4060 lines
104 KiB
C

/* $Id: isp.c,v 1.17 1999/04/04 02:28:29 mjacob Exp $ */
/* release_4_3_99+ */
/*
* Machine and OS Independent (well, as best as possible)
* code for the Qlogic ISP SCSI adapters.
*
* Copyright (c) 1997, 1998 by Matthew Jacob
* NASA/Ames Research Center
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Inspiration and ideas about this driver are from Erik Moe's Linux driver
* (qlogicisp.c) and Dave Miller's SBus version of same (qlogicisp.c). Some
* ideas dredged from the Solaris driver.
*/
/*
* Include header file appropriate for platform we're building on.
*/
#ifdef __NetBSD__
#include <dev/ic/isp_netbsd.h>
#endif
#ifdef __FreeBSD__
#include <dev/isp/isp_freebsd.h>
#endif
#ifdef __OpenBSD__
#include <dev/ic/isp_openbsd.h>
#endif
#ifdef __linux__
#include "isp_linux.h"
#endif
/*
* General defines
*/
#define MBOX_DELAY_COUNT 1000000 / 100
/*
* Local static data
*/
#ifdef ISP_TARGET_MODE
static const char tgtiqd[36] = {
0x03, 0x00, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00,
0x51, 0x4C, 0x4F, 0x47, 0x49, 0x43, 0x20, 0x20,
#ifdef __NetBSD__
0x4E, 0x45, 0x54, 0x42, 0x53, 0x44, 0x20, 0x20,
#else
# ifdef __FreeBSD__
0x46, 0x52, 0x45, 0x45, 0x42, 0x52, 0x44, 0x20,
# else
# ifdef __OpenBSD__
0x4F, 0x50, 0x45, 0x4E, 0x42, 0x52, 0x44, 0x20,
# else
# ifdef linux
0x4C, 0x49, 0x4E, 0x55, 0x58, 0x20, 0x20, 0x20,
# else
# endif
# endif
# endif
#endif
0x54, 0x41, 0x52, 0x47, 0x45, 0x54, 0x20, 0x20,
0x20, 0x20, 0x20, 0x31
};
#endif
/*
* Local function prototypes.
*/
static int isp_parse_async __P((struct ispsoftc *, int));
static int isp_handle_other_response
__P((struct ispsoftc *, ispstatusreq_t *, u_int8_t *));
#ifdef ISP_TARGET_MODE
static int isp_modify_lun __P((struct ispsoftc *, int, int, int));
static void isp_notify_ack __P((struct ispsoftc *, void *));
static void isp_handle_atio __P((struct ispsoftc *, void *));
static void isp_handle_atio2 __P((struct ispsoftc *, void *));
static void isp_handle_ctio __P((struct ispsoftc *, void *));
static void isp_handle_ctio2 __P((struct ispsoftc *, void *));
#endif
static void isp_parse_status
__P((struct ispsoftc *, ispstatusreq_t *, ISP_SCSI_XFER_T *));
static void isp_fastpost_complete __P((struct ispsoftc *, int));
static void isp_fibre_init __P((struct ispsoftc *));
static void isp_mark_getpdb_all __P((struct ispsoftc *));
static int isp_getpdb __P((struct ispsoftc *, int, isp_pdb_t *));
static int isp_fclink_test __P((struct ispsoftc *, int));
static void isp_fw_state __P((struct ispsoftc *));
static void isp_dumpregs __P((struct ispsoftc *, const char *));
static void isp_dumpxflist __P((struct ispsoftc *));
static void isp_mboxcmd __P((struct ispsoftc *, mbreg_t *));
static void isp_update __P((struct ispsoftc *));
static void isp_setdfltparm __P((struct ispsoftc *));
static int isp_read_nvram __P((struct ispsoftc *));
static void isp_rdnvram_word __P((struct ispsoftc *, int, u_int16_t *));
/*
* Reset Hardware.
*
* Hit the chip over the head, download new f/w and set it running.
*
* Locking done elsewhere.
*/
void
isp_reset(isp)
struct ispsoftc *isp;
{
mbreg_t mbs;
int loops, i, dodnld = 1;
char *revname;
isp->isp_state = ISP_NILSTATE;
/*
* Basic types (SCSI, FibreChannel and PCI or SBus)
* have been set in the MD code. We figure out more
* here.
*/
isp->isp_dblev = DFLT_DBLEVEL;
/*
* After we've fired this chip up, zero out the conf1 register
* for SCSI adapters and other settings for the 2100.
*/
/*
* Get the current running firmware revision out of the
* chip before we hit it over the head (if this is our
* first time through). Note that we store this as the
* 'ROM' firmware revision- which it may not be. In any
* case, we don't really use this yet, but we may in
* the future.
*/
if (isp->isp_used == 0) {
/*
* Just in case it was paused...
*/
ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
mbs.param[0] = MBOX_ABOUT_FIRMWARE;
isp_mboxcmd(isp, &mbs);
/*
* If this fails, it probably means we're running
* an old prom, if anything at all...
*/
if (mbs.param[0] == MBOX_COMMAND_COMPLETE) {
isp->isp_romfw_rev[0] = mbs.param[1];
isp->isp_romfw_rev[1] = mbs.param[2];
isp->isp_romfw_rev[2] = mbs.param[3];
}
isp->isp_used = 1;
}
DISABLE_INTS(isp);
/*
* Put it into PAUSE mode.
*/
ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
#if 0
/*
* Do a little register testing.
*/
ISP_WRITE(isp, CDMA_COUNT, 0);
ISP_WRITE(isp, CDMA_ADDR0, 0xdead);
ISP_WRITE(isp, CDMA_ADDR1, 0xbeef);
ISP_WRITE(isp, CDMA_ADDR2, 0xffff);
ISP_WRITE(isp, CDMA_ADDR3, 0x1111);
PRINTF("%s: (0,dead,beef,ffff,1111):\n", isp->isp_name);
PRINTF("0x%x 0x%x 0x%x 0x%x 0x%x\n", ISP_READ(isp, CDMA_COUNT),
ISP_READ(isp, CDMA_ADDR0), ISP_READ(isp, CDMA_ADDR1),
ISP_READ(isp, CDMA_ADDR2), ISP_READ(isp, CDMA_ADDR3));
#endif
if (IS_FC(isp)) {
revname = "2100";
} else if (IS_1080(isp)) {
u_int16_t l;
sdparam *sdp = isp->isp_param;
revname = "1080";
sdp->isp_clock = 100;
l = ISP_READ(isp, SXP_PINS_DIFF) & ISP1080_MODE_MASK;
switch (l) {
case ISP1080_LVD_MODE:
sdp->isp_lvdmode = 1;
PRINTF("%s: LVD Mode\n", isp->isp_name);
break;
case ISP1080_HVD_MODE:
sdp->isp_diffmode = 1;
PRINTF("%s: Differential Mode\n", isp->isp_name);
break;
case ISP1080_SE_MODE:
sdp->isp_ultramode = 1;
PRINTF("%s: Single-Ended Mode\n", isp->isp_name);
break;
default:
/*
* Hmm. Up in a wierd mode. This means all SCSI I/O
* buffer lines are tristated, so we're in a lot of
* trouble if we don't set things up right.
*/
PRINTF("%s: Illegal Mode 0x%x\n", isp->isp_name, l);
break;
}
} else {
sdparam *sdp = isp->isp_param;
i = ISP_READ(isp, BIU_CONF0) & BIU_CONF0_HW_MASK;
switch (i) {
default:
PRINTF("%s: unknown chip rev. 0x%x- assuming a 1020\n",
isp->isp_name, i);
/* FALLTHROUGH */
case 1:
revname = "1020";
isp->isp_type = ISP_HA_SCSI_1020;
sdp->isp_clock = 40;
break;
case 2:
/*
* Some 1020A chips are Ultra Capable, but don't
* run the clock rate up for that unless told to
* do so by the Ultra Capable bits being set.
*/
revname = "1020A";
isp->isp_type = ISP_HA_SCSI_1020A;
sdp->isp_clock = 40;
break;
case 3:
revname = "1040";
isp->isp_type = ISP_HA_SCSI_1040;
sdp->isp_clock = 60;
break;
case 4:
revname = "1040A";
isp->isp_type = ISP_HA_SCSI_1040A;
sdp->isp_clock = 60;
break;
case 5:
revname = "1040B";
isp->isp_type = ISP_HA_SCSI_1040B;
sdp->isp_clock = 60;
break;
case 6:
revname = "1040C(?)";
isp->isp_type = ISP_HA_SCSI_1040C;
sdp->isp_clock = 60;
break;
}
/*
* Now, while we're at it, gather info about ultra
* and/or differential mode.
*/
if (ISP_READ(isp, SXP_PINS_DIFF) & SXP_PINS_DIFF_MODE) {
PRINTF("%s: Differential Mode\n", isp->isp_name);
sdp->isp_diffmode = 1;
} else {
sdp->isp_diffmode = 0;
}
i = ISP_READ(isp, RISC_PSR);
if (isp->isp_bustype == ISP_BT_SBUS) {
i &= RISC_PSR_SBUS_ULTRA;
} else {
i &= RISC_PSR_PCI_ULTRA;
}
if (i != 0) {
PRINTF("%s: Ultra Mode Capable\n", isp->isp_name);
sdp->isp_ultramode = 1;
/*
* If we're in Ultra Mode, we have to be 60Mhz clock-
* even for the SBus version.
*/
sdp->isp_clock = 60;
} else {
sdp->isp_ultramode = 0;
/*
* Clock is known. Gronk.
*/
}
/*
* Machine dependent clock (if set) overrides
* our generic determinations.
*/
if (isp->isp_mdvec->dv_clock) {
if (isp->isp_mdvec->dv_clock < sdp->isp_clock) {
sdp->isp_clock = isp->isp_mdvec->dv_clock;
}
}
}
/*
* Do MD specific pre initialization
*/
ISP_RESET0(isp);
again:
/*
* Hit the chip over the head with hammer,
* and give the ISP a chance to recover.
*/
if (IS_SCSI(isp)) {
ISP_WRITE(isp, BIU_ICR, BIU_ICR_SOFT_RESET);
/*
* A slight delay...
*/
SYS_DELAY(100);
#if 0
PRINTF("%s: mbox0-5: 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
isp->isp_name, ISP_READ(isp, OUTMAILBOX0),
ISP_READ(isp, OUTMAILBOX1), ISP_READ(isp, OUTMAILBOX2),
ISP_READ(isp, OUTMAILBOX3), ISP_READ(isp, OUTMAILBOX4),
ISP_READ(isp, OUTMAILBOX5));
#endif
/*
* Clear data && control DMA engines.
*/
ISP_WRITE(isp, CDMA_CONTROL,
DMA_CNTRL_CLEAR_CHAN | DMA_CNTRL_RESET_INT);
ISP_WRITE(isp, DDMA_CONTROL,
DMA_CNTRL_CLEAR_CHAN | DMA_CNTRL_RESET_INT);
} else {
ISP_WRITE(isp, BIU2100_CSR, BIU2100_SOFT_RESET);
/*
* A slight delay...
*/
SYS_DELAY(100);
/*
* Clear data && control DMA engines.
*/
ISP_WRITE(isp, CDMA2100_CONTROL,
DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT);
ISP_WRITE(isp, TDMA2100_CONTROL,
DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT);
ISP_WRITE(isp, RDMA2100_CONTROL,
DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT);
}
/*
* Wait for ISP to be ready to go...
*/
loops = MBOX_DELAY_COUNT;
for (;;) {
if (isp->isp_type & ISP_HA_SCSI) {
if (!(ISP_READ(isp, BIU_ICR) & BIU_ICR_SOFT_RESET))
break;
} else {
if (!(ISP_READ(isp, BIU2100_CSR) & BIU2100_SOFT_RESET))
break;
}
SYS_DELAY(100);
if (--loops < 0) {
isp_dumpregs(isp, "chip reset timed out");
return;
}
}
/*
* After we've fired this chip up, zero out the conf1 register
* for SCSI adapters and other settings for the 2100.
*/
if (IS_SCSI(isp)) {
ISP_WRITE(isp, BIU_CONF1, 0);
} else {
ISP_WRITE(isp, BIU2100_CSR, 0);
}
/*
* Reset RISC Processor
*/
ISP_WRITE(isp, HCCR, HCCR_CMD_RESET);
SYS_DELAY(100);
/*
* Establish some initial burst rate stuff.
* (only for the 1XX0 boards). This really should
* be done later after fetching from NVRAM.
*/
if (IS_SCSI(isp)) {
u_int16_t tmp = isp->isp_mdvec->dv_conf1;
/*
* Busted FIFO. Turn off all but burst enables.
*/
if (isp->isp_type == ISP_HA_SCSI_1040A) {
tmp &= BIU_BURST_ENABLE;
}
ISP_SETBITS(isp, BIU_CONF1, tmp);
if (tmp & BIU_BURST_ENABLE) {
ISP_SETBITS(isp, CDMA_CONF, DMA_ENABLE_BURST);
ISP_SETBITS(isp, DDMA_CONF, DMA_ENABLE_BURST);
}
#ifdef PTI_CARDS
if (((sdparam *) isp->isp_param)->isp_ultramode) {
while (ISP_READ(isp, RISC_MTR) != 0x1313) {
ISP_WRITE(isp, RISC_MTR, 0x1313);
ISP_WRITE(isp, HCCR, HCCR_CMD_STEP);
}
} else {
ISP_WRITE(isp, RISC_MTR, 0x1212);
}
/*
* PTI specific register
*/
ISP_WRITE(isp, RISC_EMB, DUAL_BANK)
#else
ISP_WRITE(isp, RISC_MTR, 0x1212);
#endif
} else {
ISP_WRITE(isp, RISC_MTR2100, 0x1212);
}
ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); /* release paused processor */
/*
* Do MD specific post initialization
*/
ISP_RESET1(isp);
#if 0
/*
* Enable interrupts
*/
ENABLE_INTS(isp);
#endif
/*
* Wait for everything to finish firing up...
*/
loops = MBOX_DELAY_COUNT;
while (ISP_READ(isp, OUTMAILBOX0) == MBOX_BUSY) {
SYS_DELAY(100);
if (--loops < 0) {
PRINTF("%s: MBOX_BUSY never cleared on reset\n",
isp->isp_name);
return;
}
}
/*
* Up until this point we've done everything by just reading or
* setting registers. From this point on we rely on at least *some*
* kind of firmware running in the card.
*/
/*
* Do some sanity checking.
*/
mbs.param[0] = MBOX_NO_OP;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "NOP test failed");
return;
}
if (isp->isp_type & ISP_HA_SCSI) {
mbs.param[0] = MBOX_MAILBOX_REG_TEST;
mbs.param[1] = 0xdead;
mbs.param[2] = 0xbeef;
mbs.param[3] = 0xffff;
mbs.param[4] = 0x1111;
mbs.param[5] = 0xa5a5;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp,
"Mailbox Register test didn't complete");
return;
}
if (mbs.param[1] != 0xdead || mbs.param[2] != 0xbeef ||
mbs.param[3] != 0xffff || mbs.param[4] != 0x1111 ||
mbs.param[5] != 0xa5a5) {
isp_dumpregs(isp, "Register Test Failed");
return;
}
}
/*
* Download new Firmware, unless requested not to do so.
* This is made slightly trickier in some cases where the
* firmware of the ROM revision is newer than the revision
* compiled into the driver. So, where we used to compare
* versions of our f/w and the ROM f/w, now we just see
* whether we have f/w at all and whether a config flag
* has disabled our download.
*/
if ((isp->isp_mdvec->dv_fwlen == 0) ||
(isp->isp_confopts & ISP_CFG_NORELOAD)) {
dodnld = 0;
}
if (dodnld && isp->isp_mdvec->dv_fwlen) {
for (i = 0; i < isp->isp_mdvec->dv_fwlen; i++) {
mbs.param[0] = MBOX_WRITE_RAM_WORD;
mbs.param[1] = isp->isp_mdvec->dv_codeorg + i;
mbs.param[2] = isp->isp_mdvec->dv_ispfw[i];
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
PRINTF("%s: F/W download failed at word %d\n",
isp->isp_name, i);
dodnld = 0;
goto again;
}
}
/*
* Verify that it downloaded correctly.
*/
mbs.param[0] = MBOX_VERIFY_CHECKSUM;
mbs.param[1] = isp->isp_mdvec->dv_codeorg;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "ram checksum failure");
return;
}
} else {
IDPRINTF(3, ("%s: skipping f/w download\n", isp->isp_name));
}
/*
* Now start it rolling.
*
* If we didn't actually download f/w,
* we still need to (re)start it.
*/
mbs.param[0] = MBOX_EXEC_FIRMWARE;
if (isp->isp_mdvec->dv_codeorg)
mbs.param[1] = isp->isp_mdvec->dv_codeorg;
else
mbs.param[1] = 0x1000;
isp_mboxcmd(isp, &mbs);
if (isp->isp_type & ISP_HA_SCSI) {
sdparam *sdp = isp->isp_param;
/*
* Set CLOCK RATE, but only if asked to.
*/
if (sdp->isp_clock) {
mbs.param[0] = MBOX_SET_CLOCK_RATE;
mbs.param[1] = sdp->isp_clock;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "failed to set CLOCKRATE");
/* but continue */
} else {
IDPRINTF(3, ("%s: setting input clock to %d\n",
isp->isp_name, sdp->isp_clock));
}
}
}
mbs.param[0] = MBOX_ABOUT_FIRMWARE;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "ABOUT FIRMWARE command failed");
return;
}
PRINTF("%s: Board Revision %s, %s F/W Revision %d.%d.%d\n",
isp->isp_name, revname, dodnld? "loaded" : "resident",
mbs.param[1], mbs.param[2], mbs.param[3]);
if (IS_FC(isp)) {
if (ISP_READ(isp, BIU2100_CSR) & BIU2100_PCI64) {
PRINTF("%s: in 64-Bit PCI slot\n", isp->isp_name);
}
}
isp->isp_fwrev[0] = mbs.param[1];
isp->isp_fwrev[1] = mbs.param[2];
isp->isp_fwrev[2] = mbs.param[3];
if (isp->isp_romfw_rev[0] || isp->isp_romfw_rev[1] ||
isp->isp_romfw_rev[2]) {
PRINTF("%s: Last F/W revision was %d.%d.%d\n", isp->isp_name,
isp->isp_romfw_rev[0], isp->isp_romfw_rev[1],
isp->isp_romfw_rev[2]);
}
isp_fw_state(isp);
isp->isp_state = ISP_RESETSTATE;
}
/*
* Initialize Parameters of Hardware to a known state.
*
* Locks are held before coming here.
*/
void
isp_init(isp)
struct ispsoftc *isp;
{
sdparam *sdp;
mbreg_t mbs;
int tgt;
/*
* Must do first.
*/
isp_setdfltparm(isp);
/*
* Set up DMA for the request and result mailboxes.
*/
if (ISP_MBOXDMASETUP(isp) != 0) {
PRINTF("%s: can't setup dma mailboxes\n", isp->isp_name);
return;
}
/*
* If we're fibre, we have a completely different
* initialization method.
*/
if (IS_FC(isp)) {
isp_fibre_init(isp);
return;
}
sdp = isp->isp_param;
/*
* If we have fast memory timing enabled, turn it on.
*/
if (sdp->isp_fast_mttr) {
ISP_WRITE(isp, RISC_MTR, 0x1313);
}
/*
* Set (possibly new) Initiator ID.
*/
mbs.param[0] = MBOX_SET_INIT_SCSI_ID;
mbs.param[1] = sdp->isp_initiator_id;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "failed to set initiator id");
return;
}
/*
* Set Retry Delay and Count
*/
mbs.param[0] = MBOX_SET_RETRY_COUNT;
mbs.param[1] = sdp->isp_retry_count;
mbs.param[2] = sdp->isp_retry_delay;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "failed to set retry count and delay");
return;
}
/*
* Set ASYNC DATA SETUP time. This is very important.
*/
mbs.param[0] = MBOX_SET_ASYNC_DATA_SETUP_TIME;
mbs.param[1] = sdp->isp_async_data_setup;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "failed to set async data setup time");
return;
}
/*
* Set ACTIVE Negation State.
*/
mbs.param[0] = MBOX_SET_ACTIVE_NEG_STATE;
mbs.param[1] =
(sdp->isp_req_ack_active_neg << 4) |
(sdp->isp_data_line_active_neg << 5);
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "failed to set active neg state");
return;
}
/*
* Set the Tag Aging limit
*/
mbs.param[0] = MBOX_SET_TAG_AGE_LIMIT;
mbs.param[1] = sdp->isp_tag_aging;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "failed to set tag age limit");
return;
}
/*
* Set selection timeout.
*/
mbs.param[0] = MBOX_SET_SELECT_TIMEOUT;
mbs.param[1] = sdp->isp_selection_timeout;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "failed to set selection timeout");
return;
}
/*
* Set current per-target parameters to a safe minimum.
*/
for (tgt = 0; tgt < MAX_TARGETS; tgt++) {
int maxlun, lun;
u_int16_t sdf;
if (sdp->isp_devparam[tgt].dev_enable == 0)
continue;
if (IS_1080(isp) && sdp->isp_lvdmode) {
sdf = DPARM_DEFAULT & ~DPARM_TQING;
} else {
sdf = DPARM_SAFE_DFLT;
/*
* It is not quite clear when this changed over so that
* we could force narrow and async, so assume >= 7.55.
*/
if (ISP_FW_REVX(isp->isp_fwrev) >=
ISP_FW_REV(7, 55, 0)) {
sdf |= DPARM_NARROW | DPARM_ASYNC;
}
}
mbs.param[0] = MBOX_SET_TARGET_PARAMS;
mbs.param[1] = tgt << 8;
mbs.param[2] = sdf;
mbs.param[3] =
(sdp->isp_devparam[tgt].sync_offset << 8) |
(sdp->isp_devparam[tgt].sync_period);
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
sdf = DPARM_SAFE_DFLT;
mbs.param[0] = MBOX_SET_TARGET_PARAMS;
mbs.param[1] = tgt << 8;
mbs.param[2] = sdf;
mbs.param[3] =
(sdp->isp_devparam[tgt].sync_offset << 8) |
(sdp->isp_devparam[tgt].sync_period);
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
PRINTF("%s: failed even to set defaults for "
"target %d\n", isp->isp_name, tgt);
continue;
}
}
/*
* We don't update dev_flags with what we've set
* because that's not the ultimate goal setting.
* If we succeed with the command, we *do* update
* cur_dflags by getting target parameters.
*/
mbs.param[0] = MBOX_GET_TARGET_PARAMS;
mbs.param[1] = (tgt << 8);
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
/*
* Urrr.... We'll set cur_dflags to DPARM_SAFE_DFLT so
* we don't try and do tags if tags aren't enabled.
*/
sdp->isp_devparam[tgt].cur_dflags = DPARM_SAFE_DFLT;
} else {
sdp->isp_devparam[tgt].cur_dflags = mbs.param[2];
sdp->isp_devparam[tgt].cur_offset = mbs.param[3] >> 8;
sdp->isp_devparam[tgt].cur_period = mbs.param[3] & 0xff;
}
IDPRINTF(3, ("%s: set flags 0x%x got 0x%x back for target %d\n",
isp->isp_name, sdf, mbs.param[2], tgt));
/*
* Ensure that we don't believe tagged queuing is enabled yet.
* It turns out that sometimes the ISP just ignores our
* attempts to set parameters for devices that it hasn't
* seen yet.
*/
sdp->isp_devparam[tgt].cur_dflags &= ~DPARM_TQING;
if (ISP_FW_REVX(isp->isp_fwrev) >= ISP_FW_REV(7, 55, 0))
maxlun = 32;
else
maxlun = 8;
for (lun = 0; lun < maxlun; lun++) {
mbs.param[0] = MBOX_SET_DEV_QUEUE_PARAMS;
mbs.param[1] = (tgt << 8) | lun;
mbs.param[2] = sdp->isp_max_queue_depth;
mbs.param[3] = sdp->isp_devparam[tgt].exc_throttle;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
PRINTF("%s: failed to set device queue "
"parameters for target %d, lun %d\n",
isp->isp_name, tgt, lun);
break;
}
}
/*
* And mark this as an unannounced device
*/
sdp->isp_devparam[tgt].dev_announced = 0;
}
mbs.param[0] = MBOX_INIT_RES_QUEUE;
mbs.param[1] = RESULT_QUEUE_LEN;
mbs.param[2] = DMA_MSW(isp->isp_result_dma);
mbs.param[3] = DMA_LSW(isp->isp_result_dma);
mbs.param[4] = 0;
mbs.param[5] = 0;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "set of response queue failed");
return;
}
isp->isp_residx = 0;
mbs.param[0] = MBOX_INIT_REQ_QUEUE;
mbs.param[1] = RQUEST_QUEUE_LEN;
mbs.param[2] = DMA_MSW(isp->isp_rquest_dma);
mbs.param[3] = DMA_LSW(isp->isp_rquest_dma);
mbs.param[4] = 0;
mbs.param[5] = 0;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "set of request queue failed");
return;
}
isp->isp_reqidx = isp->isp_reqodx = 0;
/*
* Turn on Fast Posting, LVD transitions
*/
if (IS_1080(isp) ||
ISP_FW_REVX(isp->isp_fwrev) >= ISP_FW_REV(7, 55, 0)) {
mbs.param[0] = MBOX_SET_FW_FEATURES;
#ifndef ISP_NO_FASTPOST_SCSI
mbs.param[1] |= FW_FEATURE_FAST_POST;
#else
mbs.param[1] = 0;
#endif
if (IS_1080(isp))
mbs.param[1] |= FW_FEATURE_LVD_NOTIFY;
if (mbs.param[1] != 0) {
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
PRINTF("%s: unable enable FW features\n",
isp->isp_name);
}
}
}
/*
* Let the outer layers decide whether to issue a SCSI bus reset.
*/
#if 0
/*
* XXX: See whether or not for 7.55 F/W or later we
* XXX: can do without this, and see whether we should
* XXX: honor the NVRAM SCSI_RESET_DISABLE token.
*/
mbs.param[0] = MBOX_BUS_RESET;
mbs.param[1] = 3;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "SCSI bus reset failed");
}
/*
* This is really important to have set after a bus reset.
*/
isp->isp_sendmarker = 1;
#endif
isp->isp_state = ISP_INITSTATE;
}
/*
* Fibre Channel specific initialization.
*
* Locks are held before coming here.
*/
static void
isp_fibre_init(isp)
struct ispsoftc *isp;
{
fcparam *fcp;
isp_icb_t *icbp;
mbreg_t mbs;
int count, loopid;
fcp = isp->isp_param;
/*
* For systems that don't have BIOS methods for which
* we can easily change the NVRAM based loopid, we'll
* override that here. Note that when we initialize
* the firmware we may get back a different loopid than
* we asked for anyway. XXX This is probably not the
* best way to figure this out XXX
*/
#ifndef __i386__
loopid = DEFAULT_LOOPID;
#else
loopid = fcp->isp_loopid;
#endif
#if defined(ISP2100_FABRIC) && defined(ISP2100_SCCLUN)
PRINTF("%s: Fabric Support, Expanded Lun Support\n", isp->isp_name);
#endif
#if defined(ISP2100_FABRIC) && !defined(ISP2100_SCCLUN)
PRINTF("%s: Fabric Support\n", isp->isp_name);
#endif
#if !defined(ISP2100_FABRIC) && defined(ISP2100_SCCLUN)
PRINTF("%s: Expanded Lun Support\n", isp->isp_name);
#endif
icbp = (isp_icb_t *) fcp->isp_scratch;
MEMZERO(icbp, sizeof (*icbp));
icbp->icb_version = ICB_VERSION1;
#ifdef ISP_TARGET_MODE
fcp->isp_fwoptions = ICBOPT_TGT_ENABLE|ICBOPT_INI_TGTTYPE;
#else
fcp->isp_fwoptions = 0;
#endif
fcp->isp_fwoptions |= ICBOPT_INI_ADISC|ICBOPT_FAIRNESS;
fcp->isp_fwoptions |= ICBOPT_PDBCHANGE_AE;
fcp->isp_fwoptions |= ICBOPT_HARD_ADDRESS;
#ifndef ISP_NO_FASTPOST_FC
fcp->isp_fwoptions |= ICBOPT_FAST_POST;
#endif
#ifdef CHECKME
fcp->isp_fwoptions |= ICBOPT_USE_PORTNAME;
#endif
#ifdef ISP2100_FABRIC
fcp->isp_fwoptions |= ICBOPT_FULL_LOGIN;
#endif
icbp->icb_fwoptions = fcp->isp_fwoptions;
icbp->icb_maxfrmlen = fcp->isp_maxfrmlen;
if (icbp->icb_maxfrmlen < ICB_MIN_FRMLEN ||
icbp->icb_maxfrmlen > ICB_MAX_FRMLEN) {
PRINTF("%s: bad frame length (%d) from NVRAM- using %d\n",
isp->isp_name, fcp->isp_maxfrmlen, ICB_DFLT_FRMLEN);
icbp->icb_maxfrmlen = ICB_DFLT_FRMLEN;
}
icbp->icb_maxalloc = fcp->isp_maxalloc;
if (icbp->icb_maxalloc < 16) {
PRINTF("%s: bad maximum allocation (%d)- using 16\n",
isp->isp_name, fcp->isp_maxalloc);
icbp->icb_maxalloc = 16;
}
icbp->icb_execthrottle = fcp->isp_execthrottle;
if (icbp->icb_execthrottle < 1) {
PRINTF("%s: bad execution throttle of %d- using 16\n",
isp->isp_name, fcp->isp_execthrottle);
icbp->icb_execthrottle = 16;
}
icbp->icb_retry_delay = fcp->isp_retry_delay;
icbp->icb_retry_count = fcp->isp_retry_count;
icbp->icb_hardaddr = loopid;
if (fcp->isp_wwn) {
MAKE_NODE_NAME_FROM_WWN(icbp->icb_nodename, fcp->isp_wwn);
if (icbp->icb_fwoptions & ICBOPT_USE_PORTNAME) {
u_int64_t portname = fcp->isp_wwn | (2LL << 56);
MAKE_NODE_NAME_FROM_WWN(icbp->icb_nodename, portname);
}
} else {
fcp->isp_fwoptions &= ~(ICBOPT_USE_PORTNAME|ICBOPT_FULL_LOGIN);
}
icbp->icb_rqstqlen = RQUEST_QUEUE_LEN;
icbp->icb_rsltqlen = RESULT_QUEUE_LEN;
icbp->icb_rqstaddr[RQRSP_ADDR0015] = DMA_LSW(isp->isp_rquest_dma);
icbp->icb_rqstaddr[RQRSP_ADDR1631] = DMA_MSW(isp->isp_rquest_dma);
icbp->icb_respaddr[RQRSP_ADDR0015] = DMA_LSW(isp->isp_result_dma);
icbp->icb_respaddr[RQRSP_ADDR1631] = DMA_MSW(isp->isp_result_dma);
MemoryBarrier();
for (count = 0; count < 10; count++) {
mbs.param[0] = MBOX_INIT_FIRMWARE;
mbs.param[1] = 0;
mbs.param[2] = DMA_MSW(fcp->isp_scdma);
mbs.param[3] = DMA_LSW(fcp->isp_scdma);
mbs.param[4] = 0;
mbs.param[5] = 0;
mbs.param[6] = 0;
mbs.param[7] = 0;
isp_mboxcmd(isp, &mbs);
switch (mbs.param[0]) {
case MBOX_COMMAND_COMPLETE:
count = 10;
break;
case ASYNC_PDB_CHANGED:
isp_mark_getpdb_all(isp);
/* FALL THROUGH */
case ASYNC_LIP_OCCURRED:
case ASYNC_LOOP_UP:
case ASYNC_LOOP_DOWN:
case ASYNC_LOOP_RESET:
case ASYNC_CHANGE_NOTIFY:
if (count > 9) {
PRINTF("%s: too many retries to get going- "
"giving up\n", isp->isp_name);
return;
}
break;
default:
isp_dumpregs(isp, "INIT FIRMWARE failed");
return;
}
}
isp->isp_reqidx = isp->isp_reqodx = 0;
isp->isp_residx = 0;
isp->isp_sendmarker = 1;
/*
* Whatever happens, we're now committed to being here.
*/
isp->isp_state = ISP_INITSTATE;
fcp->isp_fwstate = FW_CONFIG_WAIT;
isp_mark_getpdb_all(isp);
#ifdef ISP_TARGET_MODE
if (isp_modify_lun(isp, 0, 1, 1)) {
PRINTF("%s: failed to enable target mode\n", isp->isp_name);
}
#endif
}
/*
* Fibre Channel Support- get the port database for the id.
*
* Locks are held before coming here. Return 0 if success,
* else failure.
*/
static void
isp_mark_getpdb_all(isp)
struct ispsoftc *isp;
{
isp_pdb_t *p;
fcparam *fcp = (fcparam *) isp->isp_param;
for (p = &fcp->isp_pdb[0]; p < &fcp->isp_pdb[MAX_FC_TARG]; p++) {
p->pdb_options = INVALID_PDB_OPTIONS;
}
}
static int
isp_getpdb(isp, id, pdbp)
struct ispsoftc *isp;
int id;
isp_pdb_t *pdbp;
{
fcparam *fcp = (fcparam *) isp->isp_param;
mbreg_t mbs;
mbs.param[0] = MBOX_GET_PORT_DB;
mbs.param[1] = id << 8;
mbs.param[2] = DMA_MSW(fcp->isp_scdma);
mbs.param[3] = DMA_LSW(fcp->isp_scdma);
/*
* Unneeded. For the 2100, except for initializing f/w, registers
* 4/5 have to not be written to.
* mbs.param[4] = 0;
* mbs.param[5] = 0;
*
*/
mbs.param[6] = 0;
mbs.param[7] = 0;
isp_mboxcmd(isp, &mbs);
switch (mbs.param[0]) {
case MBOX_COMMAND_COMPLETE:
MemoryBarrier();
MEMCPY(pdbp, fcp->isp_scratch, sizeof (isp_pdb_t));
break;
case MBOX_HOST_INTERFACE_ERROR:
PRINTF("%s: DMA error getting port database\n", isp->isp_name);
return (-1);
case MBOX_COMMAND_PARAM_ERROR:
/* Not Logged In */
IDPRINTF(3, ("%s: Comand Param Error on Get Port Database\n",
isp->isp_name));
return (-1);
default:
PRINTF("%s: error 0x%x getting port database for ID %d\n",
isp->isp_name, mbs.param[0], id);
return (-1);
}
return (0);
}
/*
* Make sure we have good FC link and know our Loop ID.
*/
static int
isp_fclink_test(isp, waitdelay)
struct ispsoftc *isp;
int waitdelay;
{
mbreg_t mbs;
int count;
u_int8_t lwfs;
fcparam *fcp;
fcp = isp->isp_param;
/*
* Wait up to N microseconds for F/W to go to a ready state.
*/
lwfs = FW_CONFIG_WAIT;
for (count = 0; count < waitdelay; count += 100) {
isp_fw_state(isp);
if (lwfs != fcp->isp_fwstate) {
PRINTF("%s: Firmware State %s -> %s\n",
isp->isp_name, isp2100_fw_statename((int)lwfs),
isp2100_fw_statename((int)fcp->isp_fwstate));
lwfs = fcp->isp_fwstate;
}
if (fcp->isp_fwstate == FW_READY) {
break;
}
SYS_DELAY(100); /* wait 100 microseconds */
}
/*
* If we haven't gone to 'ready' state, return.
*/
if (fcp->isp_fwstate != FW_READY) {
return (-1);
}
/*
* Get our Loop ID (if possible). We really need to have it.
*/
mbs.param[0] = MBOX_GET_LOOP_ID;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
PRINTF("%s: GET LOOP ID failed\n", isp->isp_name);
return (-1);
}
fcp->isp_loopid = mbs.param[1];
fcp->isp_alpa = mbs.param[2];
PRINTF("%s: Loop ID %d, ALPA 0x%x\n", isp->isp_name,
fcp->isp_loopid, fcp->isp_alpa);
return (0);
}
/*
* Start a command. Locking is assumed done in the caller.
*/
int32_t
ispscsicmd(xs)
ISP_SCSI_XFER_T *xs;
{
struct ispsoftc *isp;
u_int8_t iptr, optr;
union {
ispreq_t *_reqp;
ispreqt2_t *_t2reqp;
} _u;
#define reqp _u._reqp
#define t2reqp _u._t2reqp
#define UZSIZE max(sizeof (ispreq_t), sizeof (ispreqt2_t))
int i, rqidx;
XS_INITERR(xs);
isp = XS_ISP(xs);
if (isp->isp_state != ISP_RUNSTATE) {
PRINTF("%s: adapter not ready\n", isp->isp_name);
XS_SETERR(xs, HBA_BOTCH);
return (CMD_COMPLETE);
}
/*
* We *could* do the different sequence type that has close
* to the whole Queue Entry for the command...
*/
if (XS_CDBLEN(xs) > ((isp->isp_type & ISP_HA_FC)? 16 : 12)) {
PRINTF("%s: unsupported cdb length (%d)\n",
isp->isp_name, XS_CDBLEN(xs));
XS_SETERR(xs, HBA_BOTCH);
return (CMD_COMPLETE);
}
/*
* Check to see whether we have good firmware state still or
* need to refresh our port database for this target.
*/
if (IS_FC(isp)) {
fcparam *fcp = isp->isp_param;
isp_pdb_t *pdbp = &fcp->isp_pdb[XS_TGT(xs)];
/*
* Check for f/w being in ready state. Well, okay,
* our cached copy of it...
*/
if (fcp->isp_fwstate != FW_READY) {
if (isp_fclink_test(isp, FC_FW_READY_DELAY)) {
XS_SETERR(xs, HBA_SELTIMEOUT);
return (CMD_COMPLETE);
}
}
/*
* Refresh our port database if needed.
*/
if (pdbp->pdb_options == INVALID_PDB_OPTIONS) {
if (isp_getpdb(isp, XS_TGT(xs), pdbp) == 0) {
isp_async(isp, ISPASYNC_PDB_CHANGE_COMPLETE,
(void *) (long) XS_TGT(xs));
}
}
}
/*
* Next check to see if any HBA or Device
* parameters need to be updated.
*/
if (isp->isp_update) {
isp_update(isp);
}
optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4);
iptr = isp->isp_reqidx;
reqp = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr);
iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN);
if (iptr == optr) {
IDPRINTF(2, ("%s: Request Queue Overflow\n", isp->isp_name));
XS_SETERR(xs, HBA_BOTCH);
return (CMD_EAGAIN);
}
if (isp->isp_sendmarker) {
u_int8_t niptr;
MEMZERO((void *) reqp, sizeof (*reqp));
reqp->req_header.rqs_entry_count = 1;
reqp->req_header.rqs_entry_type = RQSTYPE_MARKER;
reqp->req_modifier = SYNC_ALL;
ISP_SBUSIFY_ISPHDR(isp, &reqp->req_header);
/*
* Unconditionally update the input pointer anyway.
*/
ISP_WRITE(isp, INMAILBOX4, iptr);
isp->isp_reqidx = iptr;
niptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN);
if (niptr == optr) {
IDPRINTF(2, ("%s: Request Queue Overflow+\n",
isp->isp_name));
XS_SETERR(xs, HBA_BOTCH);
return (CMD_EAGAIN);
}
reqp = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr);
iptr = niptr;
}
MEMZERO((void *) reqp, UZSIZE);
reqp->req_header.rqs_entry_count = 1;
if (isp->isp_type & ISP_HA_FC) {
reqp->req_header.rqs_entry_type = RQSTYPE_T2RQS;
} else {
reqp->req_header.rqs_entry_type = RQSTYPE_REQUEST;
}
reqp->req_header.rqs_flags = 0;
reqp->req_header.rqs_seqno = isp->isp_seqno++;
ISP_SBUSIFY_ISPHDR(isp, &reqp->req_header);
for (rqidx = 0; rqidx < RQUEST_QUEUE_LEN; rqidx++) {
if (isp->isp_xflist[rqidx] == NULL)
break;
}
if (rqidx == RQUEST_QUEUE_LEN) {
IDPRINTF(2, ("%s: out of xflist pointers\n", isp->isp_name));
XS_SETERR(xs, HBA_BOTCH);
return (CMD_EAGAIN);
} else {
/*
* Never have a handle that is zero, so
* set req_handle off by one.
*/
isp->isp_xflist[rqidx] = xs;
reqp->req_handle = rqidx+1;
}
if (isp->isp_type & ISP_HA_FC) {
/*
* See comment in isp_intr
*/
XS_RESID(xs) = 0;
/*
* Fibre Channel always requires some kind of tag.
* If we're marked as "Can't Tag", just do simple
* instead of ordered tags. It's pretty clear to me
* that we shouldn't do head of queue tagging in
* this case.
*/
if (XS_CANTAG(xs)) {
t2reqp->req_flags = XS_KINDOF_TAG(xs);
} else {
t2reqp->req_flags = REQFLAG_STAG;
}
} else {
sdparam *sdp = (sdparam *)isp->isp_param;
if ((sdp->isp_devparam[XS_TGT(xs)].cur_dflags & DPARM_TQING) &&
XS_CANTAG(xs)) {
reqp->req_flags = XS_KINDOF_TAG(xs);
} else {
reqp->req_flags = 0;
}
}
reqp->req_target = XS_TGT(xs);
if (isp->isp_type & ISP_HA_SCSI) {
reqp->req_lun_trn = XS_LUN(xs);
reqp->req_cdblen = XS_CDBLEN(xs);
} else {
#ifdef ISP2100_SCCLUN
reqp->req_scclun = XS_LUN(xs);
#else
reqp->req_lun_trn = XS_LUN(xs);
#endif
}
MEMCPY(reqp->req_cdb, XS_CDBP(xs), XS_CDBLEN(xs));
IDPRINTF(5, ("%s(%d.%d): START%d cmd 0x%x datalen %d\n", isp->isp_name,
XS_TGT(xs), XS_LUN(xs), reqp->req_header.rqs_seqno,
reqp->req_cdb[0], XS_XFRLEN(xs)));
reqp->req_time = XS_TIME(xs) / 1000;
if (reqp->req_time == 0 && XS_TIME(xs))
reqp->req_time = 1;
/*
* Always give a bit more leeway to commands after a bus reset.
*/
if (isp->isp_sendmarker && reqp->req_time < 5)
reqp->req_time = 5;
i = ISP_DMASETUP(isp, xs, reqp, &iptr, optr);
if (i != CMD_QUEUED) {
/*
* Take memory of it away...
*/
isp->isp_xflist[rqidx] = NULL;
/*
* dmasetup sets actual error in packet, and
* return what we were given to return.
*/
return (i);
}
XS_SETERR(xs, HBA_NOERROR);
ISP_SBUSIFY_ISPREQ(isp, reqp);
MemoryBarrier();
ISP_WRITE(isp, INMAILBOX4, iptr);
isp->isp_reqidx = iptr;
isp->isp_nactive++;
if (isp->isp_sendmarker)
isp->isp_sendmarker = 0;
return (CMD_QUEUED);
#undef reqp
#undef t2reqp
}
/*
* isp control
* Locks (ints blocked) assumed held.
*/
int
isp_control(isp, ctl, arg)
struct ispsoftc *isp;
ispctl_t ctl;
void *arg;
{
ISP_SCSI_XFER_T *xs;
mbreg_t mbs;
int i;
switch (ctl) {
default:
PRINTF("%s: isp_control unknown control op %x\n",
isp->isp_name, ctl);
break;
case ISPCTL_RESET_BUS:
/*
* This is really important to have set after a bus reset.
*/
isp->isp_sendmarker = 1;
/*
* Issue a bus reset.
*/
mbs.param[0] = MBOX_BUS_RESET;
if (isp->isp_type & ISP_HA_SCSI) {
mbs.param[1] =
((sdparam *) isp->isp_param)->isp_bus_reset_delay;
if (mbs.param[1] < 2)
mbs.param[1] = 2;
} else {
/*
* Unparameterized.
*/
mbs.param[1] = 5;
}
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "isp_control SCSI bus reset failed");
break;
}
PRINTF("%s: driver initiated bus reset\n", isp->isp_name);
return (0);
case ISPCTL_RESET_DEV:
mbs.param[0] = MBOX_ABORT_TARGET;
mbs.param[1] = ((long)arg) << 8;
mbs.param[2] = 3; /* 'delay', in seconds */
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "Target Reset Failed");
break;
}
PRINTF("%s: Target %d Reset Succeeded\n", isp->isp_name,
(int) ((long) arg));
isp->isp_sendmarker = 1;
return (0);
case ISPCTL_ABORT_CMD:
xs = (ISP_SCSI_XFER_T *) arg;
for (i = 0; i < RQUEST_QUEUE_LEN; i++) {
if (xs == isp->isp_xflist[i]) {
break;
}
}
if (i == RQUEST_QUEUE_LEN) {
PRINTF("%s: isp_control- cannot find command to abort "
"in active list\n", isp->isp_name);
break;
}
mbs.param[0] = MBOX_ABORT;
#ifdef ISP2100_SCCLUN
if (isp->isp_type & ISP_HA_FC) {
mbs.param[1] = XS_TGT(xs) << 8;
mbs.param[4] = 0;
mbs.param[5] = 0;
mbs.param[6] = XS_LUN(xs);
} else {
mbs.param[1] = XS_TGT(xs) << 8 | XS_LUN(xs);
}
#else
mbs.param[1] = XS_TGT(xs) << 8 | XS_LUN(xs);
#endif
mbs.param[2] = (i+1) >> 16;
mbs.param[3] = (i+1) & 0xffff;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
PRINTF("%s: isp_control MBOX_ABORT failure (code %x)\n",
isp->isp_name, mbs.param[0]);
break;
}
PRINTF("%s: command for target %d lun %d was aborted\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
return (0);
case ISPCTL_UPDATE_PARAMS:
isp_update(isp);
return (0);
case ISPCTL_FCLINK_TEST:
return (isp_fclink_test(isp, FC_FW_READY_DELAY));
}
return (-1);
}
/*
* Interrupt Service Routine(s).
*
* External (OS) framework has done the appropriate locking,
* and the locking will be held throughout this function.
*/
int
isp_intr(arg)
void *arg;
{
ISP_SCSI_XFER_T *complist[RESULT_QUEUE_LEN], *xs;
struct ispsoftc *isp = arg;
u_int8_t iptr, optr;
u_int16_t isr;
int i, nlooked = 0, ndone = 0;
isr = ISP_READ(isp, BIU_ISR);
IDPRINTF(5, ("%s: isp_intr isr %x sema 0x%x\n", isp->isp_name, isr,
ISP_READ(isp, BIU_SEMA)));
if (isp->isp_type & ISP_HA_FC) {
if (isr == 0 || (isr & BIU2100_ISR_RISC_INT) == 0) {
if (isr) {
IDPRINTF(4, ("%s: isp_intr isr=%x\n",
isp->isp_name, isr));
}
return (0);
}
} else {
if (isr == 0 || (isr & BIU_ISR_RISC_INT) == 0) {
if (isr) {
IDPRINTF(4, ("%s: isp_intr isr=%x\n",
isp->isp_name, isr));
}
return (0);
}
}
if (isp->isp_state != ISP_RUNSTATE) {
PRINTF("%s: interrupt (isr=0x%x,sema=0x%x) when not ready\n",
isp->isp_name, isr, ISP_READ(isp, BIU_SEMA));
ISP_WRITE(isp, INMAILBOX5, ISP_READ(isp, OUTMAILBOX5));
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
ISP_WRITE(isp, BIU_SEMA, 0);
ENABLE_INTS(isp);
return (1);
}
if (ISP_READ(isp, BIU_SEMA) & 1) {
u_int16_t mbox = ISP_READ(isp, OUTMAILBOX0);
if (mbox & 0x4000) {
IDPRINTF(3, ("%s: isp_intr sees 0x%x\n",
isp->isp_name, mbox));
} else {
u_int32_t fhandle = isp_parse_async(isp, (int) mbox);
if (fhandle > 0) {
xs = (void *)isp->isp_xflist[fhandle - 1];
isp->isp_xflist[fhandle - 1] = NULL;
/*
* Since we don't have a result queue entry
* item, we must believe that SCSI status is
* zero and that all data transferred.
*/
XS_RESID(xs) = 0;
XS_STS(xs) = 0;
if (XS_XFRLEN(xs)) {
ISP_DMAFREE(isp, xs, fhandle - 1);
}
if (isp->isp_nactive > 0)
isp->isp_nactive--;
XS_CMD_DONE(xs);
}
}
ISP_WRITE(isp, BIU_SEMA, 0);
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
ENABLE_INTS(isp);
return (1);
}
/*
* You *must* read OUTMAILBOX5 prior to clearing the RISC interrupt.
*/
optr = isp->isp_residx;
iptr = ISP_READ(isp, OUTMAILBOX5);
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
if (optr == iptr) {
IDPRINTF(4, ("why intr? isr %x iptr %x optr %x\n",
isr, optr, iptr));
}
while (optr != iptr) {
ispstatusreq_t *sp;
u_int8_t oop;
int buddaboom = 0;
sp = (ispstatusreq_t *) ISP_QUEUE_ENTRY(isp->isp_result, optr);
oop = optr;
optr = ISP_NXT_QENTRY(optr, RESULT_QUEUE_LEN);
nlooked++;
MemoryBarrier();
ISP_SBUSIFY_ISPHDR(isp, &sp->req_header);
if (sp->req_header.rqs_entry_type != RQSTYPE_RESPONSE) {
if (isp_handle_other_response(isp, sp, &optr) == 0) {
ISP_WRITE(isp, INMAILBOX5, optr);
continue;
}
/*
* It really has to be a bounced request just copied
* from the request queue to the response queue. If
* not, something bad has happened.
*/
if (sp->req_header.rqs_entry_type != RQSTYPE_REQUEST) {
ISP_WRITE(isp, INMAILBOX5, optr);
PRINTF("%s: not RESPONSE in RESPONSE Queue "
"(type 0x%x) @ idx %d (next %d)\n",
isp->isp_name,
sp->req_header.rqs_entry_type, oop, optr);
continue;
}
buddaboom = 1;
}
if (sp->req_header.rqs_flags & 0xf) {
#define _RQS_OFLAGS \
~(RQSFLAG_CONTINUATION|RQSFLAG_FULL|RQSFLAG_BADHEADER|RQSFLAG_BADPACKET)
if (sp->req_header.rqs_flags & RQSFLAG_CONTINUATION) {
IDPRINTF(3, ("%s: continuation segment\n",
isp->isp_name));
ISP_WRITE(isp, INMAILBOX5, optr);
continue;
}
if (sp->req_header.rqs_flags & RQSFLAG_FULL) {
IDPRINTF(2, ("%s: internal queues full\n",
isp->isp_name));
/*
* We'll synthesize a QUEUE FULL message below.
*/
}
if (sp->req_header.rqs_flags & RQSFLAG_BADHEADER) {
PRINTF("%s: bad header\n", isp->isp_name);
buddaboom++;
}
if (sp->req_header.rqs_flags & RQSFLAG_BADPACKET) {
PRINTF("%s: bad request packet\n",
isp->isp_name);
buddaboom++;
}
if (sp->req_header.rqs_flags & _RQS_OFLAGS) {
PRINTF("%s: unknown flags in response (0x%x)\n",
isp->isp_name, sp->req_header.rqs_flags);
buddaboom++;
}
#undef _RQS_OFLAGS
}
if (sp->req_handle > RQUEST_QUEUE_LEN || sp->req_handle < 1) {
PRINTF("%s: bad request handle %d\n", isp->isp_name,
sp->req_handle);
ISP_WRITE(isp, INMAILBOX5, optr);
continue;
}
xs = (void *) isp->isp_xflist[sp->req_handle - 1];
if (xs == NULL) {
PRINTF("%s: NULL xs in xflist (handle %x)\n",
isp->isp_name, sp->req_handle);
isp_dumpxflist(isp);
ISP_WRITE(isp, INMAILBOX5, optr);
continue;
}
isp->isp_xflist[sp->req_handle - 1] = NULL;
if (sp->req_status_flags & RQSTF_BUS_RESET) {
isp->isp_sendmarker = 1;
}
if (buddaboom) {
XS_SETERR(xs, HBA_BOTCH);
}
XS_STS(xs) = sp->req_scsi_status & 0xff;
if (isp->isp_type & ISP_HA_SCSI) {
if (sp->req_state_flags & RQSF_GOT_SENSE) {
MEMCPY(XS_SNSP(xs), sp->req_sense_data,
XS_SNSLEN(xs));
XS_SNS_IS_VALID(xs);
}
/*
* A new synchronous rate was negotiated for this
* target. Mark state such that we'll go look up
* that which has changed later.
*/
if (sp->req_status_flags & RQSTF_NEGOTIATION) {
sdparam *sdp = isp->isp_param;
isp->isp_update = 1;
sdp->isp_devparam[XS_TGT(xs)].dev_refresh = 1;
}
} else if (sp->req_header.rqs_entry_type == RQSTYPE_REQUEST) {
if (sp->req_header.rqs_flags & RQSFLAG_FULL) {
/*
* Force Queue Full status.
*/
XS_STS(xs) = 0x28;
XS_SETERR(xs, HBA_NOERROR);
} else if (XS_NOERR(xs)) {
XS_SETERR(xs, HBA_BOTCH);
}
} else {
if (XS_STS(xs) == SCSI_CHECK) {
XS_SNS_IS_VALID(xs);
MEMCPY(XS_SNSP(xs), sp->req_sense_data,
XS_SNSLEN(xs));
sp->req_state_flags |= RQSF_GOT_SENSE;
}
}
if (XS_NOERR(xs) && XS_STS(xs) == SCSI_BUSY) {
XS_SETERR(xs, HBA_TGTBSY);
}
if (sp->req_header.rqs_entry_type == RQSTYPE_RESPONSE) {
if (XS_NOERR(xs)) {
if (sp->req_completion_status != RQCS_COMPLETE) {
isp_parse_status(isp, sp, xs);
} else {
XS_SETERR(xs, HBA_NOERROR);
}
}
} else {
PRINTF("%s: unknown return %x\n", isp->isp_name,
sp->req_header.rqs_entry_type);
if (XS_NOERR(xs)) {
XS_SETERR(xs, HBA_BOTCH);
}
}
if (isp->isp_type & ISP_HA_SCSI) {
XS_RESID(xs) = sp->req_resid;
} else if (sp->req_scsi_status & RQCS_RU) {
XS_RESID(xs) = sp->req_resid;
IDPRINTF(4, ("%s: cnt %d rsd %d\n", isp->isp_name,
XS_XFRLEN(xs), sp->req_resid));
}
if (XS_XFRLEN(xs)) {
ISP_DMAFREE(isp, xs, sp->req_handle - 1);
}
/*
* XXX: If we have a check condition, but no Sense Data,
* XXX: mark it as an error (ARQ failed). We need to
* XXX: to do a more distinct job because there may
* XXX: cases where ARQ is disabled.
*/
if (XS_STS(xs) == SCSI_CHECK && !(XS_IS_SNS_VALID(xs))) {
if (XS_NOERR(xs)) {
PRINTF("%s: ARQ failure for target %d lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
XS_SETERR(xs, HBA_ARQFAIL);
}
}
if ((isp->isp_dblev >= 5) ||
(isp->isp_dblev > 2 && !XS_NOERR(xs))) {
PRINTF("%s(%d.%d): FIN%d dl%d resid%d STS %x",
isp->isp_name, XS_TGT(xs), XS_LUN(xs),
sp->req_header.rqs_seqno, XS_XFRLEN(xs),
XS_RESID(xs), XS_STS(xs));
if (sp->req_state_flags & RQSF_GOT_SENSE) {
PRINTF(" Skey: %x", XS_SNSKEY(xs));
if (!(XS_IS_SNS_VALID(xs))) {
PRINTF(" BUT NOT SET");
}
}
PRINTF(" XS_ERR=0x%x\n", (unsigned int) XS_ERR(xs));
}
if (isp->isp_nactive > 0)
isp->isp_nactive--;
complist[ndone++] = xs; /* defer completion call until later */
}
/*
* If we looked at any commands, then it's valid to find out
* what the outpointer is. It also is a trigger to update the
* ISP's notion of what we've seen so far.
*/
if (nlooked) {
ISP_WRITE(isp, INMAILBOX5, optr);
isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4);
}
isp->isp_residx = optr;
for (i = 0; i < ndone; i++) {
xs = complist[i];
if (xs) {
XS_CMD_DONE(xs);
}
}
ENABLE_INTS(isp);
return (1);
}
/*
* Support routines.
*/
static int
isp_parse_async(isp, mbox)
struct ispsoftc *isp;
int mbox;
{
u_int32_t fast_post_handle = 0;
switch (mbox) {
case MBOX_COMMAND_COMPLETE: /* sometimes these show up */
break;
case ASYNC_BUS_RESET:
isp_async(isp, ISPASYNC_BUS_RESET, NULL);
isp->isp_sendmarker = 1;
#ifdef ISP_TARGET_MODE
isp_notify_ack(isp, NULL);
#endif
break;
case ASYNC_SYSTEM_ERROR:
mbox = ISP_READ(isp, OUTMAILBOX1);
PRINTF("%s: Internal FW Error @ RISC Addr 0x%x\n",
isp->isp_name, mbox);
isp_restart(isp);
/* no point continuing after this */
return (-1);
case ASYNC_RQS_XFER_ERR:
PRINTF("%s: Request Queue Transfer Error\n", isp->isp_name);
break;
case ASYNC_RSP_XFER_ERR:
PRINTF("%s: Response Queue Transfer Error\n", isp->isp_name);
break;
case ASYNC_QWAKEUP:
/* don't need to be chatty */
mbox = ISP_READ(isp, OUTMAILBOX4);
break;
case ASYNC_TIMEOUT_RESET:
PRINTF("%s: timeout initiated SCSI bus reset\n", isp->isp_name);
isp->isp_sendmarker = 1;
#ifdef ISP_TARGET_MODE
isp_notify_ack(isp, NULL);
#endif
break;
case ASYNC_DEVICE_RESET:
isp->isp_sendmarker = 1;
PRINTF("%s: device reset\n", isp->isp_name);
#ifdef ISP_TARGET_MODE
isp_notify_ack(isp, NULL);
#endif
break;
case ASYNC_EXTMSG_UNDERRUN:
PRINTF("%s: extended message underrun\n", isp->isp_name);
break;
case ASYNC_SCAM_INT:
PRINTF("%s: SCAM interrupt\n", isp->isp_name);
break;
case ASYNC_HUNG_SCSI:
PRINTF("%s: stalled SCSI Bus after DATA Overrun\n",
isp->isp_name);
/* XXX: Need to issue SCSI reset at this point */
break;
case ASYNC_KILLED_BUS:
PRINTF("%s: SCSI Bus reset after DATA Overrun\n",
isp->isp_name);
break;
case ASYNC_BUS_TRANSIT:
mbox = ISP_READ(isp, OUTMAILBOX2);
switch (mbox & 0x1c00) {
case SXP_PINS_LVD_MODE:
PRINTF("%s: Transition to LVD mode\n", isp->isp_name);
((sdparam *)isp->isp_param)->isp_diffmode = 0;
((sdparam *)isp->isp_param)->isp_ultramode = 0;
((sdparam *)isp->isp_param)->isp_lvdmode = 1;
break;
case SXP_PINS_HVD_MODE:
PRINTF("%s: Transition to Differential mode\n",
isp->isp_name);
((sdparam *)isp->isp_param)->isp_diffmode = 1;
((sdparam *)isp->isp_param)->isp_ultramode = 0;
((sdparam *)isp->isp_param)->isp_lvdmode = 0;
break;
case SXP_PINS_SE_MODE:
PRINTF("%s: Transition to Single Ended mode\n",
isp->isp_name);
((sdparam *)isp->isp_param)->isp_diffmode = 0;
((sdparam *)isp->isp_param)->isp_ultramode = 1;
((sdparam *)isp->isp_param)->isp_lvdmode = 0;
break;
default:
PRINTF("%s: Transition to unknown mode 0x%x\n",
isp->isp_name, mbox);
break;
}
/*
* XXX: Set up to renegotiate again!
*/
isp->isp_sendmarker = 1;
break;
case ASYNC_CMD_CMPLT:
fast_post_handle = (ISP_READ(isp, OUTMAILBOX2) << 16) |
ISP_READ(isp, OUTMAILBOX1);
IDPRINTF(3, ("%s: fast post completion of %u\n", isp->isp_name,
fast_post_handle));
break;
case ASYNC_CTIO_DONE:
/* Should only occur when Fast Posting Set for 2100s */
PRINTF("%s: CTIO done\n", isp->isp_name);
break;
case ASYNC_LIP_OCCURRED:
((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT;
isp->isp_sendmarker = 1;
isp_mark_getpdb_all(isp);
PRINTF("%s: LIP occurred\n", isp->isp_name);
break;
case ASYNC_LOOP_UP:
((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT;
isp->isp_sendmarker = 1;
isp_mark_getpdb_all(isp);
isp_async(isp, ISPASYNC_LOOP_UP, NULL);
break;
case ASYNC_LOOP_DOWN:
((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT;
isp->isp_sendmarker = 1;
isp_mark_getpdb_all(isp);
isp_async(isp, ISPASYNC_LOOP_DOWN, NULL);
break;
case ASYNC_LOOP_RESET:
((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT;
isp->isp_sendmarker = 1;
isp_mark_getpdb_all(isp);
PRINTF("%s: Loop RESET\n", isp->isp_name);
#ifdef ISP_TARGET_MODE
isp_notify_ack(isp, NULL);
#endif
break;
case ASYNC_PDB_CHANGED:
isp->isp_sendmarker = 1;
isp_mark_getpdb_all(isp);
PRINTF("%s: Port Database Changed\n", isp->isp_name);
break;
case ASYNC_CHANGE_NOTIFY:
break;
default:
PRINTF("%s: unknown async code 0x%x\n", isp->isp_name, mbox);
break;
}
return (fast_post_handle);
}
static int
isp_handle_other_response(isp, sp, optrp)
struct ispsoftc *isp;
ispstatusreq_t *sp;
u_int8_t *optrp;
{
u_int8_t iptr, optr;
int reqsize = 0;
void *ireqp = NULL;
#ifdef ISP_TARGET_MODE
union {
at_entry_t *atio;
at2_entry_t *at2io;
ct_entry_t *ctio;
ct2_entry_t *ct2io;
lun_entry_t *lunen;
in_entry_t *inot;
in_fcentry_t *inot_fc;
na_entry_t *nack;
na_fcentry_t *nack_fc;
void *voidp;
#define atio un.atio
#define at2io un.at2io
#define ctio un.ctio
#define ct2io un.ct2io
#define lunen un.lunen
#define inot un.inot
#define inot_fc un.inot_fc
#define nack un.nack
#define nack_fc un.nack_fc
} un;
un.voidp = sp;
#endif
switch (sp->req_header.rqs_entry_type) {
case RQSTYPE_REQUEST:
return (-1);
#ifdef ISP_TARGET_MODE
case RQSTYPE_NOTIFY_ACK:
{
static const char *f =
"%s: Notify Ack Status 0x%x Sequence Id 0x%x\n"
/*
* The ISP is acknowleding our ack of an Immediate Notify.
*/
if (isp->isp_type & ISP_HA_FC) {
PRINTF(f, isp->isp_name,
nack_fc->na-status, nack_fc->na_seqid);
} else {
PRINTF(f, isp->isp_name,
nack->na_status, nack->na_seqid);
}
break;
}
case RQSTYPE_NOTIFY:
{
u_int16_t seqid, status;
/*
* Either the ISP received a SCSI message it cannot handle
* or some other out of band condition (e.g., Port Logout)
* or it is returning an Immediate Notify entry we sent.
*/
if (isp->isp_type & ISP_HA_FC) {
status = inot_fc->status;
seqid = inot_fc->in_seqid;
} else {
status = inot->status;
seqid = inot->seqid & 0xff;
}
PRINTF("%s: Immediate Notify Status 0x%x Sequence Id 0x%x\n",
isp->isp_name, status, seqid);
switch (status) {
case IN_MSG_RECEIVED:
case IN_IDE_RECEIVED:
ptisp_got_msg(ptp, &inot);
break;
case IN_RSRC_UNAVAIL:
PRINTF("%s: Firmware out of ATIOs\n", isp->isp_name);
break;
case IN_ABORT_TASK:
PRINTF("%s: Abort Task iid %d rx_id 0x%x\n",
inot_fc->in_iid, seqid);
break;
case IN_PORT_LOGOUT:
PRINTF("%s: Port Logout for Initiator %d\n",
isp->isp_name, inot_fc->in_iid);
break;
default:
PRINTF("%s: bad status (0x%x) in Immediate Notify\n",
isp->isp_name, status);
break;
}
isp_notify_ack(isp, un.voidp);
reqsize = 0;
break;
}
case RQSTYPE_ENABLE_LUN:
case RQSTYPE_MODIFY_LUN:
if (lunen->req_status != 1) {
PRINTF("%s: ENABLE/MODIFY LUN returned status 0x%x\n",
isp->isp_name, lunen->req_status);
}
break;
case RQSTYPE_ATIO2:
{
fcparam *fcp = isp->isp_param;
ispctiot2_t local, *ct2 = NULL;
ispatiot2_t *at2 = (ispatiot2_t *) sp;
int s, lun;
#ifdef ISP2100_SCCLUN
lun = at2->req_scclun;
#else
lun = at2->req_lun;
#endif
PRINTF("%s: atio2 loopid %d for lun %d rxid 0x%x flags0x%x "
"tflags0x%x ecodes0x%x rqstatus0x%x\n", isp->isp_name,
at2->req_initiator, lun, at2->req_rxid,
at2->req_flags, at2->req_taskflags, at2->req_execodes,
at2->req_status);
switch (at2->req_status & ~ATIO_SENSEVALID) {
case ATIO_PATH_INVALID:
PRINTF("%s: ATIO2 Path Invalid\n", isp->isp_name);
break;
case ATIO_NOCAP:
PRINTF("%s: ATIO2 No Cap\n", isp->isp_name);
break;
case ATIO_BDR_MSG:
PRINTF("%s: ATIO2 BDR Received\n", isp->isp_name);
break;
case ATIO_CDB_RECEIVED:
ct2 = &local;
break;
default:
PRINTF("%s: unknown req_status 0x%x\n", isp->isp_name,
at2->req_status);
break;
}
if (ct2 == NULL) {
/*
* Just do an ACCEPT on this fellow.
*/
at2->req_header.rqs_entry_type = RQSTYPE_ATIO2;
at2->req_header.rqs_flags = 0;
at2->req_flags = 1;
ireqp = at2;
reqsize = sizeof (*at2);
break;
}
PRINTF("%s: datalen %d cdb0=0x%x\n", isp->isp_name,
at2->req_datalen, at2->req_cdb[0]);
MEMZERO((void *) ct2, sizeof (*ct2));
ct2->req_header.rqs_entry_type = RQSTYPE_CTIO2;
ct2->req_header.rqs_entry_count = 1;
ct2->req_header.rqs_flags = 0;
ct2->req_header.rqs_seqno = isp->isp_seqno++;
ct2->req_handle = (at2->req_initiator << 16) | lun;
#ifndef ISP2100_SCCLUN
ct2->req_lun = lun;
#endif
ct2->req_initiator = at2->req_initiator;
ct2->req_rxid = at2->req_rxid;
ct2->req_flags = CTIO_SEND_STATUS;
switch (at2->req_cdb[0]) {
case 0x0: /* TUR */
ct2->req_flags |= CTIO_NODATA | CTIO2_SMODE0;
ct2->req_m.mode0.req_scsi_status = CTIO2_STATUS_VALID;
break;
case 0x3: /* REQUEST SENSE */
case 0x12: /* INQUIRE */
ct2->req_flags |= CTIO_SEND_DATA | CTIO2_SMODE0;
ct2->req_m.mode0.req_scsi_status = CTIO2_STATUS_VALID;
ct2->req_seg_count = 1;
if (at2->req_cdb[0] == 0x12) {
s = sizeof (tgtiqd);
MEMCPY(fcp->isp_scratch, tgtiqd, s);
} else {
s = at2->req_datalen;
MEMZERO(fcp->isp_scratch, s);
}
ct2->req_m.mode0.req_dataseg[0].ds_base =
fcp->isp_scdma;
ct2->req_m.mode0.req_dataseg[0].ds_count = s;
ct2->req_m.mode0.req_datalen = s;
#if 1
if (at2->req_datalen < s) {
ct2->req_m.mode1.req_scsi_status |=
CTIO2_RESP_VALID|CTIO2_RSPOVERUN;
} else if (at2->req_datalen > s) {
ct2->req_m.mode1.req_scsi_status |=
CTIO2_RESP_VALID|CTIO2_RSPUNDERUN;
}
#endif
break;
default: /* ALL OTHERS */
ct2->req_flags |= CTIO_NODATA | CTIO2_SMODE1;
ct2->req_m.mode1.req_scsi_status = 0;
#if 1
if (at2->req_datalen) {
ct2->req_m.mode1.req_scsi_status |=
CTIO2_RSPUNDERUN;
ct2->req_resid[0] = at2->req_datalen & 0xff;
ct2->req_resid[1] =
(at2->req_datalen >> 8) & 0xff;
ct2->req_resid[2] =
(at2->req_datalen >> 16) & 0xff;
ct2->req_resid[3] =
(at2->req_datalen >> 24) & 0xff;
}
#endif
if ((at2->req_status & ATIO_SENSEVALID) == 0) {
ct2->req_m.mode1.req_sense_len = 18;
ct2->req_m.mode1.req_scsi_status |= 2;
ct2->req_m.mode1.req_response[0] = 0x70;
ct2->req_m.mode1.req_response[2] = 0x2;
} else {
ct2->req_m.mode1.req_sense_len = 18;
ct2->req_m.mode1.req_scsi_status |=
at2->req_scsi_status;
MEMCPY(ct2->req_m.mode1.req_response,
at2->req_sense, sizeof (at2->req_sense));
}
break;
}
reqsize = sizeof (*ct2);
ireqp = ct2;
break;
}
case RQSTYPE_CTIO2:
{
ispatiot2_t *at2;
ispctiot2_t *ct2 = (ispctiot2_t *) sp;
PRINTF("%s: CTIO2 returned status 0x%x\n", isp->isp_name,
ct2->req_status);
/*
* Return the ATIO to the board.
*/
at2 = (ispatiot2_t *) sp;
at2->req_header.rqs_entry_type = RQSTYPE_ATIO2;
at2->req_header.rqs_entry_count = 1;
at2->req_header.rqs_flags = 0;
at2->req_header.rqs_seqno = isp->isp_seqno++;
at2->req_status = 1;
reqsize = sizeof (*at2);
ireqp = at2;
break;
}
#undef atio
#undef at2io
#undef ctio
#undef ct2io
#undef lunen
#undef inot
#undef inot_fc
#undef nack
#undef nack_fc
#endif
default:
PRINTF("%s: other response type %x\n", isp->isp_name,
sp->req_header.rqs_entry_type);
break;
}
if (reqsize) {
void *reqp;
optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4);
iptr = isp->isp_reqidx;
reqp = (void *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr);
iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN);
if (iptr == optr) {
PRINTF("%s: Request Queue Overflow other response\n",
isp->isp_name);
} else {
MEMCPY(reqp, ireqp, reqsize);
ISP_WRITE(isp, INMAILBOX4, iptr);
isp->isp_reqidx = iptr;
}
}
return (0);
}
#ifdef ISP_TARGET_MODE
static void isp_tmd_newcmd_dflt __P((void *, tmd_cmd_t *));
static void isp_tmd_event_dflt __P((void *, int));
static void isp_tmd_notify_dflt __P((void *, tmd_notify_t *));
static void isp_tgt_data_xfer __P ((tmd_cmd_t *));
static void isp_tgt_endcmd __P ((tmd_cmd_t *, u_int8_t));
static void isp_tgt_done __P ((tmd_cmd_t *));
static void
isp_tmd_newcmd_dflt(arg0, cmdp)
void *arg0;
tmd_cmd_t *cmdp;
{
}
static void
isp_tmd_event_dflt(arg0, event)
void *arg0;
int event;
{
}
static void
isp_tmd_notify_dflt(arg0, npt)
void *arg0;
tmd_notify_t *npt;
{
}
/*
* Locks held, and ints disabled (if FC).
*
* XXX: SETUP ONLY FOR INITIAL ENABLING RIGHT NOW
*/
static int
isp_modify_lun(isp, lun, icnt, ccnt)
struct ispsoftc *isp;
int lun; /* logical unit to enable, modify, or disable */
int icnt; /* immediate notify count */
int ccnt; /* command count */
{
isplun_t *ip = NULL;
u_int8_t iptr, optr;
optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4);
iptr = isp->isp_reqidx;
ip = (isplun_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr);
iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN);
if (iptr == optr) {
PRINTF("%s: Request Queue Overflow in isp_modify_lun\n",
isp->isp_name);
return (-1);
}
MEMZERO((void *) ip, sizeof (*ip));
ip->req_header.rqs_entry_type = RQSTYPE_ENABLE_LUN;
ip->req_header.rqs_entry_count = 1;
ip->req_header.rqs_seqno = isp->isp_seqno++;
ip->req_handle = RQSTYPE_ENABLE_LUN;
if (isp->isp_type & ISP_HA_SCSI) {
ip->req_lun = lun;
}
ip->req_cmdcount = ccnt;
ip->req_imcount = icnt;
ip->req_timeout = 0; /* default 30 seconds */
ISP_WRITE(isp, INMAILBOX4, iptr);
isp->isp_reqidx = iptr;
return (0);
}
static void
isp_notify_ack(isp, ptrp)
struct ispsoftc *isp;
void *ptrp;
{
void *reqp;
u_int8_t iptr, optr;
union {
na_fcentry_t _naf;
na_entry_t _nas;
} un;
MEMZERO((caddr_t)&un, sizeof (un));
un._nas.na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
un._nas.na_header.rqs_entry_count = 1;
if (isp->isp_type & ISP_HA_FC) {
na_fcentry_t *na = &un._nas;
if (ptrp) {
in_fcentry_t *inp = ptrp;
na->na_iid = inp->in_iid;
na->na_lun = inp->in_lun;
na->na_task_flags = inp->in_task_flags;
na->na_seqid = inp->in_seqid;
na->na_status = inp->in_status;
} else {
na->na_flags = NAFC_RST_CLRD;
}
} else {
na_entry_t *na = &un._nas;
if (ptrp) {
in_entry_t *inp = ptrp;
na->na_iid = inp->in_iid;
na->na_lun = inp->in_lun;
na->na_tgt = inp->in_tgt;
na->na_seqid = inp->in_seqid;
} else {
na->na_flags = NA_RST_CLRD;
}
}
optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4);
iptr = isp->isp_reqidx;
reqp = (void *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr);
iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN);
if (iptr == optr) {
PRINTF("%s: Request Queue Overflow For isp_notify_ack\n",
isp->isp_name);
} else {
MEMCPY(reqp, ireqp, sizeof (un));
ISP_WRITE(isp, INMAILBOX4, iptr);
isp->isp_reqidx = iptr;
}
}
/*
* These are dummy stubs for now until the outside framework is plugged in.
*/
static void
isp_handle_atio (isp, aep)
struct ispsoftc *isp;
at_entry_t *aep;
{
int status, connected;
tmd_cmd_t local, *cdp = &local;
/*
* Get the ATIO status and see if we're still connected.
*/
status = aep->at_status;
connected = ((aep->at_flags & AT_NODISC) != 0);
PRINTF("%s: ATIO status=0x%x, connected=%d\n", isp->isp_name,
status, connected);
/*
* The firmware status (except for the SenseValid bit) indicates
* why this ATIO was sent to us.
* If SenseValid is set, the firware has recommended Sense Data.
* If the Disconnects Disabled bit is set in the flags field,
* we're still connected on the SCSI bus - i.e. the initiator
* did not set DiscPriv in the identify message. We don't care
* about this so it's ignored.
*/
switch (status & ~TGTSVALID) {
case AT_PATH_INVALID:
/*
* ATIO rejected by the firmware due to disabled lun.
*/
PRINTF("%s: Firmware rejected ATIO for disabled lun %d\n",
isp->isp_name, aep->at_lun);
break;
case AT_PHASE_ERROR:
/*
* Bus Pase Sequence error.
*
* The firmware should have filled in the correct
* sense data.
*/
if (status & TGTSVALID) {
MEMCPY(&cdp->cd_sensedata, aep->at_sense,
sizeof (cdp->cd_sensedata));
PRINTF("%s: Bus Phase Sequence error key 0x%x\n",
isp->isp_name, cdp->cd_sensedata[2] & 0xf);
} else {
PRINTF("%s: Bus Phase Sequence With No Sense\n",
isp->isp_name);
}
(*isp->isp_tmd_newcmd)(isp, cdp);
break;
case AT_NOCAP:
/*
* Requested Capability not available
* We sent an ATIO that overflowed the firmware's
* command resource count.
*/
PRINTF("%s: Firmware rejected ATIO, command count overflow\n",
isp->isp_name);
break;
case AT_BDR_MSG:
/*
* If we send an ATIO to the firmware to increment
* its command resource count, and the firmware is
* recovering from a Bus Device Reset, it returns
* the ATIO with this status.
*/
PRINTF("%s: ATIO returned with BDR received\n", isp->isp_name);
break;
case AT_CDB:
/*
* New CDB
*/
cdp->cd_hba = isp;
cdp->cd_iid = aep->at_iid;
cdp->cd_tgt = aep->at_tgt;
cdp->cd_lun = aep->at_lun;
cdp->cd_tagtype = aep->at_tag_type;
cdp->cd_tagval = aep->at_tag_val;
MEMCPY(cdp->cd_cdb, aep->at_cdb, 16);
PRINTF("%s: CDB 0x%x itl %d/%d/%d\n", isp->isp_name,
cdp->cd_cdb[0], cdp->cd_iid, cdp->cd_tgt, cdp->cd_lun);
(*isp->isp_tmd_newcmd)(isp, cdp);
break;
default:
PRINTF("%s: Unknown status (0x%x) in ATIO\n",
isp->isp_name, status);
cdp->cd_hba = isp;
cdp->cd_iid = aep->at_iid;
cdp->cd_tgt = aep->at_tgt;
cdp->cd_lun = aep->at_lun;
cdp->cd_tagtype = aep->at_tag_type;
cdp->cd_tagval = aep->at_tag_val;
isp_tgtcmd_done(cdp);
break;
}
}
static void
isp_handle_atio2(isp, aep)
struct ispsoftc *isp;
at2_entry_t *aep;
{
int status;
tmd_cmd_t local, *cdp = &local;
/*
* Get the ATIO2 status.
*/
status = aep->at_status;
PRINTD("%s: ATIO2 status=0x%x\n", status);
/*
* The firmware status (except for the SenseValid bit) indicates
* why this ATIO was sent to us.
* If SenseValid is set, the firware has recommended Sense Data.
*/
switch (status & ~TGTSVALID) {
case AT_PATH_INVALID:
/*
* ATIO rejected by the firmware due to disabled lun.
*/
PRINTF("%s: Firmware rejected ATIO2 for disabled lun %d\n",
isp->isp_name, aep->at_lun);
break;
case AT_NOCAP:
/*
* Requested Capability not available
* We sent an ATIO that overflowed the firmware's
* command resource count.
*/
PRINTF("%s: Firmware rejected ATIO2, command count overflow\n",
isp->isp_name);
break;
case AT_BDR_MSG:
/*
* If we send an ATIO to the firmware to increment
* its command resource count, and the firmware is
* recovering from a Bus Device Reset, it returns
* the ATIO with this status.
*/
PRINTF("%s: ATIO2 returned with BDR rcvd\n", isp->isp_name);
break;
case AT_CDB:
/*
* New CDB
*/
cdp->cd_hba = isp;
cdp->cd_iid = aep->at_iid;
cdp->cd_tgt = 0;
cdp->cd_lun = aep->at_lun;
MEMCPY(cdp->cd_cdb, aep->at_cdb, 16);
cdp->cd_rxid = aep->at_rxid;
cdp->cp_origdlen = aep->at_datalen;
cdp->cp_totbytes = 0;
PRINTF("%s: CDB 0x%x rx_id 0x%x itl %d/%d/%d dlen %d\n",
isp->isp_name, cdp->cd_cdb[0], cdp->cd_tagval, cdp->cd_iid,
cdp->cd_tgt, cdp->cd_lun, aep->at_datalen);
(*isp->isp_tmd_newcmd)(isp, cdp);
break;
default:
PRINTF("%s: Unknown status (0x%x) in ATIO2\n",
isp->isp_name, status);
cdp->cd_hba = isp;
cdp->cd_iid = aep->at_iid;
cdp->cd_tgt = aep->at_tgt;
cdp->cd_lun = aep->at_lun;
cdp->cp_rxid = aep->at_rxid;
isp_tgtcmd_done(cdp);
break;
}
}
static void
isp_handle_ctio(isp, cep)
struct ispsoftc *isp;
ct_entry_t *aep;
{
}
static void
isp_handle_ctio2(isp, cep)
struct ispsoftc *isp;
at2_entry_t *aep;
{
}
#endif
static void
isp_parse_status(isp, sp, xs)
struct ispsoftc *isp;
ispstatusreq_t *sp;
ISP_SCSI_XFER_T *xs;
{
switch (sp->req_completion_status) {
case RQCS_COMPLETE:
XS_SETERR(xs, HBA_NOERROR);
return;
case RQCS_INCOMPLETE:
if ((sp->req_state_flags & RQSF_GOT_TARGET) == 0) {
IDPRINTF(3, ("%s: Selection Timeout for target %d\n",
isp->isp_name, XS_TGT(xs)));
XS_SETERR(xs, HBA_SELTIMEOUT);
return;
}
PRINTF("%s: command incomplete for target %d lun %d, state "
"0x%x\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs),
sp->req_state_flags);
break;
case RQCS_DMA_ERROR:
PRINTF("%s: DMA error for command on target %d, lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_TRANSPORT_ERROR:
PRINTF("%s: transport error\n", isp->isp_name);
isp_prtstst(sp);
break;
case RQCS_RESET_OCCURRED:
IDPRINTF(2, ("%s: bus reset destroyed command for target %d "
"lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)));
isp->isp_sendmarker = 1;
XS_SETERR(xs, HBA_BUSRESET);
return;
case RQCS_ABORTED:
PRINTF("%s: command aborted for target %d lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
isp->isp_sendmarker = 1;
XS_SETERR(xs, HBA_ABORTED);
return;
case RQCS_TIMEOUT:
IDPRINTF(2, ("%s: command timed out for target %d lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs)));
XS_SETERR(xs, HBA_CMDTIMEOUT);
return;
case RQCS_DATA_OVERRUN:
if (isp->isp_type & ISP_HA_FC) {
XS_RESID(xs) = sp->req_resid;
break;
}
XS_SETERR(xs, HBA_DATAOVR);
return;
case RQCS_COMMAND_OVERRUN:
PRINTF("%s: command overrun for command on target %d, lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_STATUS_OVERRUN:
PRINTF("%s: status overrun for command on target %d, lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_BAD_MESSAGE:
PRINTF("%s: message not COMMAND COMPLETE after status on "
"target %d, lun %d\n", isp->isp_name, XS_TGT(xs),
XS_LUN(xs));
break;
case RQCS_NO_MESSAGE_OUT:
PRINTF("%s: No MESSAGE OUT phase after selection on "
"target %d, lun %d\n", isp->isp_name, XS_TGT(xs),
XS_LUN(xs));
break;
case RQCS_EXT_ID_FAILED:
PRINTF("%s: EXTENDED IDENTIFY failed on target %d, lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_IDE_MSG_FAILED:
PRINTF("%s: target %d lun %d rejected INITIATOR DETECTED "
"ERROR message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_ABORT_MSG_FAILED:
PRINTF("%s: target %d lun %d rejected ABORT message\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_REJECT_MSG_FAILED:
PRINTF("%s: target %d lun %d rejected MESSAGE REJECT message\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_NOP_MSG_FAILED:
PRINTF("%s: target %d lun %d rejected NOP message\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_PARITY_ERROR_MSG_FAILED:
PRINTF("%s: target %d lun %d rejected MESSAGE PARITY ERROR "
"message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_DEVICE_RESET_MSG_FAILED:
PRINTF("%s: target %d lun %d rejected BUS DEVICE RESET "
"message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_ID_MSG_FAILED:
PRINTF("%s: target %d lun %d rejected IDENTIFY "
"message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_UNEXP_BUS_FREE:
PRINTF("%s: target %d lun %d had an unexpected bus free\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_DATA_UNDERRUN:
if (isp->isp_type & ISP_HA_FC) {
XS_RESID(xs) = sp->req_resid;
/* an UNDERRUN is not a botch ??? */
}
XS_SETERR(xs, HBA_NOERROR);
return;
case RQCS_XACT_ERR1:
PRINTF("%s: HBA attempted queued transaction with disconnect "
"not set for target %d lun %d\n", isp->isp_name, XS_TGT(xs),
XS_LUN(xs));
break;
case RQCS_XACT_ERR2:
PRINTF("%s: HBA attempted queued transaction to target "
"routine %d on target %d\n", isp->isp_name, XS_LUN(xs),
XS_TGT(xs));
break;
case RQCS_XACT_ERR3:
PRINTF("%s: HBA attempted queued transaction for target %d lun "
"%d when queueing disabled\n", isp->isp_name, XS_TGT(xs),
XS_LUN(xs));
break;
case RQCS_BAD_ENTRY:
PRINTF("%s: invalid IOCB entry type detected\n", isp->isp_name);
break;
case RQCS_QUEUE_FULL:
PRINTF("%s: internal queues full for target %d lun %d "
"status 0x%x\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs),
XS_STS(xs));
/*
* If QFULL or some other status byte is set, then this
* isn't an error, per se.
*/
if (XS_STS(xs) != 0) {
XS_SETERR(xs, HBA_NOERROR);
return;
}
break;
case RQCS_PHASE_SKIPPED:
PRINTF("%s: SCSI phase skipped (e.g., COMMAND COMPLETE w/o "
"STATUS phase) for target %d lun %d\n", isp->isp_name,
XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_ARQS_FAILED:
PRINTF("%s: Auto Request Sense failed for target %d lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
XS_SETERR(xs, HBA_ARQFAIL);
return;
case RQCS_WIDE_FAILED:
PRINTF("%s: Wide Negotiation failed for target %d lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
if (isp->isp_type & ISP_HA_SCSI) {
sdparam *sdp = isp->isp_param;
isp->isp_update = 1;
sdp->isp_devparam[XS_TGT(xs)].dev_flags &= ~DPARM_WIDE;
sdp->isp_devparam[XS_TGT(xs)].dev_update = 1;
}
XS_SETERR(xs, HBA_NOERROR);
return;
case RQCS_SYNCXFER_FAILED:
PRINTF("%s: SDTR Message failed for target %d lun %d\n",
isp->isp_name, XS_TGT(xs), XS_LUN(xs));
if (isp->isp_type & ISP_HA_SCSI) {
sdparam *sdp = isp->isp_param;
isp->isp_update = 1;
sdp->isp_devparam[XS_TGT(xs)].dev_flags &= ~DPARM_SYNC;
sdp->isp_devparam[XS_TGT(xs)].dev_update = 1;
}
break;
case RQCS_LVD_BUSERR:
PRINTF("%s: Bad LVD Bus condition while talking to target %d "
"lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs));
break;
case RQCS_PORT_UNAVAILABLE:
/*
* No such port on the loop. Moral equivalent of SELTIMEO
*/
IDPRINTF(3, ("%s: Port Unavailable for target %d\n",
isp->isp_name, XS_TGT(xs)));
XS_SETERR(xs, HBA_SELTIMEOUT);
return;
case RQCS_PORT_LOGGED_OUT:
/*
* It was there (maybe)- treat as a selection timeout.
*/
PRINTF("%s: port logout for target %d\n",
isp->isp_name, XS_TGT(xs));
XS_SETERR(xs, HBA_SELTIMEOUT);
return;
case RQCS_PORT_CHANGED:
PRINTF("%s: port changed for target %d\n",
isp->isp_name, XS_TGT(xs));
break;
case RQCS_PORT_BUSY:
PRINTF("%s: port busy for target %d\n",
isp->isp_name, XS_TGT(xs));
XS_SETERR(xs, HBA_TGTBSY);
return;
default:
PRINTF("%s: comp status %x\n", isp->isp_name,
sp->req_completion_status);
break;
}
XS_SETERR(xs, HBA_BOTCH);
}
static void
isp_fastpost_complete(isp, fph)
struct ispsoftc *isp;
int fph;
{
ISP_SCSI_XFER_T *xs;
if (fph < 1)
return;
xs = (ISP_SCSI_XFER_T *) isp->isp_xflist[fph - 1];
isp->isp_xflist[fph - 1] = NULL;
if (xs == NULL) {
PRINTF("%s: fast posting handle 0x%x not found\n",
isp->isp_name, fph - 1);
return;
}
/*
* Since we don't have a result queue entry item,
* we must believe that SCSI status is zero and
* that all data transferred.
*/
XS_RESID(xs) = 0;
XS_STS(xs) = 0;
if (XS_XFRLEN(xs)) {
ISP_DMAFREE(isp, xs, fph - 1);
}
XS_CMD_DONE(xs);
}
#define HINIB(x) ((x) >> 0x4)
#define LONIB(x) ((x) & 0xf)
#define MAKNIB(a, b) (((a) << 4) | (b))
static u_int8_t mbpcnt[] = {
MAKNIB(1, 1), /* 0x00: MBOX_NO_OP */
MAKNIB(5, 5), /* 0x01: MBOX_LOAD_RAM */
MAKNIB(2, 0), /* 0x02: MBOX_EXEC_FIRMWARE */
MAKNIB(5, 5), /* 0x03: MBOX_DUMP_RAM */
MAKNIB(3, 3), /* 0x04: MBOX_WRITE_RAM_WORD */
MAKNIB(2, 3), /* 0x05: MBOX_READ_RAM_WORD */
MAKNIB(6, 6), /* 0x06: MBOX_MAILBOX_REG_TEST */
MAKNIB(2, 3), /* 0x07: MBOX_VERIFY_CHECKSUM */
MAKNIB(1, 4), /* 0x08: MBOX_ABOUT_FIRMWARE */
MAKNIB(0, 0), /* 0x09: */
MAKNIB(0, 0), /* 0x0a: */
MAKNIB(0, 0), /* 0x0b: */
MAKNIB(0, 0), /* 0x0c: */
MAKNIB(0, 0), /* 0x0d: */
MAKNIB(1, 2), /* 0x0e: MBOX_CHECK_FIRMWARE */
MAKNIB(0, 0), /* 0x0f: */
MAKNIB(5, 5), /* 0x10: MBOX_INIT_REQ_QUEUE */
MAKNIB(6, 6), /* 0x11: MBOX_INIT_RES_QUEUE */
MAKNIB(4, 4), /* 0x12: MBOX_EXECUTE_IOCB */
MAKNIB(2, 2), /* 0x13: MBOX_WAKE_UP */
MAKNIB(1, 6), /* 0x14: MBOX_STOP_FIRMWARE */
MAKNIB(4, 4), /* 0x15: MBOX_ABORT */
MAKNIB(2, 2), /* 0x16: MBOX_ABORT_DEVICE */
MAKNIB(3, 3), /* 0x17: MBOX_ABORT_TARGET */
MAKNIB(3, 1), /* 0x18: MBOX_BUS_RESET */
MAKNIB(2, 3), /* 0x19: MBOX_STOP_QUEUE */
MAKNIB(2, 3), /* 0x1a: MBOX_START_QUEUE */
MAKNIB(2, 3), /* 0x1b: MBOX_SINGLE_STEP_QUEUE */
MAKNIB(2, 3), /* 0x1c: MBOX_ABORT_QUEUE */
MAKNIB(2, 4), /* 0x1d: MBOX_GET_DEV_QUEUE_STATUS */
MAKNIB(0, 0), /* 0x1e: */
MAKNIB(1, 3), /* 0x1f: MBOX_GET_FIRMWARE_STATUS */
MAKNIB(1, 3), /* 0x20: MBOX_GET_INIT_SCSI_ID, MBOX_GET_LOOP_ID */
MAKNIB(1, 2), /* 0x21: MBOX_GET_SELECT_TIMEOUT */
MAKNIB(1, 3), /* 0x22: MBOX_GET_RETRY_COUNT */
MAKNIB(1, 2), /* 0x23: MBOX_GET_TAG_AGE_LIMIT */
MAKNIB(1, 2), /* 0x24: MBOX_GET_CLOCK_RATE */
MAKNIB(1, 2), /* 0x25: MBOX_GET_ACT_NEG_STATE */
MAKNIB(1, 2), /* 0x26: MBOX_GET_ASYNC_DATA_SETUP_TIME */
MAKNIB(1, 3), /* 0x27: MBOX_GET_PCI_PARAMS */
MAKNIB(2, 4), /* 0x28: MBOX_GET_TARGET_PARAMS */
MAKNIB(2, 4), /* 0x29: MBOX_GET_DEV_QUEUE_PARAMS */
MAKNIB(0, 0), /* 0x2a: */
MAKNIB(0, 0), /* 0x2b: */
MAKNIB(0, 0), /* 0x2c: */
MAKNIB(0, 0), /* 0x2d: */
MAKNIB(0, 0), /* 0x2e: */
MAKNIB(0, 0), /* 0x2f: */
MAKNIB(2, 2), /* 0x30: MBOX_SET_INIT_SCSI_ID */
MAKNIB(2, 2), /* 0x31: MBOX_SET_SELECT_TIMEOUT */
MAKNIB(3, 3), /* 0x32: MBOX_SET_RETRY_COUNT */
MAKNIB(2, 2), /* 0x33: MBOX_SET_TAG_AGE_LIMIT */
MAKNIB(2, 2), /* 0x34: MBOX_SET_CLOCK_RATE */
MAKNIB(2, 2), /* 0x35: MBOX_SET_ACTIVE_NEG_STATE */
MAKNIB(2, 2), /* 0x36: MBOX_SET_ASYNC_DATA_SETUP_TIME */
MAKNIB(3, 3), /* 0x37: MBOX_SET_PCI_CONTROL_PARAMS */
MAKNIB(4, 4), /* 0x38: MBOX_SET_TARGET_PARAMS */
MAKNIB(4, 4), /* 0x39: MBOX_SET_DEV_QUEUE_PARAMS */
MAKNIB(0, 0), /* 0x3a: */
MAKNIB(0, 0), /* 0x3b: */
MAKNIB(0, 0), /* 0x3c: */
MAKNIB(0, 0), /* 0x3d: */
MAKNIB(0, 0), /* 0x3e: */
MAKNIB(0, 0), /* 0x3f: */
MAKNIB(1, 2), /* 0x40: MBOX_RETURN_BIOS_BLOCK_ADDR */
MAKNIB(6, 1), /* 0x41: MBOX_WRITE_FOUR_RAM_WORDS */
MAKNIB(2, 3), /* 0x42: MBOX_EXEC_BIOS_IOCB */
MAKNIB(0, 0), /* 0x43: */
MAKNIB(0, 0), /* 0x44: */
MAKNIB(0, 0), /* 0x45: */
MAKNIB(0, 0), /* 0x46: */
MAKNIB(0, 0), /* 0x47: */
MAKNIB(0, 0), /* 0x48: */
MAKNIB(0, 0), /* 0x49: */
MAKNIB(2, 1), /* 0x4a: MBOX_SET_FIRMWARE_FEATURES */
MAKNIB(1, 2), /* 0x4b: MBOX_GET_FIRMWARE_FEATURES */
MAKNIB(0, 0), /* 0x4c: */
MAKNIB(0, 0), /* 0x4d: */
MAKNIB(0, 0), /* 0x4e: */
MAKNIB(0, 0), /* 0x4f: */
MAKNIB(0, 0), /* 0x50: */
MAKNIB(0, 0), /* 0x51: */
MAKNIB(0, 0), /* 0x52: */
MAKNIB(0, 0), /* 0x53: */
MAKNIB(8, 0), /* 0x54: MBOX_EXEC_COMMAND_IOCB_A64 */
MAKNIB(0, 0), /* 0x55: */
MAKNIB(0, 0), /* 0x56: */
MAKNIB(0, 0), /* 0x57: */
MAKNIB(0, 0), /* 0x58: */
MAKNIB(0, 0), /* 0x59: */
MAKNIB(0, 0), /* 0x5a: */
MAKNIB(0, 0), /* 0x5b: */
MAKNIB(0, 0), /* 0x5c: */
MAKNIB(0, 0), /* 0x5d: */
MAKNIB(0, 0), /* 0x5e: */
MAKNIB(0, 0), /* 0x5f: */
MAKNIB(8, 6), /* 0x60: MBOX_INIT_FIRMWARE */
MAKNIB(0, 0), /* 0x60: MBOX_GET_INIT_CONTROL_BLOCK (FORMAT?) */
MAKNIB(2, 1), /* 0x62: MBOX_INIT_LIP */
MAKNIB(8, 1), /* 0x63: MBOX_GET_FC_AL_POSITION_MAP */
MAKNIB(8, 1), /* 0x64: MBOX_GET_PORT_DB */
MAKNIB(3, 1), /* 0x65: MBOX_CLEAR_ACA */
MAKNIB(3, 1), /* 0x66: MBOX_TARGET_RESET */
MAKNIB(3, 1), /* 0x67: MBOX_CLEAR_TASK_SET */
MAKNIB(3, 1), /* 0x68: MBOX_ABORT_TASK_SET */
MAKNIB(1, 2), /* 0x69: MBOX_GET_FW_STATE */
MAKNIB(2, 8), /* 0x6a: MBOX_GET_PORT_NAME */
MAKNIB(8, 1), /* 0x6b: MBOX_GET_LINK_STATUS */
MAKNIB(4, 4), /* 0x6c: MBOX_INIT_LIP_RESET */
MAKNIB(0, 0), /* 0x6d: */
MAKNIB(0, 0), /* 0x6e: */
MAKNIB(0, 0), /* 0x6f: */
MAKNIB(0, 0), /* 0x70: */
MAKNIB(0, 0), /* 0x71: */
MAKNIB(4, 1) /* 0x72: MBOX_INIT_LIP_LOGIN */
};
#define NMBCOM (sizeof (mbpcnt) / sizeof (mbpcnt[0]))
static void
isp_mboxcmd(isp, mbp)
struct ispsoftc *isp;
mbreg_t *mbp;
{
int outparam, inparam;
int loops, dld = 0;
u_int8_t opcode;
if (mbp->param[0] == ISP2100_SET_PCI_PARAM) {
opcode = mbp->param[0] = MBOX_SET_PCI_PARAMETERS;
inparam = 4;
outparam = 4;
goto command_known;
} else if (mbp->param[0] > NMBCOM) {
PRINTF("%s: bad command %x\n", isp->isp_name, mbp->param[0]);
return;
}
opcode = mbp->param[0];
inparam = HINIB(mbpcnt[mbp->param[0]]);
outparam = LONIB(mbpcnt[mbp->param[0]]);
if (inparam == 0 && outparam == 0) {
PRINTF("%s: no parameters for %x\n", isp->isp_name,
mbp->param[0]);
return;
}
/*
* Check for variants
*/
#ifdef ISP2100_SCCLUN
if (isp->isp_type & ISP_HA_FC) {
switch (mbp->param[0]) {
case MBOX_ABORT:
inparam = 7;
break;
case MBOX_ABORT_DEVICE:
case MBOX_START_QUEUE:
case MBOX_STOP_QUEUE:
case MBOX_SINGLE_STEP_QUEUE:
case MBOX_ABORT_QUEUE:
case MBOX_GET_DEV_QUEUE_STATUS:
inparam = 3;
break;
default:
break;
}
}
#endif
command_known:
/*
* Set semaphore on mailbox registers to win any races to acquire them.
*/
ISP_WRITE(isp, BIU_SEMA, 1);
/*
* Make sure we can send some words. Check to see id there's
* an async mbox event pending.
*/
loops = MBOX_DELAY_COUNT;
while ((ISP_READ(isp, HCCR) & HCCR_HOST_INT) != 0) {
SYS_DELAY(100);
if (ISP_READ(isp, BIU_SEMA) & 1) {
int fph;
u_int16_t mbox = ISP_READ(isp, OUTMAILBOX0);
/*
* We have a pending MBOX async event.
*/
if (mbox & 0x8000) {
fph = isp_parse_async(isp, (int) mbox);
ISP_WRITE(isp, BIU_SEMA, 0);
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
if (fph < 0) {
return;
} else if (fph > 0) {
isp_fastpost_complete(isp, fph);
}
SYS_DELAY(100);
goto command_known;
}
/*
* We have a pending MBOX completion? Might be
* from a previous command. We can't (sometimes)
* just clear HOST INTERRUPT, so we'll just silently
* eat this here.
*/
if (mbox == MBOX_COMMAND_COMPLETE) {
ISP_WRITE(isp, BIU_SEMA, 0);
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
SYS_DELAY(100);
goto command_known;
}
}
if (--loops < 0) {
if (dld++ > 10) {
PRINTF("%s: isp_mboxcmd could not get command "
"started\n", isp->isp_name);
return;
}
ISP_WRITE(isp, BIU_SEMA, 0);
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
goto command_known;
}
}
/*
* If we're a 1080 or a 1240, make sure that for a couple of commands
* the port parameter is set. This is sort of a temporary solution
* to do it here rather than every place a mailbox command is formed.
*/
if (IS_1080(isp) || IS_12X0(isp)) {
switch (mbp->param[0]) {
case MBOX_BUS_RESET:
mbp->param[2] = isp->isp_port;
break;
default:
break;
}
}
/*
* Write input parameters.
*/
switch (inparam) {
case 8: ISP_WRITE(isp, INMAILBOX7, mbp->param[7]); mbp->param[7] = 0;
case 7: ISP_WRITE(isp, INMAILBOX6, mbp->param[6]); mbp->param[6] = 0;
case 6:
/*
* The Qlogic 2100 cannot have registers 4 and 5 written to
* after initialization or BAD THINGS HAPPEN (tm).
*/
if (IS_SCSI(isp) || mbp->param[0] == MBOX_INIT_FIRMWARE)
ISP_WRITE(isp, INMAILBOX5, mbp->param[5]);
mbp->param[5] = 0;
case 5:
if (IS_SCSI(isp) || mbp->param[0] == MBOX_INIT_FIRMWARE)
ISP_WRITE(isp, INMAILBOX4, mbp->param[4]);
mbp->param[4] = 0;
case 4: ISP_WRITE(isp, INMAILBOX3, mbp->param[3]); mbp->param[3] = 0;
case 3: ISP_WRITE(isp, INMAILBOX2, mbp->param[2]); mbp->param[2] = 0;
case 2: ISP_WRITE(isp, INMAILBOX1, mbp->param[1]); mbp->param[1] = 0;
case 1: ISP_WRITE(isp, INMAILBOX0, mbp->param[0]); mbp->param[0] = 0;
}
/*
* Clear RISC int condition.
*/
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
/*
* Clear semaphore on mailbox registers so that the Qlogic
* may update outgoing registers.
*/
ISP_WRITE(isp, BIU_SEMA, 0);
ENABLE_INTS(isp);
/*
* Set Host Interrupt condition so that RISC will pick up mailbox regs.
*/
ISP_WRITE(isp, HCCR, HCCR_CMD_SET_HOST_INT);
/*
* Wait until HOST INT has gone away (meaning that the Qlogic
* has picked up the mailbox command. Wait a long time.
*/
loops = MBOX_DELAY_COUNT * 5;
while ((ISP_READ(isp, HCCR) & HCCR_CMD_CLEAR_RISC_INT) != 0) {
SYS_DELAY(100);
if (--loops < 0) {
PRINTF("%s: isp_mboxcmd timeout #2\n", isp->isp_name);
return;
}
}
/*
* While the Semaphore registers isn't set, wait for the Qlogic
* to process the mailbox command. Again- wait a long time.
*/
loops = MBOX_DELAY_COUNT * 5;
while ((ISP_READ(isp, BIU_SEMA) & 1) == 0) {
SYS_DELAY(100);
/*
* Wierd- I've seen the case where the semaphore register
* isn't getting set- sort of a violation of the protocol..
*/
if (ISP_READ(isp, OUTMAILBOX0) & 0x4000)
break;
if (--loops < 0) {
PRINTF("%s: isp_mboxcmd timeout #3\n", isp->isp_name);
return;
}
}
/*
* Make sure that the MBOX_BUSY has gone away
*/
loops = MBOX_DELAY_COUNT;
for (;;) {
u_int16_t mbox = ISP_READ(isp, OUTMAILBOX0);
if (mbox == MBOX_BUSY) {
if (--loops < 0) {
PRINTF("%s: isp_mboxcmd timeout #4\n",
isp->isp_name);
return;
}
SYS_DELAY(100);
continue;
}
/*
* We have a pending MBOX async event.
*/
if (mbox & 0x8000) {
int fph = isp_parse_async(isp, (int) mbox);
ISP_WRITE(isp, BIU_SEMA, 0);
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
if (fph < 0) {
return;
} else if (fph > 0) {
isp_fastpost_complete(isp, fph);
}
SYS_DELAY(100);
continue;
}
break;
}
/*
* Pick up output parameters.
*/
switch (outparam) {
case 8: mbp->param[7] = ISP_READ(isp, OUTMAILBOX7);
case 7: mbp->param[6] = ISP_READ(isp, OUTMAILBOX6);
case 6: mbp->param[5] = ISP_READ(isp, OUTMAILBOX5);
case 5: mbp->param[4] = ISP_READ(isp, OUTMAILBOX4);
case 4: mbp->param[3] = ISP_READ(isp, OUTMAILBOX3);
case 3: mbp->param[2] = ISP_READ(isp, OUTMAILBOX2);
case 2: mbp->param[1] = ISP_READ(isp, OUTMAILBOX1);
case 1: mbp->param[0] = ISP_READ(isp, OUTMAILBOX0);
}
/*
* Clear RISC int.
*/
ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT);
/*
* Release semaphore on mailbox registers
*/
ISP_WRITE(isp, BIU_SEMA, 0);
/*
* Just to be chatty here...
*/
switch (mbp->param[0]) {
case MBOX_COMMAND_COMPLETE:
break;
case MBOX_INVALID_COMMAND:
IDPRINTF(2, ("%s: mbox cmd %x failed with INVALID_COMMAND\n",
isp->isp_name, opcode));
break;
case MBOX_HOST_INTERFACE_ERROR:
PRINTF("%s: mbox cmd %x failed with HOST_INTERFACE_ERROR\n",
isp->isp_name, opcode);
break;
case MBOX_TEST_FAILED:
PRINTF("%s: mbox cmd %x failed with TEST_FAILED\n",
isp->isp_name, opcode);
break;
case MBOX_COMMAND_ERROR:
PRINTF("%s: mbox cmd %x failed with COMMAND_ERROR\n",
isp->isp_name, opcode);
break;
case MBOX_COMMAND_PARAM_ERROR:
switch (opcode) {
case MBOX_GET_PORT_DB:
case MBOX_GET_PORT_NAME:
case MBOX_GET_DEV_QUEUE_PARAMS:
break;
default:
PRINTF("%s: mbox cmd %x failed with "
"COMMAND_PARAM_ERROR\n", isp->isp_name, opcode);
}
break;
/*
* Be silent about these...
*/
case ASYNC_LIP_OCCURRED:
case ASYNC_LOOP_UP:
case ASYNC_LOOP_DOWN:
case ASYNC_LOOP_RESET:
case ASYNC_CHANGE_NOTIFY:
break;
case ASYNC_PDB_CHANGED:
isp_mark_getpdb_all(isp);
break;
default:
/*
* The expected return of EXEC_FIRMWARE is zero.
*/
if ((opcode == MBOX_EXEC_FIRMWARE && mbp->param[0] != 0) ||
(opcode != MBOX_EXEC_FIRMWARE)) {
PRINTF("%s: mbox cmd %x failed with error %x\n",
isp->isp_name, opcode, mbp->param[0]);
}
break;
}
}
void
isp_lostcmd(isp, xs)
struct ispsoftc *isp;
ISP_SCSI_XFER_T *xs;
{
mbreg_t mbs;
mbs.param[0] = MBOX_GET_FIRMWARE_STATUS;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "couldn't GET FIRMWARE STATUS");
return;
}
if (mbs.param[1]) {
PRINTF("%s: %d commands on completion queue\n",
isp->isp_name, mbs.param[1]);
}
if (XS_NULL(xs))
return;
mbs.param[0] = MBOX_GET_DEV_QUEUE_STATUS;
mbs.param[1] = (XS_TGT(xs) << 8) | XS_LUN(xs);
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
isp_dumpregs(isp, "couldn't GET DEVICE QUEUE STATUS");
return;
}
PRINTF("%s: lost command for target %d lun %d, %d active of %d, "
"Queue State: %x\n", isp->isp_name, XS_TGT(xs),
XS_LUN(xs), mbs.param[2], mbs.param[3], mbs.param[1]);
isp_dumpregs(isp, "lost command");
/*
* XXX: Need to try and do something to recover.
*/
}
static void
isp_dumpregs(isp, msg)
struct ispsoftc *isp;
const char *msg;
{
PRINTF("%s: %s\n", isp->isp_name, msg);
if (isp->isp_type & ISP_HA_SCSI)
PRINTF(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
else
PRINTF(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
PRINTF(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
PRINTF("risc_hccr=%x\n", ISP_READ(isp, HCCR));
if (isp->isp_type & ISP_HA_SCSI) {
ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
PRINTF(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
ISP_READ(isp, CDMA_FIFO_STS));
PRINTF(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
ISP_READ(isp, DDMA_FIFO_STS));
PRINTF(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
ISP_READ(isp, SXP_INTERRUPT),
ISP_READ(isp, SXP_GROSS_ERR),
ISP_READ(isp, SXP_PINS_CONTROL));
ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
}
PRINTF(" mbox regs: %x %x %x %x %x\n",
ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
ISP_READ(isp, OUTMAILBOX4));
ISP_DUMPREGS(isp);
}
static void
isp_dumpxflist(isp)
struct ispsoftc *isp;
{
volatile ISP_SCSI_XFER_T *xs;
int i, hdp;
for (hdp = i = 0; i < RQUEST_QUEUE_LEN; i++) {
xs = isp->isp_xflist[i];
if (xs == NULL) {
continue;
}
if (hdp == 0) {
PRINTF("%s: active requests\n", isp->isp_name);
hdp++;
}
PRINTF(" Active Handle %d: tgt %d lun %d dlen %d\n",
i+1, XS_TGT(xs), XS_LUN(xs), XS_XFRLEN(xs));
}
}
static void
isp_fw_state(isp)
struct ispsoftc *isp;
{
mbreg_t mbs;
if (isp->isp_type & ISP_HA_FC) {
int once = 0;
fcparam *fcp = isp->isp_param;
again:
mbs.param[0] = MBOX_GET_FW_STATE;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
switch (mbs.param[0]) {
case ASYNC_PDB_CHANGED:
isp_mark_getpdb_all(isp);
/* FALL THROUGH */
case ASYNC_LIP_OCCURRED:
case ASYNC_LOOP_UP:
case ASYNC_LOOP_DOWN:
case ASYNC_LOOP_RESET:
case ASYNC_CHANGE_NOTIFY:
if (once++ < 2) {
goto again;
}
break;
}
isp_dumpregs(isp, "GET FIRMWARE STATE failed");
return;
}
fcp->isp_fwstate = mbs.param[1];
}
}
static void
isp_update(isp)
struct ispsoftc *isp;
{
int tgt;
mbreg_t mbs;
sdparam *sdp;
isp->isp_update = 0;
if (isp->isp_type & ISP_HA_FC) {
return;
}
sdp = isp->isp_param;
for (tgt = 0; tgt < MAX_TARGETS; tgt++) {
u_int16_t flags, period, offset, changed;
int get;
if (sdp->isp_devparam[tgt].dev_enable == 0) {
continue;
}
/*
* If the goal is to update the status of the device,
* take what's in dev_flags and try and set the device
* toward that. Otherwise, if we're just refreshing the
* current device state, get the current parameters.
*/
if (sdp->isp_devparam[tgt].dev_update) {
mbs.param[0] = MBOX_SET_TARGET_PARAMS;
mbs.param[2] = sdp->isp_devparam[tgt].dev_flags;
mbs.param[3] =
(sdp->isp_devparam[tgt].sync_offset << 8) |
(sdp->isp_devparam[tgt].sync_period);
sdp->isp_devparam[tgt].dev_update = 0;
/*
* A command completion later that has
* RQSTF_NEGOTIATION set will cause
* the dev_refresh/announce cycle.
*
* Note: It is really important to update our current
* flags with at least the state of TAG capabilities-
* otherwise we might try and send a tagged command
* when we have it all turned off. So change it here
* to say that current already matches goal.
*/
sdp->isp_devparam[tgt].cur_dflags &= ~DPARM_TQING;
sdp->isp_devparam[tgt].cur_dflags |=
(sdp->isp_devparam[tgt].dev_flags & DPARM_TQING);
get = 0;
} else if (sdp->isp_devparam[tgt].dev_refresh) {
mbs.param[0] = MBOX_GET_TARGET_PARAMS;
sdp->isp_devparam[tgt].dev_refresh = 0;
get = 1;
} else {
continue;
}
mbs.param[1] = tgt << 8;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
PRINTF("%s: failed to %cet SCSI parameters for "
"target %d\n", isp->isp_name, (get)? 'g' : 's',
tgt);
continue;
}
if (get == 0) {
/*
* XXX: Need a SYNC_TARGET for efficiency...
*/
isp->isp_sendmarker = 1;
continue;
}
flags = mbs.param[2];
period = mbs.param[3] & 0xff;
offset = mbs.param[3] >> 8;
if (sdp->isp_devparam[tgt].cur_dflags != flags ||
sdp->isp_devparam[tgt].cur_period != period ||
sdp->isp_devparam[tgt].cur_offset != offset) {
IDPRINTF(3, ("%s: tgt %d flags 0x%x period %d "
"off %d\n", isp->isp_name, tgt, flags,
period, offset));
changed = 1;
} else {
changed = 0;
}
sdp->isp_devparam[tgt].cur_dflags = flags;
sdp->isp_devparam[tgt].cur_period = period;
sdp->isp_devparam[tgt].cur_offset = offset;
if (sdp->isp_devparam[tgt].dev_announced == 0 || changed) {
if (isp_async(isp, ISPASYNC_NEW_TGT_PARAMS, &tgt))
sdp->isp_devparam[tgt].dev_announced = 0;
else
sdp->isp_devparam[tgt].dev_announced = 1;
}
}
}
static void
isp_setdfltparm(isp)
struct ispsoftc *isp;
{
int tgt;
mbreg_t mbs;
sdparam *sdp;
/*
* Been there, done that, got the T-shirt...
*/
if (isp->isp_gotdparms) {
IDPRINTF(3, ("%s: already have dparms\n", isp->isp_name));
return;
}
isp->isp_gotdparms = 1;
/*
* If we've not been told to avoid reading NVRAM, try and read it.
* If we're successful reading it, we can return since NVRAM will
* tell us the right thing to do. Otherwise, establish some reasonable
* defaults.
*/
if ((isp->isp_confopts & ISP_CFG_NONVRAM) == 0) {
if (isp_read_nvram(isp) == 0) {
return;
}
}
if (IS_FC(isp)) {
fcparam *fcp = (fcparam *) isp->isp_param;
fcp->isp_maxfrmlen = ICB_DFLT_FRMLEN;
fcp->isp_maxalloc = 256;
fcp->isp_execthrottle = 16;
fcp->isp_retry_delay = 5;
fcp->isp_retry_count = 3;
fcp->isp_loopid = DEFAULT_LOOPID;
/*
* It would be nice to fake up a WWN in case we don't
* get one out of NVRAM. Solaris does this for SOCAL
* cards that don't have SBus properties- it sets up
* a WWN based upon the system MAC Address.
*/
fcp->isp_wwn = 0;
return;
}
sdp = (sdparam *) isp->isp_param;
mbs.param[0] = MBOX_GET_ACT_NEG_STATE;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
IDPRINTF(2, ("could not GET ACT NEG STATE\n"));
sdp->isp_req_ack_active_neg = 1;
sdp->isp_data_line_active_neg = 1;
} else {
sdp->isp_req_ack_active_neg = (mbs.param[1] >> 4) & 0x1;
sdp->isp_data_line_active_neg = (mbs.param[1] >> 5) & 0x1;
}
/*
* The trick here is to establish a default for the default (honk!)
* state (dev_flags). Then try and get the current status from
* the card to fill in the current state. We don't, in fact, set
* the default to the SAFE default state- that's not the goal state.
*/
for (tgt = 0; tgt < MAX_TARGETS; tgt++) {
sdp->isp_devparam[tgt].cur_offset = 0;
sdp->isp_devparam[tgt].cur_period = 0;
sdp->isp_devparam[tgt].dev_flags = DPARM_DEFAULT;
sdp->isp_devparam[tgt].cur_dflags = 0;
if (isp->isp_type < ISP_HA_SCSI_1040 ||
(sdp->isp_clock && sdp->isp_clock < 60)) {
sdp->isp_devparam[tgt].sync_offset =
ISP_10M_SYNCPARMS >> 8;
sdp->isp_devparam[tgt].sync_period =
ISP_10M_SYNCPARMS & 0xff;
} else if (IS_1080(isp)) {
sdp->isp_devparam[tgt].sync_offset =
ISP_40M_SYNCPARMS >> 8;
sdp->isp_devparam[tgt].sync_period =
ISP_40M_SYNCPARMS & 0xff;
} else {
sdp->isp_devparam[tgt].sync_offset =
ISP_20M_SYNCPARMS >> 8;
sdp->isp_devparam[tgt].sync_period =
ISP_20M_SYNCPARMS & 0xff;
}
/*
* Don't get current target parameters if we've been
* told not to use NVRAM- it's really the same thing.
*/
if (isp->isp_confopts & ISP_CFG_NONVRAM) {
continue;
}
mbs.param[0] = MBOX_GET_TARGET_PARAMS;
mbs.param[1] = tgt << 8;
isp_mboxcmd(isp, &mbs);
if (mbs.param[0] != MBOX_COMMAND_COMPLETE) {
continue;
}
sdp->isp_devparam[tgt].cur_dflags = mbs.param[2];
sdp->isp_devparam[tgt].dev_flags = mbs.param[2];
sdp->isp_devparam[tgt].cur_period = mbs.param[3] & 0xff;
sdp->isp_devparam[tgt].cur_offset = mbs.param[3] >> 8;
/*
* The maximum period we can really see
* here is 100 (decimal), or 400 ns.
* For some unknown reason we sometimes
* get back wildass numbers from the
* boot device's parameters (alpha only).
*/
if ((mbs.param[3] & 0xff) <= 0x64) {
sdp->isp_devparam[tgt].sync_period =
mbs.param[3] & 0xff;
sdp->isp_devparam[tgt].sync_offset =
mbs.param[3] >> 8;
}
/*
* It is not safe to run Ultra Mode with a clock < 60.
*/
if (((sdp->isp_clock && sdp->isp_clock < 60) ||
(isp->isp_type < ISP_HA_SCSI_1020A)) &&
(sdp->isp_devparam[tgt].sync_period <=
(ISP_20M_SYNCPARMS & 0xff))) {
sdp->isp_devparam[tgt].sync_offset =
ISP_10M_SYNCPARMS >> 8;
sdp->isp_devparam[tgt].sync_period =
ISP_10M_SYNCPARMS & 0xff;
}
}
/*
* Set Default Host Adapter Parameters
*/
sdp->isp_cmd_dma_burst_enable = 1;
sdp->isp_data_dma_burst_enabl = 1;
sdp->isp_fifo_threshold = 0;
sdp->isp_initiator_id = 7;
if (isp->isp_type >= ISP_HA_SCSI_1040) {
sdp->isp_async_data_setup = 9;
} else {
sdp->isp_async_data_setup = 6;
}
sdp->isp_selection_timeout = 250;
sdp->isp_max_queue_depth = MAXISPREQUEST;
sdp->isp_tag_aging = 8;
sdp->isp_bus_reset_delay = 3;
sdp->isp_retry_count = 0;
sdp->isp_retry_delay = 1;
for (tgt = 0; tgt < MAX_TARGETS; tgt++) {
sdp->isp_devparam[tgt].exc_throttle = 16;
sdp->isp_devparam[tgt].dev_enable = 1;
}
}
/*
* Re-initialize the ISP and complete all orphaned commands
* with a 'botched' notice.
*
* Locks held prior to coming here.
*/
void
isp_restart(isp)
struct ispsoftc *isp;
{
ISP_SCSI_XFER_T *tlist[RQUEST_QUEUE_LEN], *xs;
int i;
for (i = 0; i < RQUEST_QUEUE_LEN; i++) {
tlist[i] = (ISP_SCSI_XFER_T *) isp->isp_xflist[i];
isp->isp_xflist[i] = NULL;
}
isp->isp_gotdparms = 0;
isp_reset(isp);
if (isp->isp_state == ISP_RESETSTATE) {
isp_init(isp);
if (isp->isp_state == ISP_INITSTATE) {
isp->isp_state = ISP_RUNSTATE;
}
}
if (isp->isp_state != ISP_RUNSTATE) {
PRINTF("%s: isp_restart cannot restart ISP\n", isp->isp_name);
}
for (i = 0; i < RQUEST_QUEUE_LEN; i++) {
xs = tlist[i];
if (XS_NULL(xs)) {
continue;
}
if (isp->isp_nactive > 0)
isp->isp_nactive--;
XS_RESID(xs) = XS_XFRLEN(xs);
XS_SETERR(xs, HBA_BUSRESET);
XS_CMD_DONE(xs);
}
}
/*
* NVRAM Routines
*/
static int
isp_read_nvram(isp)
struct ispsoftc *isp;
{
int i, amt;
u_int8_t csum, minversion;
union {
u_int8_t _x[ISP2100_NVRAM_SIZE];
u_int16_t _s[ISP2100_NVRAM_SIZE>>1];
} _n;
#define nvram_data _n._x
#define nvram_words _n._s
if (IS_FC(isp)) {
amt = ISP2100_NVRAM_SIZE;
minversion = 1;
} else {
amt = ISP_NVRAM_SIZE;
minversion = 2;
}
/*
* Just read the first two words first to see if we have a valid
* NVRAM to continue reading the rest with.
*/
for (i = 0; i < 2; i++) {
isp_rdnvram_word(isp, i, &nvram_words[i]);
}
if (nvram_data[0] != 'I' || nvram_data[1] != 'S' ||
nvram_data[2] != 'P') {
if (isp->isp_bustype != ISP_BT_SBUS) {
PRINTF("%s: invalid NVRAM header\n", isp->isp_name);
}
return (-1);
}
for (i = 2; i < amt>>1; i++) {
isp_rdnvram_word(isp, i, &nvram_words[i]);
}
for (csum = 0, i = 0; i < amt; i++) {
csum += nvram_data[i];
}
if (csum != 0) {
PRINTF("%s: invalid NVRAM checksum\n", isp->isp_name);
return (-1);
}
if (ISP_NVRAM_VERSION(nvram_data) < minversion) {
PRINTF("%s: version %d NVRAM not understood\n", isp->isp_name,
ISP_NVRAM_VERSION(nvram_data));
return (-1);
}
if (isp->isp_type & ISP_HA_SCSI) {
sdparam *sdp = (sdparam *) isp->isp_param;
sdp->isp_fifo_threshold =
ISP_NVRAM_FIFO_THRESHOLD(nvram_data) |
(ISP_NVRAM_FIFO_THRESHOLD_128(nvram_data) << 2);
sdp->isp_initiator_id =
ISP_NVRAM_INITIATOR_ID(nvram_data);
sdp->isp_bus_reset_delay =
ISP_NVRAM_BUS_RESET_DELAY(nvram_data);
sdp->isp_retry_count =
ISP_NVRAM_BUS_RETRY_COUNT(nvram_data);
sdp->isp_retry_delay =
ISP_NVRAM_BUS_RETRY_DELAY(nvram_data);
sdp->isp_async_data_setup =
ISP_NVRAM_ASYNC_DATA_SETUP_TIME(nvram_data);
if (isp->isp_type >= ISP_HA_SCSI_1040) {
if (sdp->isp_async_data_setup < 9) {
sdp->isp_async_data_setup = 9;
}
} else {
if (sdp->isp_async_data_setup != 6) {
sdp->isp_async_data_setup = 6;
}
}
sdp->isp_req_ack_active_neg =
ISP_NVRAM_REQ_ACK_ACTIVE_NEGATION(nvram_data);
sdp->isp_data_line_active_neg =
ISP_NVRAM_DATA_LINE_ACTIVE_NEGATION(nvram_data);
sdp->isp_data_dma_burst_enabl =
ISP_NVRAM_DATA_DMA_BURST_ENABLE(nvram_data);
sdp->isp_cmd_dma_burst_enable =
ISP_NVRAM_CMD_DMA_BURST_ENABLE(nvram_data);
sdp->isp_tag_aging =
ISP_NVRAM_TAG_AGE_LIMIT(nvram_data);
sdp->isp_selection_timeout =
ISP_NVRAM_SELECTION_TIMEOUT(nvram_data);
sdp->isp_max_queue_depth =
ISP_NVRAM_MAX_QUEUE_DEPTH(nvram_data);
sdp->isp_fast_mttr = ISP_NVRAM_FAST_MTTR_ENABLE(nvram_data);
if (isp->isp_dblev > 2) {
static char *true = "true";
static char *false = "false";
PRINTF("%s: NVRAM values:\n", isp->isp_name);
PRINTF(" Fifo Threshold = 0x%x\n",
sdp->isp_fifo_threshold);
PRINTF(" Bus Reset Delay = %d\n",
sdp->isp_bus_reset_delay);
PRINTF(" Retry Count = %d\n",
sdp->isp_retry_count);
PRINTF(" Retry Delay = %d\n",
sdp->isp_retry_delay);
PRINTF(" Tag Age Limit = %d\n",
sdp->isp_tag_aging);
PRINTF(" Selection Timeout = %d\n",
sdp->isp_selection_timeout);
PRINTF(" Max Queue Depth = %d\n",
sdp->isp_max_queue_depth);
PRINTF(" Async Data Setup = 0x%x\n",
sdp->isp_async_data_setup);
PRINTF(" REQ/ACK Active Negation = %s\n",
sdp->isp_req_ack_active_neg? true : false);
PRINTF(" Data Line Active Negation = %s\n",
sdp->isp_data_line_active_neg? true : false);
PRINTF(" Data DMA Burst Enable = %s\n",
sdp->isp_data_dma_burst_enabl? true : false);
PRINTF(" Cmd DMA Burst Enable = %s\n",
sdp->isp_cmd_dma_burst_enable? true : false);
PRINTF(" Fast MTTR = %s\n",
sdp->isp_fast_mttr? true : false);
}
for (i = 0; i < MAX_TARGETS; i++) {
sdp->isp_devparam[i].dev_enable =
ISP_NVRAM_TGT_DEVICE_ENABLE(nvram_data, i);
sdp->isp_devparam[i].exc_throttle =
ISP_NVRAM_TGT_EXEC_THROTTLE(nvram_data, i);
sdp->isp_devparam[i].sync_offset =
ISP_NVRAM_TGT_SYNC_OFFSET(nvram_data, i);
sdp->isp_devparam[i].sync_period =
ISP_NVRAM_TGT_SYNC_PERIOD(nvram_data, i);
if (isp->isp_type < ISP_HA_SCSI_1040) {
/*
* If we're not ultra, we can't possibly
* be a shorter period than this.
*/
if (sdp->isp_devparam[i].sync_period < 0x19) {
sdp->isp_devparam[i].sync_period =
0x19;
}
if (sdp->isp_devparam[i].sync_offset > 0xc) {
sdp->isp_devparam[i].sync_offset =
0x0c;
}
} else {
if (sdp->isp_devparam[i].sync_offset > 0x8) {
sdp->isp_devparam[i].sync_offset = 0x8;
}
}
sdp->isp_devparam[i].dev_flags = 0;
if (ISP_NVRAM_TGT_RENEG(nvram_data, i))
sdp->isp_devparam[i].dev_flags |= DPARM_RENEG;
if (ISP_NVRAM_TGT_QFRZ(nvram_data, i)) {
PRINTF("%s: not supporting QFRZ option for "
"target %d\n", isp->isp_name, i);
}
sdp->isp_devparam[i].dev_flags |= DPARM_ARQ;
if (ISP_NVRAM_TGT_ARQ(nvram_data, i) == 0) {
PRINTF("%s: not disabling ARQ option for "
"target %d\n", isp->isp_name, i);
}
if (ISP_NVRAM_TGT_TQING(nvram_data, i))
sdp->isp_devparam[i].dev_flags |= DPARM_TQING;
if (ISP_NVRAM_TGT_SYNC(nvram_data, i))
sdp->isp_devparam[i].dev_flags |= DPARM_SYNC;
if (ISP_NVRAM_TGT_WIDE(nvram_data, i))
sdp->isp_devparam[i].dev_flags |= DPARM_WIDE;
if (ISP_NVRAM_TGT_PARITY(nvram_data, i))
sdp->isp_devparam[i].dev_flags |= DPARM_PARITY;
if (ISP_NVRAM_TGT_DISC(nvram_data, i))
sdp->isp_devparam[i].dev_flags |= DPARM_DISC;
sdp->isp_devparam[i].cur_dflags = 0; /* we don't know */
if (isp->isp_dblev > 2) {
PRINTF(" Target %d: Enabled %d Throttle %d "
"Offset %d Period %d Flags 0x%x\n", i,
sdp->isp_devparam[i].dev_enable,
sdp->isp_devparam[i].exc_throttle,
sdp->isp_devparam[i].sync_offset,
sdp->isp_devparam[i].sync_period,
sdp->isp_devparam[i].dev_flags);
}
}
} else {
fcparam *fcp = (fcparam *) isp->isp_param;
union {
struct {
#if BYTE_ORDER == BIG_ENDIAN
u_int32_t hi32;
u_int32_t lo32;
#else
u_int32_t lo32;
u_int32_t hi32;
#endif
} wds;
u_int64_t full64;
} wwnstore;
wwnstore.full64 = ISP2100_NVRAM_NODE_NAME(nvram_data);
PRINTF("%s: Adapter WWN 0x%08x%08x\n", isp->isp_name,
wwnstore.wds.hi32, wwnstore.wds.lo32);
fcp->isp_wwn = wwnstore.full64;
wwnstore.full64 = ISP2100_NVRAM_BOOT_NODE_NAME(nvram_data);
if (wwnstore.full64 != 0) {
PRINTF("%s: BOOT DEVICE WWN 0x%08x%08x\n",
isp->isp_name, wwnstore.wds.hi32,
wwnstore.wds.lo32);
}
fcp->isp_maxalloc =
ISP2100_NVRAM_MAXIOCBALLOCATION(nvram_data);
fcp->isp_maxfrmlen =
ISP2100_NVRAM_MAXFRAMELENGTH(nvram_data);
fcp->isp_retry_delay =
ISP2100_NVRAM_RETRY_DELAY(nvram_data);
fcp->isp_retry_count =
ISP2100_NVRAM_RETRY_COUNT(nvram_data);
fcp->isp_loopid =
ISP2100_NVRAM_HARDLOOPID(nvram_data);
fcp->isp_execthrottle =
ISP2100_NVRAM_EXECUTION_THROTTLE(nvram_data);
fcp->isp_fwoptions = ISP2100_NVRAM_OPTIONS(nvram_data);
if (isp->isp_dblev > 2) {
PRINTF("%s: NVRAM values:\n", isp->isp_name);
PRINTF(" Max IOCB Allocation = %d\n",
fcp->isp_maxalloc);
PRINTF(" Max Frame Length = %d\n",
fcp->isp_maxfrmlen);
PRINTF(" Execution Throttle = %d\n",
fcp->isp_execthrottle);
PRINTF(" Retry Count = %d\n",
fcp->isp_retry_count);
PRINTF(" Retry Delay = %d\n",
fcp->isp_retry_delay);
PRINTF(" Hard Loop ID = %d\n",
fcp->isp_loopid);
PRINTF(" Options = 0x%x\n",
fcp->isp_fwoptions);
PRINTF(" HBA Options = 0x%x\n",
ISP2100_NVRAM_HBA_OPTIONS(nvram_data));
}
}
IDPRINTF(3, ("%s: NVRAM is valid\n", isp->isp_name));
return (0);
}
static void
isp_rdnvram_word(isp, wo, rp)
struct ispsoftc *isp;
int wo;
u_int16_t *rp;
{
int i, cbits;
u_int16_t bit, rqst;
ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT);
SYS_DELAY(2);
ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT|BIU_NVRAM_CLOCK);
SYS_DELAY(2);
if (isp->isp_type & ISP_HA_FC) {
wo &= ((ISP2100_NVRAM_SIZE >> 1) - 1);
rqst = (ISP_NVRAM_READ << 8) | wo;
cbits = 10;
} else {
wo &= ((ISP_NVRAM_SIZE >> 1) - 1);
rqst = (ISP_NVRAM_READ << 6) | wo;
cbits = 8;
}
/*
* Clock the word select request out...
*/
for (i = cbits; i >= 0; i--) {
if ((rqst >> i) & 1) {
bit = BIU_NVRAM_SELECT | BIU_NVRAM_DATAOUT;
} else {
bit = BIU_NVRAM_SELECT;
}
ISP_WRITE(isp, BIU_NVRAM, bit);
SYS_DELAY(2);
ISP_WRITE(isp, BIU_NVRAM, bit | BIU_NVRAM_CLOCK);
SYS_DELAY(2);
ISP_WRITE(isp, BIU_NVRAM, bit);
SYS_DELAY(2);
}
/*
* Now read the result back in (bits come back in MSB format).
*/
*rp = 0;
for (i = 0; i < 16; i++) {
u_int16_t rv;
*rp <<= 1;
ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT|BIU_NVRAM_CLOCK);
SYS_DELAY(2);
rv = ISP_READ(isp, BIU_NVRAM);
if (rv & BIU_NVRAM_DATAIN) {
*rp |= 1;
}
SYS_DELAY(2);
ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT);
SYS_DELAY(2);
}
ISP_WRITE(isp, BIU_NVRAM, 0);
SYS_DELAY(2);
#if BYTE_ORDER == BIG_ENDIAN
*rp = ((*rp >> 8) | ((*rp & 0xff) << 8));
#endif
}