freebsd-skq/sys/dev/smc/if_smc.c
marius b4610d98b0 - Import the common MII bitbang'ing code from NetBSD and convert drivers to
take advantage of it instead of duplicating it. This reduces the size of
  the i386 GENERIC kernel by about 4k. The only potential in-tree user left
  unconverted is xe(4), which generally should be changed to use miibus(4)
  instead of implementing PHY handling on its own, as otherwise it makes not
  much sense to add a dependency on miibus(4)/mii_bitbang(4) to xe(4) just
  for the MII bitbang'ing code. The common MII bitbang'ing code also is
  useful in the embedded space for using GPIO pins to implement MII access.
- Based on lessons learnt with dc(4) (see r185750), add bus barriers to the
  MII bitbang read and write functions of the other drivers converted in
  order to ensure the intended ordering. Given that register access via an
  index register as well as register bank/window switching is subject to the
  same problem, also add bus barriers to the respective functions of smc(4),
  tl(4) and xl(4).
- Sprinkle some const.

Thanks to the following testers:
Andrew Bliznak (nge(4)), nwhitehorn@ (bm(4)), yongari@ (sis(4) and ste(4))
Thanks to Hans-Joerg Sirtl for supplying hardware to test stge(4).

Reviewed by:	yongari (subset of drivers)
Obtained from:	NetBSD (partially)
2011-11-01 16:13:59 +00:00

1313 lines
27 KiB
C

/*-
* Copyright (c) 2008 Benno Rice. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for SMSC LAN91C111, may work for older variants.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/taskqueue.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_mib.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <dev/smc/if_smcreg.h>
#include <dev/smc/if_smcvar.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#define SMC_LOCK(sc) mtx_lock(&(sc)->smc_mtx)
#define SMC_UNLOCK(sc) mtx_unlock(&(sc)->smc_mtx)
#define SMC_ASSERT_LOCKED(sc) mtx_assert(&(sc)->smc_mtx, MA_OWNED)
#define SMC_INTR_PRIORITY 0
#define SMC_RX_PRIORITY 5
#define SMC_TX_PRIORITY 10
devclass_t smc_devclass;
static const char *smc_chip_ids[16] = {
NULL, NULL, NULL,
/* 3 */ "SMSC LAN91C90 or LAN91C92",
/* 4 */ "SMSC LAN91C94",
/* 5 */ "SMSC LAN91C95",
/* 6 */ "SMSC LAN91C96",
/* 7 */ "SMSC LAN91C100",
/* 8 */ "SMSC LAN91C100FD",
/* 9 */ "SMSC LAN91C110FD or LAN91C111FD",
NULL, NULL, NULL,
NULL, NULL, NULL
};
static void smc_init(void *);
static void smc_start(struct ifnet *);
static void smc_stop(struct smc_softc *);
static int smc_ioctl(struct ifnet *, u_long, caddr_t);
static void smc_init_locked(struct smc_softc *);
static void smc_start_locked(struct ifnet *);
static void smc_reset(struct smc_softc *);
static int smc_mii_ifmedia_upd(struct ifnet *);
static void smc_mii_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void smc_mii_tick(void *);
static void smc_mii_mediachg(struct smc_softc *);
static int smc_mii_mediaioctl(struct smc_softc *, struct ifreq *, u_long);
static void smc_task_intr(void *, int);
static void smc_task_rx(void *, int);
static void smc_task_tx(void *, int);
static driver_filter_t smc_intr;
static timeout_t smc_watchdog;
#ifdef DEVICE_POLLING
static poll_handler_t smc_poll;
#endif
/*
* MII bit-bang glue
*/
static uint32_t smc_mii_bitbang_read(device_t);
static void smc_mii_bitbang_write(device_t, uint32_t);
static const struct mii_bitbang_ops smc_mii_bitbang_ops = {
smc_mii_bitbang_read,
smc_mii_bitbang_write,
{
MGMT_MDO, /* MII_BIT_MDO */
MGMT_MDI, /* MII_BIT_MDI */
MGMT_MCLK, /* MII_BIT_MDC */
MGMT_MDOE, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static __inline void
smc_select_bank(struct smc_softc *sc, uint16_t bank)
{
bus_barrier(sc->smc_reg, BSR, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
bus_write_2(sc->smc_reg, BSR, bank & BSR_BANK_MASK);
bus_barrier(sc->smc_reg, BSR, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
/* Never call this when not in bank 2. */
static __inline void
smc_mmu_wait(struct smc_softc *sc)
{
KASSERT((bus_read_2(sc->smc_reg, BSR) &
BSR_BANK_MASK) == 2, ("%s: smc_mmu_wait called when not in bank 2",
device_get_nameunit(sc->smc_dev)));
while (bus_read_2(sc->smc_reg, MMUCR) & MMUCR_BUSY)
;
}
static __inline uint8_t
smc_read_1(struct smc_softc *sc, bus_size_t offset)
{
return (bus_read_1(sc->smc_reg, offset));
}
static __inline void
smc_write_1(struct smc_softc *sc, bus_size_t offset, uint8_t val)
{
bus_write_1(sc->smc_reg, offset, val);
}
static __inline uint16_t
smc_read_2(struct smc_softc *sc, bus_size_t offset)
{
return (bus_read_2(sc->smc_reg, offset));
}
static __inline void
smc_write_2(struct smc_softc *sc, bus_size_t offset, uint16_t val)
{
bus_write_2(sc->smc_reg, offset, val);
}
static __inline void
smc_read_multi_2(struct smc_softc *sc, bus_size_t offset, uint16_t *datap,
bus_size_t count)
{
bus_read_multi_2(sc->smc_reg, offset, datap, count);
}
static __inline void
smc_write_multi_2(struct smc_softc *sc, bus_size_t offset, uint16_t *datap,
bus_size_t count)
{
bus_write_multi_2(sc->smc_reg, offset, datap, count);
}
static __inline void
smc_barrier(struct smc_softc *sc, bus_size_t offset, bus_size_t length,
int flags)
{
bus_barrier(sc->smc_reg, offset, length, flags);
}
int
smc_probe(device_t dev)
{
int rid, type, error;
uint16_t val;
struct smc_softc *sc;
struct resource *reg;
sc = device_get_softc(dev);
rid = 0;
type = SYS_RES_IOPORT;
error = 0;
if (sc->smc_usemem)
type = SYS_RES_MEMORY;
reg = bus_alloc_resource(dev, type, &rid, 0, ~0, 16, RF_ACTIVE);
if (reg == NULL) {
if (bootverbose)
device_printf(dev,
"could not allocate I/O resource for probe\n");
return (ENXIO);
}
/* Check for the identification value in the BSR. */
val = bus_read_2(reg, BSR);
if ((val & BSR_IDENTIFY_MASK) != BSR_IDENTIFY) {
if (bootverbose)
device_printf(dev, "identification value not in BSR\n");
error = ENXIO;
goto done;
}
/*
* Try switching banks and make sure we still get the identification
* value.
*/
bus_write_2(reg, BSR, 0);
val = bus_read_2(reg, BSR);
if ((val & BSR_IDENTIFY_MASK) != BSR_IDENTIFY) {
if (bootverbose)
device_printf(dev,
"identification value not in BSR after write\n");
error = ENXIO;
goto done;
}
#if 0
/* Check the BAR. */
bus_write_2(reg, BSR, 1);
val = bus_read_2(reg, BAR);
val = BAR_ADDRESS(val);
if (rman_get_start(reg) != val) {
if (bootverbose)
device_printf(dev, "BAR address %x does not match "
"I/O resource address %lx\n", val,
rman_get_start(reg));
error = ENXIO;
goto done;
}
#endif
/* Compare REV against known chip revisions. */
bus_write_2(reg, BSR, 3);
val = bus_read_2(reg, REV);
val = (val & REV_CHIP_MASK) >> REV_CHIP_SHIFT;
if (smc_chip_ids[val] == NULL) {
if (bootverbose)
device_printf(dev, "Unknown chip revision: %d\n", val);
error = ENXIO;
goto done;
}
device_set_desc(dev, smc_chip_ids[val]);
done:
bus_release_resource(dev, type, rid, reg);
return (error);
}
int
smc_attach(device_t dev)
{
int type, error;
uint16_t val;
u_char eaddr[ETHER_ADDR_LEN];
struct smc_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
error = 0;
sc->smc_dev = dev;
ifp = sc->smc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
error = ENOSPC;
goto done;
}
mtx_init(&sc->smc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);
/* Set up watchdog callout. */
callout_init_mtx(&sc->smc_watchdog, &sc->smc_mtx, 0);
type = SYS_RES_IOPORT;
if (sc->smc_usemem)
type = SYS_RES_MEMORY;
sc->smc_reg_rid = 0;
sc->smc_reg = bus_alloc_resource(dev, type, &sc->smc_reg_rid, 0, ~0,
16, RF_ACTIVE);
if (sc->smc_reg == NULL) {
error = ENXIO;
goto done;
}
sc->smc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->smc_irq_rid, 0,
~0, 1, RF_ACTIVE | RF_SHAREABLE);
if (sc->smc_irq == NULL) {
error = ENXIO;
goto done;
}
SMC_LOCK(sc);
smc_reset(sc);
SMC_UNLOCK(sc);
smc_select_bank(sc, 3);
val = smc_read_2(sc, REV);
sc->smc_chip = (val & REV_CHIP_MASK) >> REV_CHIP_SHIFT;
sc->smc_rev = (val * REV_REV_MASK) >> REV_REV_SHIFT;
if (bootverbose)
device_printf(dev, "revision %x\n", sc->smc_rev);
callout_init_mtx(&sc->smc_mii_tick_ch, &sc->smc_mtx,
CALLOUT_RETURNUNLOCKED);
if (sc->smc_chip >= REV_CHIP_91110FD) {
(void)mii_attach(dev, &sc->smc_miibus, ifp,
smc_mii_ifmedia_upd, smc_mii_ifmedia_sts, BMSR_DEFCAPMASK,
MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (sc->smc_miibus != NULL) {
sc->smc_mii_tick = smc_mii_tick;
sc->smc_mii_mediachg = smc_mii_mediachg;
sc->smc_mii_mediaioctl = smc_mii_mediaioctl;
}
}
smc_select_bank(sc, 1);
eaddr[0] = smc_read_1(sc, IAR0);
eaddr[1] = smc_read_1(sc, IAR1);
eaddr[2] = smc_read_1(sc, IAR2);
eaddr[3] = smc_read_1(sc, IAR3);
eaddr[4] = smc_read_1(sc, IAR4);
eaddr[5] = smc_read_1(sc, IAR5);
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = smc_init;
ifp->if_ioctl = smc_ioctl;
ifp->if_start = smc_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = ifp->if_capenable = 0;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
ether_ifattach(ifp, eaddr);
/* Set up taskqueue */
TASK_INIT(&sc->smc_intr, SMC_INTR_PRIORITY, smc_task_intr, ifp);
TASK_INIT(&sc->smc_rx, SMC_RX_PRIORITY, smc_task_rx, ifp);
TASK_INIT(&sc->smc_tx, SMC_TX_PRIORITY, smc_task_tx, ifp);
sc->smc_tq = taskqueue_create_fast("smc_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->smc_tq);
taskqueue_start_threads(&sc->smc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->smc_dev));
/* Mask all interrupts. */
sc->smc_mask = 0;
smc_write_1(sc, MSK, 0);
/* Wire up interrupt */
error = bus_setup_intr(dev, sc->smc_irq,
INTR_TYPE_NET|INTR_MPSAFE, smc_intr, NULL, sc, &sc->smc_ih);
if (error != 0)
goto done;
done:
if (error != 0)
smc_detach(dev);
return (error);
}
int
smc_detach(device_t dev)
{
int type;
struct smc_softc *sc;
sc = device_get_softc(dev);
SMC_LOCK(sc);
smc_stop(sc);
SMC_UNLOCK(sc);
if (sc->smc_ifp != NULL) {
ether_ifdetach(sc->smc_ifp);
}
callout_drain(&sc->smc_watchdog);
callout_drain(&sc->smc_mii_tick_ch);
#ifdef DEVICE_POLLING
if (sc->smc_ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(sc->smc_ifp);
#endif
if (sc->smc_ih != NULL)
bus_teardown_intr(sc->smc_dev, sc->smc_irq, sc->smc_ih);
if (sc->smc_tq != NULL) {
taskqueue_drain(sc->smc_tq, &sc->smc_intr);
taskqueue_drain(sc->smc_tq, &sc->smc_rx);
taskqueue_drain(sc->smc_tq, &sc->smc_tx);
taskqueue_free(sc->smc_tq);
sc->smc_tq = NULL;
}
if (sc->smc_ifp != NULL) {
if_free(sc->smc_ifp);
}
if (sc->smc_miibus != NULL) {
device_delete_child(sc->smc_dev, sc->smc_miibus);
bus_generic_detach(sc->smc_dev);
}
if (sc->smc_reg != NULL) {
type = SYS_RES_IOPORT;
if (sc->smc_usemem)
type = SYS_RES_MEMORY;
bus_release_resource(sc->smc_dev, type, sc->smc_reg_rid,
sc->smc_reg);
}
if (sc->smc_irq != NULL)
bus_release_resource(sc->smc_dev, SYS_RES_IRQ, sc->smc_irq_rid,
sc->smc_irq);
if (mtx_initialized(&sc->smc_mtx))
mtx_destroy(&sc->smc_mtx);
return (0);
}
static void
smc_start(struct ifnet *ifp)
{
struct smc_softc *sc;
sc = ifp->if_softc;
SMC_LOCK(sc);
smc_start_locked(ifp);
SMC_UNLOCK(sc);
}
static void
smc_start_locked(struct ifnet *ifp)
{
struct smc_softc *sc;
struct mbuf *m;
u_int len, npages, spin_count;
sc = ifp->if_softc;
SMC_ASSERT_LOCKED(sc);
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
if (IFQ_IS_EMPTY(&ifp->if_snd))
return;
/*
* Grab the next packet. If it's too big, drop it.
*/
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
len = m_length(m, NULL);
len += (len & 1);
if (len > ETHER_MAX_LEN - ETHER_CRC_LEN) {
if_printf(ifp, "large packet discarded\n");
++ifp->if_oerrors;
m_freem(m);
return; /* XXX readcheck? */
}
/*
* Flag that we're busy.
*/
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
sc->smc_pending = m;
/*
* Work out how many 256 byte "pages" we need. We have to include the
* control data for the packet in this calculation.
*/
npages = (len * PKT_CTRL_DATA_LEN) >> 8;
if (npages == 0)
npages = 1;
/*
* Request memory.
*/
smc_select_bank(sc, 2);
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_TX_ALLOC | npages);
/*
* Spin briefly to see if the allocation succeeds.
*/
spin_count = TX_ALLOC_WAIT_TIME;
do {
if (smc_read_1(sc, IST) & ALLOC_INT) {
smc_write_1(sc, ACK, ALLOC_INT);
break;
}
} while (--spin_count);
/*
* If the allocation is taking too long, unmask the alloc interrupt
* and wait.
*/
if (spin_count == 0) {
sc->smc_mask |= ALLOC_INT;
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
smc_write_1(sc, MSK, sc->smc_mask);
return;
}
taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
}
static void
smc_task_tx(void *context, int pending)
{
struct ifnet *ifp;
struct smc_softc *sc;
struct mbuf *m, *m0;
u_int packet, len;
int last_len;
uint8_t *data;
(void)pending;
ifp = (struct ifnet *)context;
sc = ifp->if_softc;
SMC_LOCK(sc);
if (sc->smc_pending == NULL) {
SMC_UNLOCK(sc);
goto next_packet;
}
m = m0 = sc->smc_pending;
sc->smc_pending = NULL;
smc_select_bank(sc, 2);
/*
* Check the allocation result.
*/
packet = smc_read_1(sc, ARR);
/*
* If the allocation failed, requeue the packet and retry.
*/
if (packet & ARR_FAILED) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
++ifp->if_oerrors;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
smc_start_locked(ifp);
SMC_UNLOCK(sc);
return;
}
/*
* Tell the device to write to our packet number.
*/
smc_write_1(sc, PNR, packet);
smc_write_2(sc, PTR, 0 | PTR_AUTO_INCR);
/*
* Tell the device how long the packet is (including control data).
*/
len = m_length(m, 0);
len += PKT_CTRL_DATA_LEN;
smc_write_2(sc, DATA0, 0);
smc_write_2(sc, DATA0, len);
/*
* Push the data out to the device.
*/
data = NULL;
last_len = 0;
for (; m != NULL; m = m->m_next) {
data = mtod(m, uint8_t *);
smc_write_multi_2(sc, DATA0, (uint16_t *)data, m->m_len / 2);
last_len = m->m_len;
}
/*
* Push out the control byte and and the odd byte if needed.
*/
if ((len & 1) != 0 && data != NULL)
smc_write_2(sc, DATA0, (CTRL_ODD << 8) | data[last_len - 1]);
else
smc_write_2(sc, DATA0, 0);
/*
* Unmask the TX empty interrupt.
*/
sc->smc_mask |= TX_EMPTY_INT;
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
smc_write_1(sc, MSK, sc->smc_mask);
/*
* Enqueue the packet.
*/
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_ENQUEUE);
callout_reset(&sc->smc_watchdog, hz * 2, smc_watchdog, sc);
/*
* Finish up.
*/
ifp->if_opackets++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
SMC_UNLOCK(sc);
BPF_MTAP(ifp, m0);
m_freem(m0);
next_packet:
/*
* See if there's anything else to do.
*/
smc_start(ifp);
}
static void
smc_task_rx(void *context, int pending)
{
u_int packet, status, len;
uint8_t *data;
struct ifnet *ifp;
struct smc_softc *sc;
struct mbuf *m, *mhead, *mtail;
(void)pending;
ifp = (struct ifnet *)context;
sc = ifp->if_softc;
mhead = mtail = NULL;
SMC_LOCK(sc);
packet = smc_read_1(sc, FIFO_RX);
while ((packet & FIFO_EMPTY) == 0) {
/*
* Grab an mbuf and attach a cluster.
*/
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
break;
}
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
break;
}
/*
* Point to the start of the packet.
*/
smc_select_bank(sc, 2);
smc_write_1(sc, PNR, packet);
smc_write_2(sc, PTR, 0 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);
/*
* Grab status and packet length.
*/
status = smc_read_2(sc, DATA0);
len = smc_read_2(sc, DATA0) & RX_LEN_MASK;
len -= 6;
if (status & RX_ODDFRM)
len += 1;
/*
* Check for errors.
*/
if (status & (RX_TOOSHORT | RX_TOOLNG | RX_BADCRC | RX_ALGNERR)) {
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
ifp->if_ierrors++;
m_freem(m);
break;
}
/*
* Set the mbuf up the way we want it.
*/
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len + 2; /* XXX: Is this right? */
m_adj(m, ETHER_ALIGN);
/*
* Pull the packet out of the device. Make sure we're in the
* right bank first as things may have changed while we were
* allocating our mbuf.
*/
smc_select_bank(sc, 2);
smc_write_1(sc, PNR, packet);
smc_write_2(sc, PTR, 4 | PTR_READ | PTR_RCV | PTR_AUTO_INCR);
data = mtod(m, uint8_t *);
smc_read_multi_2(sc, DATA0, (uint16_t *)data, len >> 1);
if (len & 1) {
data += len & ~1;
*data = smc_read_1(sc, DATA0);
}
/*
* Tell the device we're done.
*/
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE);
if (m == NULL) {
break;
}
if (mhead == NULL) {
mhead = mtail = m;
m->m_next = NULL;
} else {
mtail->m_next = m;
mtail = m;
}
packet = smc_read_1(sc, FIFO_RX);
}
sc->smc_mask |= RCV_INT;
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
smc_write_1(sc, MSK, sc->smc_mask);
SMC_UNLOCK(sc);
while (mhead != NULL) {
m = mhead;
mhead = mhead->m_next;
m->m_next = NULL;
ifp->if_ipackets++;
(*ifp->if_input)(ifp, m);
}
}
#ifdef DEVICE_POLLING
static void
smc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct smc_softc *sc;
sc = ifp->if_softc;
SMC_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
SMC_UNLOCK(sc);
return;
}
SMC_UNLOCK(sc);
if (cmd == POLL_AND_CHECK_STATUS)
taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
}
#endif
static int
smc_intr(void *context)
{
struct smc_softc *sc;
sc = (struct smc_softc *)context;
taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
return (FILTER_HANDLED);
}
static void
smc_task_intr(void *context, int pending)
{
struct smc_softc *sc;
struct ifnet *ifp;
u_int status, packet, counter, tcr;
(void)pending;
ifp = (struct ifnet *)context;
sc = ifp->if_softc;
SMC_LOCK(sc);
smc_select_bank(sc, 2);
/*
* Get the current mask, and then block all interrupts while we're
* working.
*/
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
smc_write_1(sc, MSK, 0);
/*
* Find out what interrupts are flagged.
*/
status = smc_read_1(sc, IST) & sc->smc_mask;
/*
* Transmit error
*/
if (status & TX_INT) {
/*
* Kill off the packet if there is one and re-enable transmit.
*/
packet = smc_read_1(sc, FIFO_TX);
if ((packet & FIFO_EMPTY) == 0) {
smc_write_1(sc, PNR, packet);
smc_write_2(sc, PTR, 0 | PTR_READ |
PTR_AUTO_INCR);
tcr = smc_read_2(sc, DATA0);
if ((tcr & EPHSR_TX_SUC) == 0)
device_printf(sc->smc_dev,
"bad packet\n");
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_RELEASE_PKT);
smc_select_bank(sc, 0);
tcr = smc_read_2(sc, TCR);
tcr |= TCR_TXENA | TCR_PAD_EN;
smc_write_2(sc, TCR, tcr);
smc_select_bank(sc, 2);
taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
}
/*
* Ack the interrupt.
*/
smc_write_1(sc, ACK, TX_INT);
}
/*
* Receive
*/
if (status & RCV_INT) {
smc_write_1(sc, ACK, RCV_INT);
sc->smc_mask &= ~RCV_INT;
taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_rx);
}
/*
* Allocation
*/
if (status & ALLOC_INT) {
smc_write_1(sc, ACK, ALLOC_INT);
sc->smc_mask &= ~ALLOC_INT;
taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
}
/*
* Receive overrun
*/
if (status & RX_OVRN_INT) {
smc_write_1(sc, ACK, RX_OVRN_INT);
ifp->if_ierrors++;
}
/*
* Transmit empty
*/
if (status & TX_EMPTY_INT) {
smc_write_1(sc, ACK, TX_EMPTY_INT);
sc->smc_mask &= ~TX_EMPTY_INT;
callout_stop(&sc->smc_watchdog);
/*
* Update collision stats.
*/
smc_select_bank(sc, 0);
counter = smc_read_2(sc, ECR);
smc_select_bank(sc, 2);
ifp->if_collisions +=
(counter & ECR_SNGLCOL_MASK) >> ECR_SNGLCOL_SHIFT;
ifp->if_collisions +=
(counter & ECR_MULCOL_MASK) >> ECR_MULCOL_SHIFT;
/*
* See if there are any packets to transmit.
*/
taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_tx);
}
/*
* Update the interrupt mask.
*/
if ((ifp->if_capenable & IFCAP_POLLING) == 0)
smc_write_1(sc, MSK, sc->smc_mask);
SMC_UNLOCK(sc);
}
static uint32_t
smc_mii_bitbang_read(device_t dev)
{
struct smc_softc *sc;
uint32_t val;
sc = device_get_softc(dev);
SMC_ASSERT_LOCKED(sc);
KASSERT((smc_read_2(sc, BSR) & BSR_BANK_MASK) == 3,
("%s: smc_mii_bitbang_read called with bank %d (!= 3)",
device_get_nameunit(sc->smc_dev),
smc_read_2(sc, BSR) & BSR_BANK_MASK));
val = smc_read_2(sc, MGMT);
smc_barrier(sc, MGMT, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (val);
}
static void
smc_mii_bitbang_write(device_t dev, uint32_t val)
{
struct smc_softc *sc;
sc = device_get_softc(dev);
SMC_ASSERT_LOCKED(sc);
KASSERT((smc_read_2(sc, BSR) & BSR_BANK_MASK) == 3,
("%s: smc_mii_bitbang_write called with bank %d (!= 3)",
device_get_nameunit(sc->smc_dev),
smc_read_2(sc, BSR) & BSR_BANK_MASK));
smc_write_2(sc, MGMT, val);
smc_barrier(sc, MGMT, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
int
smc_miibus_readreg(device_t dev, int phy, int reg)
{
struct smc_softc *sc;
int val;
sc = device_get_softc(dev);
SMC_LOCK(sc);
smc_select_bank(sc, 3);
val = mii_bitbang_readreg(dev, &smc_mii_bitbang_ops, phy, reg);
SMC_UNLOCK(sc);
return (val);
}
int
smc_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct smc_softc *sc;
sc = device_get_softc(dev);
SMC_LOCK(sc);
smc_select_bank(sc, 3);
mii_bitbang_writereg(dev, &smc_mii_bitbang_ops, phy, reg, data);
SMC_UNLOCK(sc);
return (0);
}
void
smc_miibus_statchg(device_t dev)
{
struct smc_softc *sc;
struct mii_data *mii;
uint16_t tcr;
sc = device_get_softc(dev);
mii = device_get_softc(sc->smc_miibus);
SMC_LOCK(sc);
smc_select_bank(sc, 0);
tcr = smc_read_2(sc, TCR);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
tcr |= TCR_SWFDUP;
else
tcr &= ~TCR_SWFDUP;
smc_write_2(sc, TCR, tcr);
SMC_UNLOCK(sc);
}
static int
smc_mii_ifmedia_upd(struct ifnet *ifp)
{
struct smc_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
if (sc->smc_miibus == NULL)
return (ENXIO);
mii = device_get_softc(sc->smc_miibus);
return (mii_mediachg(mii));
}
static void
smc_mii_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct smc_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
if (sc->smc_miibus == NULL)
return;
mii = device_get_softc(sc->smc_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static void
smc_mii_tick(void *context)
{
struct smc_softc *sc;
sc = (struct smc_softc *)context;
if (sc->smc_miibus == NULL)
return;
SMC_UNLOCK(sc);
mii_tick(device_get_softc(sc->smc_miibus));
callout_reset(&sc->smc_mii_tick_ch, hz, smc_mii_tick, sc);
}
static void
smc_mii_mediachg(struct smc_softc *sc)
{
if (sc->smc_miibus == NULL)
return;
mii_mediachg(device_get_softc(sc->smc_miibus));
}
static int
smc_mii_mediaioctl(struct smc_softc *sc, struct ifreq *ifr, u_long command)
{
struct mii_data *mii;
if (sc->smc_miibus == NULL)
return (EINVAL);
mii = device_get_softc(sc->smc_miibus);
return (ifmedia_ioctl(sc->smc_ifp, ifr, &mii->mii_media, command));
}
static void
smc_reset(struct smc_softc *sc)
{
u_int ctr;
SMC_ASSERT_LOCKED(sc);
smc_select_bank(sc, 2);
/*
* Mask all interrupts.
*/
smc_write_1(sc, MSK, 0);
/*
* Tell the device to reset.
*/
smc_select_bank(sc, 0);
smc_write_2(sc, RCR, RCR_SOFT_RST);
/*
* Set up the configuration register.
*/
smc_select_bank(sc, 1);
smc_write_2(sc, CR, CR_EPH_POWER_EN);
DELAY(1);
/*
* Turn off transmit and receive.
*/
smc_select_bank(sc, 0);
smc_write_2(sc, TCR, 0);
smc_write_2(sc, RCR, 0);
/*
* Set up the control register.
*/
smc_select_bank(sc, 1);
ctr = smc_read_2(sc, CTR);
ctr |= CTR_LE_ENABLE | CTR_AUTO_RELEASE;
smc_write_2(sc, CTR, ctr);
/*
* Reset the MMU.
*/
smc_select_bank(sc, 2);
smc_mmu_wait(sc);
smc_write_2(sc, MMUCR, MMUCR_CMD_MMU_RESET);
}
static void
smc_enable(struct smc_softc *sc)
{
struct ifnet *ifp;
SMC_ASSERT_LOCKED(sc);
ifp = sc->smc_ifp;
/*
* Set up the receive/PHY control register.
*/
smc_select_bank(sc, 0);
smc_write_2(sc, RPCR, RPCR_ANEG | (RPCR_LED_LINK_ANY << RPCR_LSA_SHIFT)
| (RPCR_LED_ACT_ANY << RPCR_LSB_SHIFT));
/*
* Set up the transmit and receive control registers.
*/
smc_write_2(sc, TCR, TCR_TXENA | TCR_PAD_EN);
smc_write_2(sc, RCR, RCR_RXEN | RCR_STRIP_CRC);
/*
* Set up the interrupt mask.
*/
smc_select_bank(sc, 2);
sc->smc_mask = EPH_INT | RX_OVRN_INT | RCV_INT | TX_INT;
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
smc_write_1(sc, MSK, sc->smc_mask);
}
static void
smc_stop(struct smc_softc *sc)
{
SMC_ASSERT_LOCKED(sc);
/*
* Turn off callouts.
*/
callout_stop(&sc->smc_watchdog);
callout_stop(&sc->smc_mii_tick_ch);
/*
* Mask all interrupts.
*/
smc_select_bank(sc, 2);
sc->smc_mask = 0;
smc_write_1(sc, MSK, 0);
#ifdef DEVICE_POLLING
ether_poll_deregister(sc->smc_ifp);
sc->smc_ifp->if_capenable &= ~IFCAP_POLLING;
sc->smc_ifp->if_capenable &= ~IFCAP_POLLING_NOCOUNT;
#endif
/*
* Disable transmit and receive.
*/
smc_select_bank(sc, 0);
smc_write_2(sc, TCR, 0);
smc_write_2(sc, RCR, 0);
sc->smc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
}
static void
smc_watchdog(void *arg)
{
struct smc_softc *sc;
sc = (struct smc_softc *)arg;
device_printf(sc->smc_dev, "watchdog timeout\n");
taskqueue_enqueue_fast(sc->smc_tq, &sc->smc_intr);
}
static void
smc_init(void *context)
{
struct smc_softc *sc;
sc = (struct smc_softc *)context;
SMC_LOCK(sc);
smc_init_locked(sc);
SMC_UNLOCK(sc);
}
static void
smc_init_locked(struct smc_softc *sc)
{
struct ifnet *ifp;
ifp = sc->smc_ifp;
SMC_ASSERT_LOCKED(sc);
smc_reset(sc);
smc_enable(sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
smc_start_locked(ifp);
if (sc->smc_mii_tick != NULL)
callout_reset(&sc->smc_mii_tick_ch, hz, sc->smc_mii_tick, sc);
#ifdef DEVICE_POLLING
SMC_UNLOCK(sc);
ether_poll_register(smc_poll, ifp);
SMC_LOCK(sc);
ifp->if_capenable |= IFCAP_POLLING;
ifp->if_capenable |= IFCAP_POLLING_NOCOUNT;
#endif
}
static int
smc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct smc_softc *sc;
int error;
sc = ifp->if_softc;
error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
SMC_LOCK(sc);
smc_stop(sc);
SMC_UNLOCK(sc);
} else {
smc_init(sc);
if (sc->smc_mii_mediachg != NULL)
sc->smc_mii_mediachg(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* XXX
SMC_LOCK(sc);
smc_setmcast(sc);
SMC_UNLOCK(sc);
*/
error = EINVAL;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
if (sc->smc_mii_mediaioctl == NULL) {
error = EINVAL;
break;
}
sc->smc_mii_mediaioctl(sc, (struct ifreq *)data, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}