t type, subtype;
|
|
|
|
/*
|
|
* Determine the target hardware queue.
|
|
*
|
|
* For multicast frames, the txq gets overridden to be the
|
|
* software TXQ and it's done via direct-dispatch.
|
|
*
|
|
* For any other frame, we do a TID/QoS lookup inside the frame
|
|
* to see what the TID should be. If it's a non-QoS frame, the
|
|
* AC and TID are overridden. The TID/TXQ code assumes the
|
|
* TID is on a predictable hardware TXQ, so we don't support
|
|
* having a node TID queued to multiple hardware TXQs.
|
|
* This may change in the future but would require some locking
|
|
* fudgery.
|
|
*/
|
|
pri = ath_tx_getac(sc, m0);
|
|
tid = ath_tx_gettid(sc, m0);
|
|
|
|
txq = sc->sc_ac2q[pri];
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
/* A-MPDU TX */
|
|
is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
|
|
is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
|
|
is_ampdu = is_ampdu_tx | is_ampdu_pending;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
|
|
__func__, tid, pri, is_ampdu);
|
|
|
|
/* Multicast frames go onto the software multicast queue */
|
|
if (ismcast)
|
|
txq = &avp->av_mcastq;
|
|
|
|
if ((! is_ampdu) && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
|
|
txq = &avp->av_mcastq;
|
|
|
|
/* Do the generic frame setup */
|
|
/* XXX should just bzero the bf_state? */
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
|
|
/* A-MPDU TX? Manually set sequence number */
|
|
/* Don't do it whilst pending; the net80211 layer still assigns them */
|
|
/* XXX do we need locking here? */
|
|
if (is_ampdu_tx) {
|
|
ATH_TXQ_LOCK(txq);
|
|
/*
|
|
* Always call; this function will
|
|
* handle making sure that null data frames
|
|
* don't get a sequence number from the current
|
|
* TID and thus mess with the BAW.
|
|
*/
|
|
seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
|
|
if (IEEE80211_QOS_HAS_SEQ(wh) &&
|
|
subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) {
|
|
bf->bf_state.bfs_dobaw = 1;
|
|
}
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/*
|
|
* If needed, the sequence number has been assigned.
|
|
* Squirrel it away somewhere easy to get to.
|
|
*/
|
|
bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
|
|
|
|
/* Is ampdu pending? fetch the seqno and print it out */
|
|
if (is_ampdu_pending)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: tid %d: ampdu pending, seqno %d\n",
|
|
__func__, tid, M_SEQNO_GET(m0));
|
|
|
|
/* This also sets up the DMA map */
|
|
r = ath_tx_normal_setup(sc, ni, bf, m0);
|
|
|
|
if (r != 0)
|
|
return r;
|
|
|
|
/* At this point m0 could have changed! */
|
|
m0 = bf->bf_m;
|
|
|
|
#if 1
|
|
/*
|
|
* If it's a multicast frame, do a direct-dispatch to the
|
|
* destination hardware queue. Don't bother software
|
|
* queuing it.
|
|
*/
|
|
/*
|
|
* If it's a BAR frame, do a direct dispatch to the
|
|
* destination hardware queue. Don't bother software
|
|
* queuing it, as the TID will now be paused.
|
|
* Sending a BAR frame can occur from the net80211 txa timer
|
|
* (ie, retries) or from the ath txtask (completion call.)
|
|
* It queues directly to hardware because the TID is paused
|
|
* at this point (and won't be unpaused until the BAR has
|
|
* either been TXed successfully or max retries has been
|
|
* reached.)
|
|
*/
|
|
if (txq == &avp->av_mcastq) {
|
|
ATH_TXQ_LOCK(txq);
|
|
ath_tx_xmit_normal(sc, txq, bf);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
} else if (type == IEEE80211_FC0_TYPE_CTL &&
|
|
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: BAR: TX'ing direct\n", __func__);
|
|
ATH_TXQ_LOCK(txq);
|
|
ath_tx_xmit_normal(sc, txq, bf);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
} else {
|
|
/* add to software queue */
|
|
ath_tx_swq(sc, ni, txq, bf);
|
|
}
|
|
#else
|
|
/*
|
|
* For now, since there's no software queue,
|
|
* direct-dispatch to the hardware.
|
|
*/
|
|
ATH_TXQ_LOCK(txq);
|
|
ath_tx_xmit_normal(sc, txq, bf);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0,
|
|
const struct ieee80211_bpf_params *params)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
int error, ismcast, ismrr;
|
|
int keyix, hdrlen, pktlen, try0, txantenna;
|
|
u_int8_t rix, txrate;
|
|
struct ieee80211_frame *wh;
|
|
u_int flags;
|
|
HAL_PKT_TYPE atype;
|
|
const HAL_RATE_TABLE *rt;
|
|
struct ath_desc *ds;
|
|
u_int pri;
|
|
int o_tid = -1;
|
|
int do_override;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
/*
|
|
* Packet length must not include any
|
|
* pad bytes; deduct them here.
|
|
*/
|
|
/* XXX honor IEEE80211_BPF_DATAPAD */
|
|
pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
|
|
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
|
|
__func__, ismcast);
|
|
|
|
/* Handle encryption twiddling if needed */
|
|
if (! ath_tx_tag_crypto(sc, ni,
|
|
m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
|
|
&hdrlen, &pktlen, &keyix)) {
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
/* Do the generic frame setup */
|
|
/* XXX should just bzero the bf_state? */
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
|
|
error = ath_tx_dmasetup(sc, bf, m0);
|
|
if (error != 0)
|
|
return error;
|
|
m0 = bf->bf_m; /* NB: may have changed */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
|
|
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
if (params->ibp_flags & IEEE80211_BPF_RTS)
|
|
flags |= HAL_TXDESC_RTSENA;
|
|
else if (params->ibp_flags & IEEE80211_BPF_CTS) {
|
|
/* XXX assume 11g/11n protection? */
|
|
bf->bf_state.bfs_doprot = 1;
|
|
flags |= HAL_TXDESC_CTSENA;
|
|
}
|
|
/* XXX leave ismcast to injector? */
|
|
if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
|
|
flags |= HAL_TXDESC_NOACK;
|
|
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
rix = ath_tx_findrix(sc, params->ibp_rate0);
|
|
txrate = rt->info[rix].rateCode;
|
|
if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
sc->sc_txrix = rix;
|
|
try0 = params->ibp_try0;
|
|
ismrr = (params->ibp_try1 != 0);
|
|
txantenna = params->ibp_pri >> 2;
|
|
if (txantenna == 0) /* XXX? */
|
|
txantenna = sc->sc_txantenna;
|
|
|
|
/*
|
|
* Since ctsrate is fixed, store it away for later
|
|
* use when the descriptor fields are being set.
|
|
*/
|
|
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
|
|
bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
|
|
|
|
pri = params->ibp_pri & 3;
|
|
/* Override pri if the frame isn't a QoS one */
|
|
if (! IEEE80211_QOS_HAS_SEQ(wh))
|
|
pri = ath_tx_getac(sc, m0);
|
|
|
|
/*
|
|
* NB: we mark all packets as type PSPOLL so the h/w won't
|
|
* set the sequence number, duration, etc.
|
|
*/
|
|
atype = HAL_PKT_TYPE_PSPOLL;
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
|
|
ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
|
|
sc->sc_hwmap[rix].ieeerate, -1);
|
|
|
|
if (ieee80211_radiotap_active_vap(vap)) {
|
|
u_int64_t tsf = ath_hal_gettsf64(ah);
|
|
|
|
sc->sc_tx_th.wt_tsf = htole64(tsf);
|
|
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
|
|
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
if (m0->m_flags & M_FRAG)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
|
|
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
|
|
sc->sc_tx_th.wt_txpower = ni->ni_txpower;
|
|
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
|
|
|
|
ieee80211_radiotap_tx(vap, m0);
|
|
}
|
|
|
|
/*
|
|
* Formulate first tx descriptor with tx controls.
|
|
*/
|
|
ds = bf->bf_desc;
|
|
/* XXX check return value? */
|
|
|
|
/* Store the decided rate index values away */
|
|
bf->bf_state.bfs_pktlen = pktlen;
|
|
bf->bf_state.bfs_hdrlen = hdrlen;
|
|
bf->bf_state.bfs_atype = atype;
|
|
bf->bf_state.bfs_txpower = params->ibp_power;
|
|
bf->bf_state.bfs_txrate0 = txrate;
|
|
bf->bf_state.bfs_try0 = try0;
|
|
bf->bf_state.bfs_keyix = keyix;
|
|
bf->bf_state.bfs_txantenna = txantenna;
|
|
bf->bf_state.bfs_flags = flags;
|
|
bf->bf_txflags = flags;
|
|
bf->bf_state.bfs_shpream =
|
|
!! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
|
|
|
|
/* XXX this should be done in ath_tx_setrate() */
|
|
bf->bf_state.bfs_ctsrate = 0;
|
|
bf->bf_state.bfs_ctsduration = 0;
|
|
bf->bf_state.bfs_ismrr = ismrr;
|
|
|
|
/* Blank the legacy rate array */
|
|
bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
|
|
|
|
bf->bf_state.bfs_rc[0].rix =
|
|
ath_tx_findrix(sc, params->ibp_rate0);
|
|
bf->bf_state.bfs_rc[0].tries = try0;
|
|
bf->bf_state.bfs_rc[0].ratecode = txrate;
|
|
|
|
if (ismrr) {
|
|
int rix;
|
|
|
|
rix = ath_tx_findrix(sc, params->ibp_rate1);
|
|
bf->bf_state.bfs_rc[1].rix = rix;
|
|
bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
|
|
|
|
rix = ath_tx_findrix(sc, params->ibp_rate2);
|
|
bf->bf_state.bfs_rc[2].rix = rix;
|
|
bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
|
|
|
|
rix = ath_tx_findrix(sc, params->ibp_rate3);
|
|
bf->bf_state.bfs_rc[3].rix = rix;
|
|
bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
|
|
}
|
|
/*
|
|
* All the required rate control decisions have been made;
|
|
* fill in the rc flags.
|
|
*/
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
|
|
/* NB: no buffered multicast in power save support */
|
|
|
|
/* XXX If it's an ADDBA, override the correct queue */
|
|
do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
|
|
|
|
/* Map ADDBA to the correct priority */
|
|
if (do_override) {
|
|
#if 0
|
|
device_printf(sc->sc_dev,
|
|
"%s: overriding tid %d pri %d -> %d\n",
|
|
__func__, o_tid, pri, TID_TO_WME_AC(o_tid));
|
|
#endif
|
|
pri = TID_TO_WME_AC(o_tid);
|
|
}
|
|
|
|
/*
|
|
* If we're overiding the ADDBA destination, dump directly
|
|
* into the hardware queue, right after any pending
|
|
* frames to that node are.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
|
|
__func__, do_override);
|
|
|
|
if (do_override) {
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[pri]);
|
|
ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]);
|
|
} else {
|
|
/* Queue to software queue */
|
|
ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send a raw frame.
|
|
*
|
|
* This can be called by net80211.
|
|
*/
|
|
int
|
|
ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
|
|
const struct ieee80211_bpf_params *params)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_buf *bf;
|
|
int error;
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
if (sc->sc_inreset_cnt > 0) {
|
|
device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n",
|
|
__func__);
|
|
error = EIO;
|
|
ATH_PCU_UNLOCK(sc);
|
|
goto bad0;
|
|
}
|
|
sc->sc_txstart_cnt++;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
|
|
"!running" : "invalid");
|
|
m_freem(m);
|
|
error = ENETDOWN;
|
|
goto bad;
|
|
}
|
|
/*
|
|
* Grab a TX buffer and associated resources.
|
|
*/
|
|
bf = ath_getbuf(sc);
|
|
if (bf == NULL) {
|
|
sc->sc_stats.ast_tx_nobuf++;
|
|
m_freem(m);
|
|
error = ENOBUFS;
|
|
goto bad;
|
|
}
|
|
|
|
if (params == NULL) {
|
|
/*
|
|
* Legacy path; interpret frame contents to decide
|
|
* precisely how to send the frame.
|
|
*/
|
|
if (ath_tx_start(sc, ni, bf, m)) {
|
|
error = EIO; /* XXX */
|
|
goto bad2;
|
|
}
|
|
} else {
|
|
/*
|
|
* Caller supplied explicit parameters to use in
|
|
* sending the frame.
|
|
*/
|
|
if (ath_tx_raw_start(sc, ni, bf, m, params)) {
|
|
error = EIO; /* XXX */
|
|
goto bad2;
|
|
}
|
|
}
|
|
sc->sc_wd_timer = 5;
|
|
ifp->if_opackets++;
|
|
sc->sc_stats.ast_tx_raw++;
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txstart_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
return 0;
|
|
bad2:
|
|
ATH_TXBUF_LOCK(sc);
|
|
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
bad:
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txstart_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
bad0:
|
|
ifp->if_oerrors++;
|
|
sc->sc_stats.ast_tx_raw_fail++;
|
|
ieee80211_free_node(ni);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Some helper functions */
|
|
|
|
/*
|
|
* ADDBA (and potentially others) need to be placed in the same
|
|
* hardware queue as the TID/node it's relating to. This is so
|
|
* it goes out after any pending non-aggregate frames to the
|
|
* same node/TID.
|
|
*
|
|
* If this isn't done, the ADDBA can go out before the frames
|
|
* queued in hardware. Even though these frames have a sequence
|
|
* number -earlier- than the ADDBA can be transmitted (but
|
|
* no frames whose sequence numbers are after the ADDBA should
|
|
* be!) they'll arrive after the ADDBA - and the receiving end
|
|
* will simply drop them as being out of the BAW.
|
|
*
|
|
* The frames can't be appended to the TID software queue - it'll
|
|
* never be sent out. So these frames have to be directly
|
|
* dispatched to the hardware, rather than queued in software.
|
|
* So if this function returns true, the TXQ has to be
|
|
* overridden and it has to be directly dispatched.
|
|
*
|
|
* It's a dirty hack, but someone's gotta do it.
|
|
*/
|
|
|
|
/*
|
|
* XXX doesn't belong here!
|
|
*/
|
|
static int
|
|
ieee80211_is_action(struct ieee80211_frame *wh)
|
|
{
|
|
/* Type: Management frame? */
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
|
|
IEEE80211_FC0_TYPE_MGT)
|
|
return 0;
|
|
|
|
/* Subtype: Action frame? */
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
|
|
IEEE80211_FC0_SUBTYPE_ACTION)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#define MS(_v, _f) (((_v) & _f) >> _f##_S)
|
|
/*
|
|
* Return an alternate TID for ADDBA request frames.
|
|
*
|
|
* Yes, this likely should be done in the net80211 layer.
|
|
*/
|
|
static int
|
|
ath_tx_action_frame_override_queue(struct ath_softc *sc,
|
|
struct ieee80211_node *ni,
|
|
struct mbuf *m0, int *tid)
|
|
{
|
|
struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
|
|
struct ieee80211_action_ba_addbarequest *ia;
|
|
uint8_t *frm;
|
|
uint16_t baparamset;
|
|
|
|
/* Not action frame? Bail */
|
|
if (! ieee80211_is_action(wh))
|
|
return 0;
|
|
|
|
/* XXX Not needed for frames we send? */
|
|
#if 0
|
|
/* Correct length? */
|
|
if (! ieee80211_parse_action(ni, m))
|
|
return 0;
|
|
#endif
|
|
|
|
/* Extract out action frame */
|
|
frm = (u_int8_t *)&wh[1];
|
|
ia = (struct ieee80211_action_ba_addbarequest *) frm;
|
|
|
|
/* Not ADDBA? Bail */
|
|
if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
|
|
return 0;
|
|
if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
|
|
return 0;
|
|
|
|
/* Extract TID, return it */
|
|
baparamset = le16toh(ia->rq_baparamset);
|
|
*tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
|
|
|
|
return 1;
|
|
}
|
|
#undef MS
|
|
|
|
/* Per-node software queue operations */
|
|
|
|
/*
|
|
* Add the current packet to the given BAW.
|
|
* It is assumed that the current packet
|
|
*
|
|
* + fits inside the BAW;
|
|
* + already has had a sequence number allocated.
|
|
*
|
|
* Since the BAW status may be modified by both the ath task and
|
|
* the net80211/ifnet contexts, the TID must be locked.
|
|
*/
|
|
void
|
|
ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, struct ath_buf *bf)
|
|
{
|
|
int index, cindex;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
|
|
|
|
if (bf->bf_state.bfs_isretried)
|
|
return;
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
if (bf->bf_state.bfs_addedbaw)
|
|
device_printf(sc->sc_dev,
|
|
"%s: re-added? tid=%d, seqno %d; window %d:%d; baw head=%d tail=%d\n",
|
|
__func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
|
|
tap->txa_start, tap->txa_wnd, tid->baw_head, tid->baw_tail);
|
|
|
|
/*
|
|
* ni->ni_txseqs[] is the currently allocated seqno.
|
|
* the txa state contains the current baw start.
|
|
*/
|
|
index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d baw head=%d tail=%d\n",
|
|
__func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
|
|
tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, tid->baw_tail);
|
|
|
|
|
|
#if 0
|
|
assert(tid->tx_buf[cindex] == NULL);
|
|
#endif
|
|
if (tid->tx_buf[cindex] != NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: ba packet dup (index=%d, cindex=%d, "
|
|
"head=%d, tail=%d)\n",
|
|
__func__, index, cindex, tid->baw_head, tid->baw_tail);
|
|
device_printf(sc->sc_dev,
|
|
"%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
|
|
__func__,
|
|
tid->tx_buf[cindex],
|
|
SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
|
|
bf,
|
|
SEQNO(bf->bf_state.bfs_seqno)
|
|
);
|
|
}
|
|
tid->tx_buf[cindex] = bf;
|
|
|
|
if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) {
|
|
tid->baw_tail = cindex;
|
|
INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flip the BAW buffer entry over from the existing one to the new one.
|
|
*
|
|
* When software retransmitting a (sub-)frame, it is entirely possible that
|
|
* the frame ath_buf is marked as BUSY and can't be immediately reused.
|
|
* In that instance the buffer is cloned and the new buffer is used for
|
|
* retransmit. We thus need to update the ath_buf slot in the BAW buf
|
|
* tracking array to maintain consistency.
|
|
*/
|
|
static void
|
|
ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
|
|
{
|
|
int index, cindex;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
|
|
|
|
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
index = ATH_BA_INDEX(tap->txa_start, seqno);
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
|
|
/*
|
|
* Just warn for now; if it happens then we should find out
|
|
* about it. It's highly likely the aggregation session will
|
|
* soon hang.
|
|
*/
|
|
if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
|
|
device_printf(sc->sc_dev, "%s: retransmitted buffer"
|
|
" has mismatching seqno's, BA session may hang.\n",
|
|
__func__);
|
|
device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n",
|
|
__func__,
|
|
old_bf->bf_state.bfs_seqno,
|
|
new_bf->bf_state.bfs_seqno);
|
|
}
|
|
|
|
if (tid->tx_buf[cindex] != old_bf) {
|
|
device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; "
|
|
" has m BA session may hang.\n",
|
|
__func__);
|
|
device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n",
|
|
__func__,
|
|
old_bf, new_bf);
|
|
}
|
|
|
|
tid->tx_buf[cindex] = new_bf;
|
|
}
|
|
|
|
/*
|
|
* seq_start - left edge of BAW
|
|
* seq_next - current/next sequence number to allocate
|
|
*
|
|
* Since the BAW status may be modified by both the ath task and
|
|
* the net80211/ifnet contexts, the TID must be locked.
|
|
*/
|
|
static void
|
|
ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, const struct ath_buf *bf)
|
|
{
|
|
int index, cindex;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
int seqno = SEQNO(bf->bf_state.bfs_seqno);
|
|
|
|
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
index = ATH_BA_INDEX(tap->txa_start, seqno);
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, baw head=%d, tail=%d\n",
|
|
__func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
|
|
cindex, tid->baw_head, tid->baw_tail);
|
|
|
|
/*
|
|
* If this occurs then we have a big problem - something else
|
|
* has slid tap->txa_start along without updating the BAW
|
|
* tracking start/end pointers. Thus the TX BAW state is now
|
|
* completely busted.
|
|
*
|
|
* But for now, since I haven't yet fixed TDMA and buffer cloning,
|
|
* it's quite possible that a cloned buffer is making its way
|
|
* here and causing it to fire off. Disable TDMA for now.
|
|
*/
|
|
if (tid->tx_buf[cindex] != bf) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
|
|
__func__,
|
|
bf, SEQNO(bf->bf_state.bfs_seqno),
|
|
tid->tx_buf[cindex],
|
|
SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno));
|
|
}
|
|
|
|
tid->tx_buf[cindex] = NULL;
|
|
|
|
while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
|
|
INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
|
|
INCR(tid->baw_head, ATH_TID_MAX_BUFS);
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: baw is now %d:%d, baw head=%d\n",
|
|
__func__, tap->txa_start, tap->txa_wnd, tid->baw_head);
|
|
}
|
|
|
|
/*
|
|
* Mark the current node/TID as ready to TX.
|
|
*
|
|
* This is done to make it easy for the software scheduler to
|
|
* find which nodes have data to send.
|
|
*
|
|
* The TXQ lock must be held.
|
|
*/
|
|
static void
|
|
ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
if (tid->paused)
|
|
return; /* paused, can't schedule yet */
|
|
|
|
if (tid->sched)
|
|
return; /* already scheduled */
|
|
|
|
tid->sched = 1;
|
|
|
|
TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
|
|
}
|
|
|
|
/*
|
|
* Mark the current node as no longer needing to be polled for
|
|
* TX packets.
|
|
*
|
|
* The TXQ lock must be held.
|
|
*/
|
|
static void
|
|
ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
if (tid->sched == 0)
|
|
return;
|
|
|
|
tid->sched = 0;
|
|
TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
|
|
}
|
|
|
|
/*
|
|
* Assign a sequence number manually to the given frame.
|
|
*
|
|
* This should only be called for A-MPDU TX frames.
|
|
*/
|
|
static ieee80211_seq
|
|
ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0)
|
|
{
|
|
struct ieee80211_frame *wh;
|
|
int tid, pri;
|
|
ieee80211_seq seqno;
|
|
uint8_t subtype;
|
|
|
|
/* TID lookup */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
pri = M_WME_GETAC(m0); /* honor classification */
|
|
tid = WME_AC_TO_TID(pri);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n",
|
|
__func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
|
|
|
|
/* XXX Is it a control frame? Ignore */
|
|
|
|
/* Does the packet require a sequence number? */
|
|
if (! IEEE80211_QOS_HAS_SEQ(wh))
|
|
return -1;
|
|
|
|
/*
|
|
* Is it a QOS NULL Data frame? Give it a sequence number from
|
|
* the default TID (IEEE80211_NONQOS_TID.)
|
|
*
|
|
* The RX path of everything I've looked at doesn't include the NULL
|
|
* data frame sequence number in the aggregation state updates, so
|
|
* assigning it a sequence number there will cause a BAW hole on the
|
|
* RX side.
|
|
*/
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
|
|
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
|
|
INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
|
|
} else {
|
|
/* Manually assign sequence number */
|
|
seqno = ni->ni_txseqs[tid];
|
|
INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
|
|
}
|
|
*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
|
|
M_SEQNO_SET(m0, seqno);
|
|
|
|
/* Return so caller can do something with it if needed */
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno);
|
|
return seqno;
|
|
}
|
|
|
|
/*
|
|
* Attempt to direct dispatch an aggregate frame to hardware.
|
|
* If the frame is out of BAW, queue.
|
|
* Otherwise, schedule it as a single frame.
|
|
*/
|
|
static void
|
|
ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_buf *bf)
|
|
{
|
|
struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
|
|
struct ath_txq *txq = bf->bf_state.bfs_txq;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
/* paused? queue */
|
|
if (tid->paused) {
|
|
ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
|
|
return;
|
|
}
|
|
|
|
/* outside baw? queue */
|
|
if (bf->bf_state.bfs_dobaw &&
|
|
(! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
|
|
SEQNO(bf->bf_state.bfs_seqno)))) {
|
|
ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
|
|
ath_tx_tid_sched(sc, tid);
|
|
return;
|
|
}
|
|
|
|
/* Direct dispatch to hardware */
|
|
ath_tx_do_ratelookup(sc, bf);
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_setds(sc, bf);
|
|
ath_tx_set_ratectrl(sc, bf->bf_node, bf);
|
|
ath_tx_chaindesclist(sc, bf);
|
|
|
|
/* Statistics */
|
|
sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
|
|
|
|
/* Track per-TID hardware queue depth correctly */
|
|
tid->hwq_depth++;
|
|
|
|
/* Add to BAW */
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_addto_baw(sc, an, tid, bf);
|
|
bf->bf_state.bfs_addedbaw = 1;
|
|
}
|
|
|
|
/* Set completion handler, multi-frame aggregate or not */
|
|
bf->bf_comp = ath_tx_aggr_comp;
|
|
|
|
/* Hand off to hardware */
|
|
ath_tx_handoff(sc, txq, bf);
|
|
}
|
|
|
|
/*
|
|
* Attempt to send the packet.
|
|
* If the queue isn't busy, direct-dispatch.
|
|
* If the queue is busy enough, queue the given packet on the
|
|
* relevant software queue.
|
|
*/
|
|
void
|
|
ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ieee80211_frame *wh;
|
|
struct ath_tid *atid;
|
|
int pri, tid;
|
|
struct mbuf *m0 = bf->bf_m;
|
|
|
|
/* Fetch the TID - non-QoS frames get assigned to TID 16 */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
pri = ath_tx_getac(sc, m0);
|
|
tid = ath_tx_gettid(sc, m0);
|
|
atid = &an->an_tid[tid];
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
|
|
__func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
|
|
|
|
/* Set local packet state, used to queue packets to hardware */
|
|
bf->bf_state.bfs_tid = tid;
|
|
bf->bf_state.bfs_txq = txq;
|
|
bf->bf_state.bfs_pri = pri;
|
|
|
|
/*
|
|
* If the hardware queue isn't busy, queue it directly.
|
|
* If the hardware queue is busy, queue it.
|
|
* If the TID is paused or the traffic it outside BAW, software
|
|
* queue it.
|
|
*/
|
|
ATH_TXQ_LOCK(txq);
|
|
if (atid->paused) {
|
|
/* TID is paused, queue */
|
|
ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
|
|
} else if (ath_tx_ampdu_pending(sc, an, tid)) {
|
|
/* AMPDU pending; queue */
|
|
ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
|
|
/* XXX sched? */
|
|
} else if (ath_tx_ampdu_running(sc, an, tid)) {
|
|
/* AMPDU running, attempt direct dispatch if possible */
|
|
if (txq->axq_depth < sc->sc_hwq_limit)
|
|
ath_tx_xmit_aggr(sc, an, bf);
|
|
else {
|
|
ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
|
|
ath_tx_tid_sched(sc, atid);
|
|
}
|
|
} else if (txq->axq_depth < sc->sc_hwq_limit) {
|
|
/* AMPDU not running, attempt direct dispatch */
|
|
ath_tx_xmit_normal(sc, txq, bf);
|
|
} else {
|
|
/* Busy; queue */
|
|
ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
|
|
ath_tx_tid_sched(sc, atid);
|
|
}
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/*
|
|
* Do the basic frame setup stuff that's required before the frame
|
|
* is added to a software queue.
|
|
*
|
|
* All frames get mostly the same treatment and it's done once.
|
|
* Retransmits fiddle with things like the rate control setup,
|
|
* setting the retransmit bit in the packet; doing relevant DMA/bus
|
|
* syncing and relinking it (back) into the hardware TX queue.
|
|
*
|
|
* Note that this may cause the mbuf to be reallocated, so
|
|
* m0 may not be valid.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Configure the per-TID node state.
|
|
*
|
|
* This likely belongs in if_ath_node.c but I can't think of anywhere
|
|
* else to put it just yet.
|
|
*
|
|
* This sets up the SLISTs and the mutex as appropriate.
|
|
*/
|
|
void
|
|
ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
int i, j;
|
|
struct ath_tid *atid;
|
|
|
|
for (i = 0; i < IEEE80211_TID_SIZE; i++) {
|
|
atid = &an->an_tid[i];
|
|
TAILQ_INIT(&atid->axq_q);
|
|
atid->tid = i;
|
|
atid->an = an;
|
|
for (j = 0; j < ATH_TID_MAX_BUFS; j++)
|
|
atid->tx_buf[j] = NULL;
|
|
atid->baw_head = atid->baw_tail = 0;
|
|
atid->paused = 0;
|
|
atid->sched = 0;
|
|
atid->hwq_depth = 0;
|
|
atid->cleanup_inprogress = 0;
|
|
if (i == IEEE80211_NONQOS_TID)
|
|
atid->ac = WME_AC_BE;
|
|
else
|
|
atid->ac = TID_TO_WME_AC(i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pause the current TID. This stops packets from being transmitted
|
|
* on it.
|
|
*
|
|
* Since this is also called from upper layers as well as the driver,
|
|
* it will get the TID lock.
|
|
*/
|
|
static void
|
|
ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
|
|
tid->paused++;
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n",
|
|
__func__, tid->paused);
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
|
|
}
|
|
|
|
/*
|
|
* Unpause the current TID, and schedule it if needed.
|
|
*/
|
|
static void
|
|
ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
|
|
|
|
tid->paused--;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n",
|
|
__func__, tid->paused);
|
|
|
|
if (tid->paused || tid->axq_depth == 0) {
|
|
return;
|
|
}
|
|
|
|
ath_tx_tid_sched(sc, tid);
|
|
/* Punt some frames to the hardware if needed */
|
|
ath_txq_sched(sc, sc->sc_ac2q[tid->ac]);
|
|
}
|
|
|
|
/*
|
|
* Free any packets currently pending in the software TX queue.
|
|
*
|
|
* This will be called when a node is being deleted.
|
|
*
|
|
* It can also be called on an active node during an interface
|
|
* reset or state transition.
|
|
*
|
|
* (From Linux/reference):
|
|
*
|
|
* TODO: For frame(s) that are in the retry state, we will reuse the
|
|
* sequence number(s) without setting the retry bit. The
|
|
* alternative is to give up on these and BAR the receiver's window
|
|
* forward.
|
|
*/
|
|
static void
|
|
ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid,
|
|
ath_bufhead *bf_cq)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
struct ieee80211_node *ni = &an->an_node;
|
|
int t = 0;
|
|
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
|
|
|
|
/* Walk the queue, free frames */
|
|
for (;;) {
|
|
bf = TAILQ_FIRST(&tid->axq_q);
|
|
if (bf == NULL) {
|
|
break;
|
|
}
|
|
|
|
if (t == 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: node %p: tid %d: txq_depth=%d, "
|
|
"txq_aggr_depth=%d, sched=%d, paused=%d, "
|
|
"hwq_depth=%d, incomp=%d, baw_head=%d, baw_tail=%d "
|
|
"txa_start=%d, ni_txseqs=%d\n",
|
|
__func__, ni, tid->tid, txq->axq_depth,
|
|
txq->axq_aggr_depth, tid->sched, tid->paused,
|
|
tid->hwq_depth, tid->incomp, tid->baw_head,
|
|
tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
|
|
ni->ni_txseqs[tid->tid]);
|
|
t = 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* If the current TID is running AMPDU, update
|
|
* the BAW.
|
|
*/
|
|
if (ath_tx_ampdu_running(sc, an, tid->tid) &&
|
|
bf->bf_state.bfs_dobaw) {
|
|
/*
|
|
* Only remove the frame from the BAW if it's
|
|
* been transmitted at least once; this means
|
|
* the frame was in the BAW to begin with.
|
|
*/
|
|
if (bf->bf_state.bfs_retries > 0) {
|
|
ath_tx_update_baw(sc, an, tid, bf);
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
}
|
|
/*
|
|
* This has become a non-fatal error now
|
|
*/
|
|
if (! bf->bf_state.bfs_addedbaw)
|
|
device_printf(sc->sc_dev,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
ATH_TXQ_REMOVE(tid, bf, bf_list);
|
|
TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
|
|
}
|
|
|
|
/*
|
|
* Now that it's completed, grab the TID lock and update
|
|
* the sequence number and BAW window.
|
|
* Because sequence numbers have been assigned to frames
|
|
* that haven't been sent yet, it's entirely possible
|
|
* we'll be called with some pending frames that have not
|
|
* been transmitted.
|
|
*
|
|
* The cleaner solution is to do the sequence number allocation
|
|
* when the packet is first transmitted - and thus the "retries"
|
|
* check above would be enough to update the BAW/seqno.
|
|
*/
|
|
|
|
/* But don't do it for non-QoS TIDs */
|
|
if (tap) {
|
|
#if 0
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: node %p: TID %d: sliding BAW left edge to %d\n",
|
|
__func__, an, tid->tid, tap->txa_start);
|
|
#endif
|
|
ni->ni_txseqs[tid->tid] = tap->txa_start;
|
|
tid->baw_tail = tid->baw_head;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush all software queued packets for the given node.
|
|
*
|
|
* This occurs when a completion handler frees the last buffer
|
|
* for a node, and the node is thus freed. This causes the node
|
|
* to be cleaned up, which ends up calling ath_tx_node_flush.
|
|
*/
|
|
void
|
|
ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
int tid;
|
|
ath_bufhead bf_cq;
|
|
struct ath_buf *bf;
|
|
|
|
TAILQ_INIT(&bf_cq);
|
|
|
|
for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ath_txq *txq = sc->sc_ac2q[atid->ac];
|
|
|
|
/* Remove this tid from the list of active tids */
|
|
ATH_TXQ_LOCK(txq);
|
|
ath_tx_tid_unsched(sc, atid);
|
|
|
|
/* Free packets */
|
|
ath_tx_tid_drain(sc, an, atid, &bf_cq);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/* Handle completed frames */
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drain all the software TXQs currently with traffic queued.
|
|
*/
|
|
void
|
|
ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_tid *tid;
|
|
ath_bufhead bf_cq;
|
|
struct ath_buf *bf;
|
|
|
|
TAILQ_INIT(&bf_cq);
|
|
ATH_TXQ_LOCK(txq);
|
|
|
|
/*
|
|
* Iterate over all active tids for the given txq,
|
|
* flushing and unsched'ing them
|
|
*/
|
|
while (! TAILQ_EMPTY(&txq->axq_tidq)) {
|
|
tid = TAILQ_FIRST(&txq->axq_tidq);
|
|
ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
|
|
ath_tx_tid_unsched(sc, tid);
|
|
}
|
|
|
|
ATH_TXQ_UNLOCK(txq);
|
|
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle completion of non-aggregate session frames.
|
|
*/
|
|
void
|
|
ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
|
|
|
|
/* The TID state is protected behind the TXQ lock */
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
|
|
__func__, bf, fail, atid->hwq_depth - 1);
|
|
|
|
atid->hwq_depth--;
|
|
if (atid->hwq_depth < 0)
|
|
device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
|
|
__func__, atid->hwq_depth);
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
/*
|
|
* punt to rate control if we're not being cleaned up
|
|
* during a hw queue drain and the frame wanted an ACK.
|
|
*/
|
|
if (fail == 0 && ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0))
|
|
ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
|
|
ts, bf->bf_state.bfs_pktlen,
|
|
1, (ts->ts_status == 0) ? 0 : 1);
|
|
|
|
ath_tx_default_comp(sc, bf, fail);
|
|
}
|
|
|
|
/*
|
|
* Handle cleanup of aggregate session packets that aren't
|
|
* an A-MPDU.
|
|
*
|
|
* There's no need to update the BAW here - the session is being
|
|
* torn down.
|
|
*/
|
|
static void
|
|
ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
|
|
__func__, tid, atid->incomp);
|
|
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
atid->incomp--;
|
|
if (atid->incomp == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: TID %d: cleaned up! resume!\n",
|
|
__func__, tid);
|
|
atid->cleanup_inprogress = 0;
|
|
ath_tx_tid_resume(sc, atid);
|
|
}
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
|
|
/*
|
|
* Performs transmit side cleanup when TID changes from aggregated to
|
|
* unaggregated.
|
|
*
|
|
* - Discard all retry frames from the s/w queue.
|
|
* - Fix the tx completion function for all buffers in s/w queue.
|
|
* - Count the number of unacked frames, and let transmit completion
|
|
* handle it later.
|
|
*
|
|
* The caller is responsible for pausing the TID.
|
|
*/
|
|
static void
|
|
ath_tx_cleanup(struct ath_softc *sc, struct ath_node *an, int tid)
|
|
{
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ieee80211_tx_ampdu *tap;
|
|
struct ath_buf *bf, *bf_next;
|
|
ath_bufhead bf_cq;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: TID %d: called\n", __func__, tid);
|
|
|
|
TAILQ_INIT(&bf_cq);
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
/*
|
|
* Update the frames in the software TX queue:
|
|
*
|
|
* + Discard retry frames in the queue
|
|
* + Fix the completion function to be non-aggregate
|
|
*/
|
|
bf = TAILQ_FIRST(&atid->axq_q);
|
|
while (bf) {
|
|
if (bf->bf_state.bfs_isretried) {
|
|
bf_next = TAILQ_NEXT(bf, bf_list);
|
|
TAILQ_REMOVE(&atid->axq_q, bf, bf_list);
|
|
atid->axq_depth--;
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
if (! bf->bf_state.bfs_addedbaw)
|
|
device_printf(sc->sc_dev,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
/*
|
|
* Call the default completion handler with "fail" just
|
|
* so upper levels are suitably notified about this.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
|
|
bf = bf_next;
|
|
continue;
|
|
}
|
|
/* Give these the default completion handler */
|
|
bf->bf_comp = ath_tx_normal_comp;
|
|
bf = TAILQ_NEXT(bf, bf_list);
|
|
}
|
|
|
|
/* The caller is required to pause the TID */
|
|
#if 0
|
|
/* Pause the TID */
|
|
ath_tx_tid_pause(sc, atid);
|
|
#endif
|
|
|
|
/*
|
|
* Calculate what hardware-queued frames exist based
|
|
* on the current BAW size. Ie, what frames have been
|
|
* added to the TX hardware queue for this TID but
|
|
* not yet ACKed.
|
|
*/
|
|
tap = ath_tx_get_tx_tid(an, tid);
|
|
/* Need the lock - fiddling with BAW */
|
|
while (atid->baw_head != atid->baw_tail) {
|
|
if (atid->tx_buf[atid->baw_head]) {
|
|
atid->incomp++;
|
|
atid->cleanup_inprogress = 1;
|
|
atid->tx_buf[atid->baw_head] = NULL;
|
|
}
|
|
INCR(atid->baw_head, ATH_TID_MAX_BUFS);
|
|
INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
|
|
}
|
|
|
|
/*
|
|
* If cleanup is required, defer TID scheduling
|
|
* until all the HW queued packets have been
|
|
* sent.
|
|
*/
|
|
if (! atid->cleanup_inprogress)
|
|
ath_tx_tid_resume(sc, atid);
|
|
|
|
if (atid->cleanup_inprogress)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: TID %d: cleanup needed: %d packets\n",
|
|
__func__, tid, atid->incomp);
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
/* Handle completing frames and fail them */
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_frame *wh;
|
|
|
|
wh = mtod(bf->bf_m, struct ieee80211_frame *);
|
|
/* Only update/resync if needed */
|
|
if (bf->bf_state.bfs_isretried == 0) {
|
|
wh->i_fc[1] |= IEEE80211_FC1_RETRY;
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
sc->sc_stats.ast_tx_swretries++;
|
|
bf->bf_state.bfs_isretried = 1;
|
|
bf->bf_state.bfs_retries ++;
|
|
}
|
|
|
|
static struct ath_buf *
|
|
ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, struct ath_buf *bf)
|
|
{
|
|
struct ath_buf *nbf;
|
|
int error;
|
|
|
|
nbf = ath_buf_clone(sc, bf);
|
|
|
|
#if 0
|
|
device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n",
|
|
__func__);
|
|
#endif
|
|
|
|
if (nbf == NULL) {
|
|
/* Failed to clone */
|
|
device_printf(sc->sc_dev,
|
|
"%s: failed to clone a busy buffer\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
|
|
/* Setup the dma for the new buffer */
|
|
error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: failed to setup dma for clone\n",
|
|
__func__);
|
|
/*
|
|
* Put this at the head of the list, not tail;
|
|
* that way it doesn't interfere with the
|
|
* busy buffer logic (which uses the tail of
|
|
* the list.)
|
|
*/
|
|
ATH_TXBUF_LOCK(sc);
|
|
TAILQ_INSERT_HEAD(&sc->sc_txbuf, nbf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
return NULL;
|
|
}
|
|
|
|
/* Update BAW if required, before we free the original buf */
|
|
if (bf->bf_state.bfs_dobaw)
|
|
ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
|
|
|
|
/* Free current buffer; return the older buffer */
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
ath_freebuf(sc, bf);
|
|
return nbf;
|
|
}
|
|
|
|
/*
|
|
* Handle retrying an unaggregate frame in an aggregate
|
|
* session.
|
|
*
|
|
* If too many retries occur, pause the TID, wait for
|
|
* any further retransmits (as there's no reason why
|
|
* non-aggregate frames in an aggregate session are
|
|
* transmitted in-order; they just have to be in-BAW)
|
|
* and then queue a BAR.
|
|
*/
|
|
static void
|
|
ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ieee80211_tx_ampdu *tap;
|
|
int txseq;
|
|
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid);
|
|
|
|
/*
|
|
* If the buffer is marked as busy, we can't directly
|
|
* reuse it. Instead, try to clone the buffer.
|
|
* If the clone is successful, recycle the old buffer.
|
|
* If the clone is unsuccessful, set bfs_retries to max
|
|
* to force the next bit of code to free the buffer
|
|
* for us.
|
|
*/
|
|
if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
|
|
(bf->bf_flags & ATH_BUF_BUSY)) {
|
|
struct ath_buf *nbf;
|
|
nbf = ath_tx_retry_clone(sc, an, atid, bf);
|
|
if (nbf)
|
|
/* bf has been freed at this point */
|
|
bf = nbf;
|
|
else
|
|
bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
|
|
}
|
|
|
|
if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
|
|
"%s: exceeded retries; seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
sc->sc_stats.ast_tx_swretrymax++;
|
|
|
|
/* Update BAW anyway */
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
if (! bf->bf_state.bfs_addedbaw)
|
|
device_printf(sc->sc_dev,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
|
|
/* Send BAR frame */
|
|
/*
|
|
* This'll end up going into net80211 and back out
|
|
* again, via ic->ic_raw_xmit().
|
|
*/
|
|
txseq = tap->txa_start;
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
device_printf(sc->sc_dev,
|
|
"%s: TID %d: send BAR; seq %d\n", __func__, tid, txseq);
|
|
|
|
/* XXX TODO: send BAR */
|
|
|
|
/* Free buffer, bf is free after this call */
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This increments the retry counter as well as
|
|
* sets the retry flag in the ath_buf and packet
|
|
* body.
|
|
*/
|
|
ath_tx_set_retry(sc, bf);
|
|
|
|
/*
|
|
* Insert this at the head of the queue, so it's
|
|
* retried before any current/subsequent frames.
|
|
*/
|
|
ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
|
|
ath_tx_tid_sched(sc, atid);
|
|
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
}
|
|
|
|
/*
|
|
* Common code for aggregate excessive retry/subframe retry.
|
|
* If retrying, queues buffers to bf_q. If not, frees the
|
|
* buffers.
|
|
*
|
|
* XXX should unify this with ath_tx_aggr_retry_unaggr()
|
|
*/
|
|
static int
|
|
ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
|
|
ath_bufhead *bf_q)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]);
|
|
|
|
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
|
|
ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
|
|
/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
|
|
|
|
/*
|
|
* If the buffer is marked as busy, we can't directly
|
|
* reuse it. Instead, try to clone the buffer.
|
|
* If the clone is successful, recycle the old buffer.
|
|
* If the clone is unsuccessful, set bfs_retries to max
|
|
* to force the next bit of code to free the buffer
|
|
* for us.
|
|
*/
|
|
if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
|
|
(bf->bf_flags & ATH_BUF_BUSY)) {
|
|
struct ath_buf *nbf;
|
|
nbf = ath_tx_retry_clone(sc, an, atid, bf);
|
|
if (nbf)
|
|
/* bf has been freed at this point */
|
|
bf = nbf;
|
|
else
|
|
bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
|
|
}
|
|
|
|
if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
|
|
sc->sc_stats.ast_tx_swretrymax++;
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
|
|
"%s: max retries: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
if (! bf->bf_state.bfs_addedbaw)
|
|
device_printf(sc->sc_dev,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
return 1;
|
|
}
|
|
|
|
ath_tx_set_retry(sc, bf);
|
|
bf->bf_next = NULL; /* Just to make sure */
|
|
|
|
TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* error pkt completion for an aggregate destination
|
|
*/
|
|
static void
|
|
ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
|
|
struct ath_tid *tid)
|
|
{
|
|
struct ieee80211_node *ni = bf_first->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_buf *bf_next, *bf;
|
|
ath_bufhead bf_q;
|
|
int drops = 0;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
ath_bufhead bf_cq;
|
|
|
|
TAILQ_INIT(&bf_q);
|
|
TAILQ_INIT(&bf_cq);
|
|
|
|
/*
|
|
* Update rate control - all frames have failed.
|
|
*
|
|
* XXX use the length in the first frame in the series;
|
|
* XXX just so things are consistent for now.
|
|
*/
|
|
ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
|
|
&bf_first->bf_status.ds_txstat,
|
|
bf_first->bf_state.bfs_pktlen,
|
|
bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
|
|
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
sc->sc_stats.ast_tx_aggr_failall++;
|
|
|
|
/* Retry all subframes */
|
|
bf = bf_first;
|
|
while (bf) {
|
|
bf_next = bf->bf_next;
|
|
bf->bf_next = NULL; /* Remove it from the aggr list */
|
|
sc->sc_stats.ast_tx_aggr_fail++;
|
|
if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
|
|
drops++;
|
|
bf->bf_next = NULL;
|
|
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
|
|
}
|
|
bf = bf_next;
|
|
}
|
|
|
|
/* Prepend all frames to the beginning of the queue */
|
|
while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
|
|
TAILQ_REMOVE(&bf_q, bf, bf_list);
|
|
ATH_TXQ_INSERT_HEAD(tid, bf, bf_list);
|
|
}
|
|
|
|
ath_tx_tid_sched(sc, tid);
|
|
|
|
/*
|
|
* send bar if we dropped any frames
|
|
*
|
|
* Keep the txq lock held for now, as we need to ensure
|
|
* that ni_txseqs[] is consistent (as it's being updated
|
|
* in the ifnet TX context or raw TX context.)
|
|
*/
|
|
if (drops) {
|
|
int txseq = tap->txa_start;
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
|
|
device_printf(sc->sc_dev,
|
|
"%s: TID %d: send BAR; seq %d\n",
|
|
__func__, tid->tid, txseq);
|
|
|
|
/* XXX TODO: send BAR */
|
|
} else {
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
|
|
}
|
|
|
|
/* Complete frames which errored out */
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle clean-up of packets from an aggregate list.
|
|
*
|
|
* There's no need to update the BAW here - the session is being
|
|
* torn down.
|
|
*/
|
|
static void
|
|
ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
|
|
{
|
|
struct ath_buf *bf, *bf_next;
|
|
struct ieee80211_node *ni = bf_first->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf_first->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
bf = bf_first;
|
|
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
/* update incomp */
|
|
while (bf) {
|
|
atid->incomp--;
|
|
bf = bf->bf_next;
|
|
}
|
|
|
|
if (atid->incomp == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: TID %d: cleaned up! resume!\n",
|
|
__func__, tid);
|
|
atid->cleanup_inprogress = 0;
|
|
ath_tx_tid_resume(sc, atid);
|
|
}
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
/* Handle frame completion */
|
|
while (bf) {
|
|
bf_next = bf->bf_next;
|
|
ath_tx_default_comp(sc, bf, 1);
|
|
bf = bf_next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle completion of an set of aggregate frames.
|
|
*
|
|
* XXX for now, simply complete each sub-frame.
|
|
*
|
|
* Note: the completion handler is the last descriptor in the aggregate,
|
|
* not the last descriptor in the first frame.
|
|
*/
|
|
static void
|
|
ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, int fail)
|
|
{
|
|
//struct ath_desc *ds = bf->bf_lastds;
|
|
struct ieee80211_node *ni = bf_first->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf_first->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ath_tx_status ts;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
ath_bufhead bf_q;
|
|
ath_bufhead bf_cq;
|
|
int seq_st, tx_ok;
|
|
int hasba, isaggr;
|
|
uint32_t ba[2];
|
|
struct ath_buf *bf, *bf_next;
|
|
int ba_index;
|
|
int drops = 0;
|
|
int nframes = 0, nbad = 0, nf;
|
|
int pktlen;
|
|
/* XXX there's too much on the stack? */
|
|
struct ath_rc_series rc[4];
|
|
int txseq;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
|
|
__func__, atid->hwq_depth);
|
|
|
|
/* The TID state is kept behind the TXQ lock */
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
atid->hwq_depth--;
|
|
if (atid->hwq_depth < 0)
|
|
device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
|
|
__func__, atid->hwq_depth);
|
|
|
|
/*
|
|
* Punt cleanup to the relevant function, not our problem now
|
|
*/
|
|
if (atid->cleanup_inprogress) {
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
ath_tx_comp_cleanup_aggr(sc, bf_first);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Take a copy; this may be needed -after- bf_first
|
|
* has been completed and freed.
|
|
*/
|
|
ts = bf_first->bf_status.ds_txstat;
|
|
/*
|
|
* XXX for now, use the first frame in the aggregate for
|
|
* XXX rate control completion; it's at least consistent.
|
|
*/
|
|
pktlen = bf_first->bf_state.bfs_pktlen;
|
|
|
|
/*
|
|
* handle errors first
|
|
*/
|
|
if (ts.ts_status & HAL_TXERR_XRETRY) {
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
ath_tx_comp_aggr_error(sc, bf_first, atid);
|
|
return;
|
|
}
|
|
|
|
TAILQ_INIT(&bf_q);
|
|
TAILQ_INIT(&bf_cq);
|
|
tap = ath_tx_get_tx_tid(an, tid);
|
|
|
|
/*
|
|
* extract starting sequence and block-ack bitmap
|
|
*/
|
|
/* XXX endian-ness of seq_st, ba? */
|
|
seq_st = ts.ts_seqnum;
|
|
hasba = !! (ts.ts_flags & HAL_TX_BA);
|
|
tx_ok = (ts.ts_status == 0);
|
|
isaggr = bf_first->bf_state.bfs_aggr;
|
|
ba[0] = ts.ts_ba_low;
|
|
ba[1] = ts.ts_ba_high;
|
|
|
|
/*
|
|
* Copy the TX completion status and the rate control
|
|
* series from the first descriptor, as it may be freed
|
|
* before the rate control code can get its grubby fingers
|
|
* into things.
|
|
*/
|
|
memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
|
|
__func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
|
|
isaggr, seq_st, hasba, ba[0], ba[1]);
|
|
|
|
/* Occasionally, the MAC sends a tx status for the wrong TID. */
|
|
if (tid != ts.ts_tid) {
|
|
device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n",
|
|
__func__, tid, ts.ts_tid);
|
|
tx_ok = 0;
|
|
}
|
|
|
|
/* AR5416 BA bug; this requires an interface reset */
|
|
if (isaggr && tx_ok && (! hasba)) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, seq_st=%d\n",
|
|
__func__, hasba, tx_ok, isaggr, seq_st);
|
|
/* XXX TODO: schedule an interface reset */
|
|
}
|
|
|
|
/*
|
|
* Walk the list of frames, figure out which ones were correctly
|
|
* sent and which weren't.
|
|
*/
|
|
bf = bf_first;
|
|
nf = bf_first->bf_state.bfs_nframes;
|
|
|
|
/* bf_first is going to be invalid once this list is walked */
|
|
bf_first = NULL;
|
|
|
|
/*
|
|
* Walk the list of completed frames and determine
|
|
* which need to be completed and which need to be
|
|
* retransmitted.
|
|
*
|
|
* For completed frames, the completion functions need
|
|
* to be called at the end of this function as the last
|
|
* node reference may free the node.
|
|
*
|
|
* Finally, since the TXQ lock can't be held during the
|
|
* completion callback (to avoid lock recursion),
|
|
* the completion calls have to be done outside of the
|
|
* lock.
|
|
*/
|
|
while (bf) {
|
|
nframes++;
|
|
ba_index = ATH_BA_INDEX(seq_st, SEQNO(bf->bf_state.bfs_seqno));
|
|
bf_next = bf->bf_next;
|
|
bf->bf_next = NULL; /* Remove it from the aggr list */
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: checking bf=%p seqno=%d; ack=%d\n",
|
|
__func__, bf, SEQNO(bf->bf_state.bfs_seqno),
|
|
ATH_BA_ISSET(ba, ba_index));
|
|
|
|
if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
|
|
sc->sc_stats.ast_tx_aggr_ok++;
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
if (! bf->bf_state.bfs_addedbaw)
|
|
device_printf(sc->sc_dev,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
bf->bf_next = NULL;
|
|
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
|
|
} else {
|
|
sc->sc_stats.ast_tx_aggr_fail++;
|
|
if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
|
|
drops++;
|
|
bf->bf_next = NULL;
|
|
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
|
|
}
|
|
nbad++;
|
|
}
|
|
bf = bf_next;
|
|
}
|
|
|
|
/*
|
|
* Now that the BAW updates have been done, unlock
|
|
*
|
|
* txseq is grabbed before the lock is released so we
|
|
* have a consistent view of what -was- in the BAW.
|
|
* Anything after this point will not yet have been
|
|
* TXed.
|
|
*/
|
|
txseq = tap->txa_start;
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
if (nframes != nf)
|
|
device_printf(sc->sc_dev,
|
|
"%s: num frames seen=%d; bf nframes=%d\n",
|
|
__func__, nframes, nf);
|
|
|
|
/*
|
|
* Now we know how many frames were bad, call the rate
|
|
* control code.
|
|
*/
|
|
if (fail == 0)
|
|
ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, nbad);
|
|
|
|
/*
|
|
* send bar if we dropped any frames
|
|
*/
|
|
if (drops) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: TID %d: send BAR; seq %d\n", __func__, tid, txseq);
|
|
/* XXX TODO: send BAR */
|
|
}
|
|
|
|
/* Prepend all frames to the beginning of the queue */
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
|
|
TAILQ_REMOVE(&bf_q, bf, bf_list);
|
|
ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
|
|
}
|
|
ath_tx_tid_sched(sc, atid);
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: txa_start now %d\n", __func__, tap->txa_start);
|
|
|
|
/* Do deferred completion */
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle completion of unaggregated frames in an ADDBA
|
|
* session.
|
|
*
|
|
* Fail is set to 1 if the entry is being freed via a call to
|
|
* ath_tx_draintxq().
|
|
*/
|
|
static void
|
|
ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
|
|
|
|
/*
|
|
* Update rate control status here, before we possibly
|
|
* punt to retry or cleanup.
|
|
*
|
|
* Do it outside of the TXQ lock.
|
|
*/
|
|
if (fail == 0 && ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0))
|
|
ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
|
|
&bf->bf_status.ds_txstat,
|
|
bf->bf_state.bfs_pktlen,
|
|
1, (ts->ts_status == 0) ? 0 : 1);
|
|
|
|
/*
|
|
* This is called early so atid->hwq_depth can be tracked.
|
|
* This unfortunately means that it's released and regrabbed
|
|
* during retry and cleanup. That's rather inefficient.
|
|
*/
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
if (tid == IEEE80211_NONQOS_TID)
|
|
device_printf(sc->sc_dev, "%s: TID=16!\n", __func__);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: tid=%d, hwq_depth=%d\n",
|
|
__func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth);
|
|
|
|
atid->hwq_depth--;
|
|
if (atid->hwq_depth < 0)
|
|
device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
|
|
__func__, atid->hwq_depth);
|
|
|
|
/*
|
|
* If a cleanup is in progress, punt to comp_cleanup;
|
|
* rather than handling it here. It's thus their
|
|
* responsibility to clean up, call the completion
|
|
* function in net80211, etc.
|
|
*/
|
|
if (atid->cleanup_inprogress) {
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
ath_tx_comp_cleanup_unaggr(sc, bf);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Don't bother with the retry check if all frames
|
|
* are being failed (eg during queue deletion.)
|
|
*/
|
|
if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
ath_tx_aggr_retry_unaggr(sc, bf);
|
|
return;
|
|
}
|
|
|
|
/* Success? Complete */
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
|
|
__func__, tid, SEQNO(bf->bf_state.bfs_seqno));
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
if (! bf->bf_state.bfs_addedbaw)
|
|
device_printf(sc->sc_dev,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
|
|
ath_tx_default_comp(sc, bf, fail);
|
|
/* bf is freed at this point */
|
|
}
|
|
|
|
void
|
|
ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
|
|
{
|
|
if (bf->bf_state.bfs_aggr)
|
|
ath_tx_aggr_comp_aggr(sc, bf, fail);
|
|
else
|
|
ath_tx_aggr_comp_unaggr(sc, bf, fail);
|
|
}
|
|
|
|
/*
|
|
* Schedule some packets from the given node/TID to the hardware.
|
|
*
|
|
* This is the aggregate version.
|
|
*/
|
|
void
|
|
ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
|
|
struct ieee80211_tx_ampdu *tap;
|
|
struct ieee80211_node *ni = &an->an_node;
|
|
ATH_AGGR_STATUS status;
|
|
ath_bufhead bf_q;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
if (tid->tid == IEEE80211_NONQOS_TID)
|
|
device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n",
|
|
__func__);
|
|
|
|
for (;;) {
|
|
status = ATH_AGGR_DONE;
|
|
|
|
/*
|
|
* If the upper layer has paused the TID, don't
|
|
* queue any further packets.
|
|
*
|
|
* This can also occur from the completion task because
|
|
* of packet loss; but as its serialised with this code,
|
|
* it won't "appear" half way through queuing packets.
|
|
*/
|
|
if (tid->paused)
|
|
break;
|
|
|
|
bf = TAILQ_FIRST(&tid->axq_q);
|
|
if (bf == NULL) {
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the packet doesn't fall within the BAW (eg a NULL
|
|
* data frame), schedule it directly; continue.
|
|
*/
|
|
if (! bf->bf_state.bfs_dobaw) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: non-baw packet\n",
|
|
__func__);
|
|
ATH_TXQ_REMOVE(tid, bf, bf_list);
|
|
bf->bf_state.bfs_aggr = 0;
|
|
ath_tx_do_ratelookup(sc, bf);
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_setds(sc, bf);
|
|
ath_tx_chaindesclist(sc, bf);
|
|
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
|
|
ath_tx_set_ratectrl(sc, ni, bf);
|
|
|
|
sc->sc_aggr_stats.aggr_nonbaw_pkt++;
|
|
|
|
/* Queue the packet; continue */
|
|
goto queuepkt;
|
|
}
|
|
|
|
TAILQ_INIT(&bf_q);
|
|
|
|
/*
|
|
* Do a rate control lookup on the first frame in the
|
|
* list. The rate control code needs that to occur
|
|
* before it can determine whether to TX.
|
|
* It's inaccurate because the rate control code doesn't
|
|
* really "do" aggregate lookups, so it only considers
|
|
* the size of the first frame.
|
|
*/
|
|
ath_tx_do_ratelookup(sc, bf);
|
|
bf->bf_state.bfs_rc[3].rix = 0;
|
|
bf->bf_state.bfs_rc[3].tries = 0;
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
|
|
status = ath_tx_form_aggr(sc, an, tid, &bf_q);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: ath_tx_form_aggr() status=%d\n", __func__, status);
|
|
|
|
/*
|
|
* No frames to be picked up - out of BAW
|
|
*/
|
|
if (TAILQ_EMPTY(&bf_q))
|
|
break;
|
|
|
|
/*
|
|
* This assumes that the descriptor list in the ath_bufhead
|
|
* are already linked together via bf_next pointers.
|
|
*/
|
|
bf = TAILQ_FIRST(&bf_q);
|
|
|
|
/*
|
|
* If it's the only frame send as non-aggregate
|
|
* assume that ath_tx_form_aggr() has checked
|
|
* whether it's in the BAW and added it appropriately.
|
|
*/
|
|
if (bf->bf_state.bfs_nframes == 1) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: single-frame aggregate\n", __func__);
|
|
bf->bf_state.bfs_aggr = 0;
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_setds(sc, bf);
|
|
ath_tx_chaindesclist(sc, bf);
|
|
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
|
|
ath_tx_set_ratectrl(sc, ni, bf);
|
|
if (status == ATH_AGGR_BAW_CLOSED)
|
|
sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
|
|
else
|
|
sc->sc_aggr_stats.aggr_single_pkt++;
|
|
} else {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: multi-frame aggregate: %d frames, length %d\n",
|
|
__func__, bf->bf_state.bfs_nframes,
|
|
bf->bf_state.bfs_al);
|
|
bf->bf_state.bfs_aggr = 1;
|
|
sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
|
|
sc->sc_aggr_stats.aggr_aggr_pkt++;
|
|
|
|
/*
|
|
* Update the rate and rtscts information based on the
|
|
* rate decision made by the rate control code;
|
|
* the first frame in the aggregate needs it.
|
|
*/
|
|
ath_tx_set_rtscts(sc, bf);
|
|
|
|
/*
|
|
* Setup the relevant descriptor fields
|
|
* for aggregation. The first descriptor
|
|
* already points to the rest in the chain.
|
|
*/
|
|
ath_tx_setds_11n(sc, bf);
|
|
|
|
/*
|
|
* setup first desc with rate and aggr info
|
|
*/
|
|
ath_tx_set_ratectrl(sc, ni, bf);
|
|
}
|
|
queuepkt:
|
|
//txq = bf->bf_state.bfs_txq;
|
|
|
|
/* Set completion handler, multi-frame aggregate or not */
|
|
bf->bf_comp = ath_tx_aggr_comp;
|
|
|
|
if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
|
|
device_printf(sc->sc_dev, "%s: TID=16?\n", __func__);
|
|
|
|
/* Punt to txq */
|
|
ath_tx_handoff(sc, txq, bf);
|
|
|
|
/* Track outstanding buffer count to hardware */
|
|
/* aggregates are "one" buffer */
|
|
tid->hwq_depth++;
|
|
|
|
/*
|
|
* Break out if ath_tx_form_aggr() indicated
|
|
* there can't be any further progress (eg BAW is full.)
|
|
* Checking for an empty txq is done above.
|
|
*
|
|
* XXX locking on txq here?
|
|
*/
|
|
if (txq->axq_aggr_depth >= sc->sc_hwq_limit ||
|
|
status == ATH_AGGR_BAW_CLOSED)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Schedule some packets from the given node/TID to the hardware.
|
|
*/
|
|
void
|
|
ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
|
|
struct ieee80211_node *ni = &an->an_node;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
|
|
__func__, an, tid->tid);
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
/* Check - is AMPDU pending or running? then print out something */
|
|
if (ath_tx_ampdu_pending(sc, an, tid->tid))
|
|
device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n",
|
|
__func__, tid->tid);
|
|
if (ath_tx_ampdu_running(sc, an, tid->tid))
|
|
device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n",
|
|
__func__, tid->tid);
|
|
|
|
for (;;) {
|
|
|
|
/*
|
|
* If the upper layers have paused the TID, don't
|
|
* queue any further packets.
|
|
*/
|
|
if (tid->paused)
|
|
break;
|
|
|
|
bf = TAILQ_FIRST(&tid->axq_q);
|
|
if (bf == NULL) {
|
|
break;
|
|
}
|
|
|
|
ATH_TXQ_REMOVE(tid, bf, bf_list);
|
|
|
|
KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n"));
|
|
|
|
/* Sanity check! */
|
|
if (tid->tid != bf->bf_state.bfs_tid) {
|
|
device_printf(sc->sc_dev, "%s: bfs_tid %d !="
|
|
" tid %d\n",
|
|
__func__, bf->bf_state.bfs_tid, tid->tid);
|
|
}
|
|
/* Normal completion handler */
|
|
bf->bf_comp = ath_tx_normal_comp;
|
|
|
|
/* Program descriptors + rate control */
|
|
ath_tx_do_ratelookup(sc, bf);
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_setds(sc, bf);
|
|
ath_tx_chaindesclist(sc, bf);
|
|
ath_tx_set_ratectrl(sc, ni, bf);
|
|
|
|
/* Track outstanding buffer count to hardware */
|
|
/* aggregates are "one" buffer */
|
|
tid->hwq_depth++;
|
|
|
|
/* Punt to hardware or software txq */
|
|
ath_tx_handoff(sc, txq, bf);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Schedule some packets to the given hardware queue.
|
|
*
|
|
* This function walks the list of TIDs (ie, ath_node TIDs
|
|
* with queued traffic) and attempts to schedule traffic
|
|
* from them.
|
|
*
|
|
* TID scheduling is implemented as a FIFO, with TIDs being
|
|
* added to the end of the queue after some frames have been
|
|
* scheduled.
|
|
*/
|
|
void
|
|
ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_tid *tid, *next, *last;
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
/*
|
|
* Don't schedule if the hardware queue is busy.
|
|
* This (hopefully) gives some more time to aggregate
|
|
* some packets in the aggregation queue.
|
|
*/
|
|
if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
|
|
sc->sc_aggr_stats.aggr_sched_nopkt++;
|
|
return;
|
|
}
|
|
|
|
last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
|
|
|
|
TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
|
|
/*
|
|
* Suspend paused queues here; they'll be resumed
|
|
* once the addba completes or times out.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
|
|
__func__, tid->tid, tid->paused);
|
|
ath_tx_tid_unsched(sc, tid);
|
|
if (tid->paused) {
|
|
continue;
|
|
}
|
|
if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
|
|
ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
|
|
else
|
|
ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
|
|
|
|
/* Not empty? Re-schedule */
|
|
if (tid->axq_depth != 0)
|
|
ath_tx_tid_sched(sc, tid);
|
|
|
|
/* Give the software queue time to aggregate more packets */
|
|
if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If this was the last entry on the original list, stop.
|
|
* Otherwise nodes that have been rescheduled onto the end
|
|
* of the TID FIFO list will just keep being rescheduled.
|
|
*/
|
|
if (tid == last)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TX addba handling
|
|
*/
|
|
|
|
/*
|
|
* Return net80211 TID struct pointer, or NULL for none
|
|
*/
|
|
struct ieee80211_tx_ampdu *
|
|
ath_tx_get_tx_tid(struct ath_node *an, int tid)
|
|
{
|
|
struct ieee80211_node *ni = &an->an_node;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
int ac;
|
|
|
|
if (tid == IEEE80211_NONQOS_TID)
|
|
return NULL;
|
|
|
|
ac = TID_TO_WME_AC(tid);
|
|
|
|
tap = &ni->ni_tx_ampdu[ac];
|
|
return tap;
|
|
}
|
|
|
|
/*
|
|
* Is AMPDU-TX running?
|
|
*/
|
|
static int
|
|
ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
|
|
{
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
if (tid == IEEE80211_NONQOS_TID)
|
|
return 0;
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid);
|
|
if (tap == NULL)
|
|
return 0; /* Not valid; default to not running */
|
|
|
|
return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
|
|
}
|
|
|
|
/*
|
|
* Is AMPDU-TX negotiation pending?
|
|
*/
|
|
static int
|
|
ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
|
|
{
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
if (tid == IEEE80211_NONQOS_TID)
|
|
return 0;
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid);
|
|
if (tap == NULL)
|
|
return 0; /* Not valid; default to not pending */
|
|
|
|
return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
|
|
}
|
|
|
|
/*
|
|
* Is AMPDU-TX pending for the given TID?
|
|
*/
|
|
|
|
|
|
/*
|
|
* Method to handle sending an ADDBA request.
|
|
*
|
|
* We tap this so the relevant flags can be set to pause the TID
|
|
* whilst waiting for the response.
|
|
*
|
|
* XXX there's no timeout handler we can override?
|
|
*/
|
|
int
|
|
ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
|
|
int dialogtoken, int baparamset, int batimeout)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
|
|
int tid = WME_AC_TO_TID(tap->txa_ac);
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
/*
|
|
* XXX danger Will Robinson!
|
|
*
|
|
* Although the taskqueue may be running and scheduling some more
|
|
* packets, these should all be _before_ the addba sequence number.
|
|
* However, net80211 will keep self-assigning sequence numbers
|
|
* until addba has been negotiated.
|
|
*
|
|
* In the past, these packets would be "paused" (which still works
|
|
* fine, as they're being scheduled to the driver in the same
|
|
* serialised method which is calling the addba request routine)
|
|
* and when the aggregation session begins, they'll be dequeued
|
|
* as aggregate packets and added to the BAW. However, now there's
|
|
* a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
|
|
* packets. Thus they never get included in the BAW tracking and
|
|
* this can cause the initial burst of packets after the addba
|
|
* negotiation to "hang", as they quickly fall outside the BAW.
|
|
*
|
|
* The "eventual" solution should be to tag these packets with
|
|
* dobaw. Although net80211 has given us a sequence number,
|
|
* it'll be "after" the left edge of the BAW and thus it'll
|
|
* fall within it.
|
|
*/
|
|
ath_tx_tid_pause(sc, atid);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
|
|
__func__, dialogtoken, baparamset, batimeout);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: txa_start=%d, ni_txseqs=%d\n",
|
|
__func__, tap->txa_start, ni->ni_txseqs[tid]);
|
|
|
|
return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
|
|
batimeout);
|
|
}
|
|
|
|
/*
|
|
* Handle an ADDBA response.
|
|
*
|
|
* We unpause the queue so TX'ing can resume.
|
|
*
|
|
* Any packets TX'ed from this point should be "aggregate" (whether
|
|
* aggregate or not) so the BAW is updated.
|
|
*
|
|
* Note! net80211 keeps self-assigning sequence numbers until
|
|
* ampdu is negotiated. This means the initially-negotiated BAW left
|
|
* edge won't match the ni->ni_txseq.
|
|
*
|
|
* So, being very dirty, the BAW left edge is "slid" here to match
|
|
* ni->ni_txseq.
|
|
*
|
|
* What likely SHOULD happen is that all packets subsequent to the
|
|
* addba request should be tagged as aggregate and queued as non-aggregate
|
|
* frames; thus updating the BAW. For now though, I'll just slide the
|
|
* window.
|
|
*/
|
|
int
|
|
ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
|
|
int status, int code, int batimeout)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
|
|
int tid = WME_AC_TO_TID(tap->txa_ac);
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
int r;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: called; status=%d, code=%d, batimeout=%d\n", __func__,
|
|
status, code, batimeout);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: txa_start=%d, ni_txseqs=%d\n",
|
|
__func__, tap->txa_start, ni->ni_txseqs[tid]);
|
|
|
|
/*
|
|
* Call this first, so the interface flags get updated
|
|
* before the TID is unpaused. Otherwise a race condition
|
|
* exists where the unpaused TID still doesn't yet have
|
|
* IEEE80211_AGGR_RUNNING set.
|
|
*/
|
|
r = sc->sc_addba_response(ni, tap, status, code, batimeout);
|
|
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
/*
|
|
* XXX dirty!
|
|
* Slide the BAW left edge to wherever net80211 left it for us.
|
|
* Read above for more information.
|
|
*/
|
|
tap->txa_start = ni->ni_txseqs[tid];
|
|
ath_tx_tid_resume(sc, atid);
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Stop ADDBA on a queue.
|
|
*/
|
|
void
|
|
ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
|
|
int tid = WME_AC_TO_TID(tap->txa_ac);
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__);
|
|
|
|
/* Pause TID traffic early, so there aren't any races */
|
|
ath_tx_tid_pause(sc, atid);
|
|
|
|
/* There's no need to hold the TXQ lock here */
|
|
sc->sc_addba_stop(ni, tap);
|
|
|
|
/*
|
|
* ath_tx_cleanup will resume the TID if possible, otherwise
|
|
* it'll set the cleanup flag, and it'll be unpaused once
|
|
* things have been cleaned up.
|
|
*/
|
|
ath_tx_cleanup(sc, an, tid);
|
|
}
|
|
|
|
/*
|
|
* Note: net80211 bar_timeout() doesn't call this function on BAR failure;
|
|
* it simply tears down the aggregation session. Ew.
|
|
*
|
|
* It however will call ieee80211_ampdu_stop() which will call
|
|
* ic->ic_addba_stop().
|
|
*
|
|
* XXX This uses a hard-coded max BAR count value; the whole
|
|
* XXX BAR TX success or failure should be better handled!
|
|
*/
|
|
void
|
|
ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
|
|
int status)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
|
|
int tid = WME_AC_TO_TID(tap->txa_ac);
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
int attempts = tap->txa_attempts;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: called; status=%d\n", __func__, status);
|
|
|
|
/* Note: This may update the BAW details */
|
|
sc->sc_bar_response(ni, tap, status);
|
|
|
|
/* Unpause the TID */
|
|
/*
|
|
* XXX if this is attempt=50, the TID will be downgraded
|
|
* XXX to a non-aggregate session. So we must unpause the
|
|
* XXX TID here or it'll never be done.
|
|
*/
|
|
if (status == 0 || attempts == 50) {
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
ath_tx_tid_resume(sc, atid);
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called whenever the pending ADDBA request times out.
|
|
* Unpause and reschedule the TID.
|
|
*/
|
|
void
|
|
ath_addba_response_timeout(struct ieee80211_node *ni,
|
|
struct ieee80211_tx_ampdu *tap)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
|
|
int tid = WME_AC_TO_TID(tap->txa_ac);
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: called; resuming\n", __func__);
|
|
|
|
/* Note: This updates the aggregate state to (again) pending */
|
|
sc->sc_addba_response_timeout(ni, tap);
|
|
|
|
/* Unpause the TID; which reschedules it */
|
|
ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
|
|
ath_tx_tid_resume(sc, atid);
|
|
ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
|
|
}
|