freebsd-skq/sbin/camcontrol/camcontrol.c
1998-12-20 20:32:34 +00:00

2068 lines
53 KiB
C

/*
* Copyright (c) 1997, 1998 Kenneth D. Merry
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: camcontrol.c,v 1.7 1998/12/20 18:51:56 mjacob Exp $
*/
#include <sys/ioctl.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <ctype.h>
#include <err.h>
#include <cam/cam.h>
#include <cam/cam_debug.h>
#include <cam/cam_ccb.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_da.h>
#include <cam/scsi/scsi_pass.h>
#include <cam/scsi/scsi_message.h>
#include <camlib.h>
#include "camcontrol.h"
#define DEFAULT_DEVICE "da"
#define DEFAULT_UNIT 0
typedef enum {
CAM_ARG_NONE = 0x00000000,
CAM_ARG_DEVLIST = 0x00000001,
CAM_ARG_TUR = 0x00000002,
CAM_ARG_INQUIRY = 0x00000003,
CAM_ARG_STARTSTOP = 0x00000004,
CAM_ARG_RESCAN = 0x00000005,
CAM_ARG_READ_DEFECTS = 0x00000006,
CAM_ARG_MODE_PAGE = 0x00000007,
CAM_ARG_SCSI_CMD = 0x00000008,
CAM_ARG_DEVTREE = 0x00000009,
CAM_ARG_USAGE = 0x0000000a,
CAM_ARG_DEBUG = 0x0000000b,
CAM_ARG_RESET = 0x0000000c,
CAM_ARG_OPT_MASK = 0x0000000f,
CAM_ARG_VERBOSE = 0x00000010,
CAM_ARG_DEVICE = 0x00000020,
CAM_ARG_BUS = 0x00000040,
CAM_ARG_TARGET = 0x00000080,
CAM_ARG_LUN = 0x00000100,
CAM_ARG_EJECT = 0x00000200,
CAM_ARG_UNIT = 0x00000400,
CAM_ARG_FORMAT_BLOCK = 0x00000800,
CAM_ARG_FORMAT_BFI = 0x00001000,
CAM_ARG_FORMAT_PHYS = 0x00002000,
CAM_ARG_PLIST = 0x00004000,
CAM_ARG_GLIST = 0x00008000,
CAM_ARG_GET_SERIAL = 0x00010000,
CAM_ARG_GET_STDINQ = 0x00020000,
CAM_ARG_GET_XFERRATE = 0x00040000,
CAM_ARG_INQ_MASK = 0x00070000,
CAM_ARG_MODE_EDIT = 0x00080000,
CAM_ARG_PAGE_CNTL = 0x00100000,
CAM_ARG_TIMEOUT = 0x00200000,
CAM_ARG_CMD_IN = 0x00400000,
CAM_ARG_CMD_OUT = 0x00800000,
CAM_ARG_DBD = 0x01000000,
CAM_ARG_ERR_RECOVER = 0x02000000,
CAM_ARG_RETRIES = 0x04000000,
CAM_ARG_START_UNIT = 0x08000000,
CAM_ARG_DEBUG_INFO = 0x10000000,
CAM_ARG_DEBUG_TRACE = 0x20000000,
CAM_ARG_DEBUG_SUBTRACE = 0x40000000,
CAM_ARG_DEBUG_CDB = 0x80000000,
CAM_ARG_FLAG_MASK = 0xfffffff0
} cam_argmask;
struct camcontrol_opts {
char *optname;
cam_argmask argnum;
const char *subopt;
};
extern int optreset;
static const char scsicmd_opts[] = "c:i:o:";
static const char readdefect_opts[] = "f:GP";
struct camcontrol_opts option_table[] = {
{"tur", CAM_ARG_TUR, NULL},
{"inquiry", CAM_ARG_INQUIRY, "DSR"},
{"start", CAM_ARG_STARTSTOP | CAM_ARG_START_UNIT, NULL},
{"stop", CAM_ARG_STARTSTOP, NULL},
{"eject", CAM_ARG_STARTSTOP | CAM_ARG_EJECT, NULL},
{"rescan", CAM_ARG_RESCAN, NULL},
{"reset", CAM_ARG_RESET, NULL},
{"cmd", CAM_ARG_SCSI_CMD, scsicmd_opts},
{"command", CAM_ARG_SCSI_CMD, scsicmd_opts},
{"defects", CAM_ARG_READ_DEFECTS, readdefect_opts},
{"defectlist", CAM_ARG_READ_DEFECTS, readdefect_opts},
{"devlist", CAM_ARG_DEVTREE, NULL},
{"periphlist", CAM_ARG_DEVLIST, NULL},
{"modepage", CAM_ARG_MODE_PAGE, "dem:P:"},
{"debug", CAM_ARG_DEBUG, "ITSc"},
{"help", CAM_ARG_USAGE, NULL},
{"-?", CAM_ARG_USAGE, NULL},
{"-h", CAM_ARG_USAGE, NULL},
{NULL, 0, NULL}
};
typedef enum {
CC_OR_NOT_FOUND,
CC_OR_AMBIGUOUS,
CC_OR_FOUND
} camcontrol_optret;
cam_argmask arglist;
camcontrol_optret getoption(char *arg, cam_argmask *argnum, char **subopt);
static int getdevlist(struct cam_device *device);
static int getdevtree(void);
static int testunitready(struct cam_device *device, int retry_count,
int timeout);
static int scsistart(struct cam_device *device, int startstop, int loadeject,
int retry_count, int timeout);
static int scsidoinquiry(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
static int scsiinquiry(struct cam_device *device, int retry_count, int timeout);
static int scsiserial(struct cam_device *device, int retry_count, int timeout);
static int scsixferrate(struct cam_device *device);
static int dorescan_or_reset(int argc, char **argv, int rescan);
static int rescan_or_reset_bus(int bus, int rescan);
static int scanlun_or_reset_dev(int bus, int target, int lun, int scan);
static int readdefects(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
static void modepage(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
static int scsicmd(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
camcontrol_optret
getoption(char *arg, cam_argmask *argnum, char **subopt)
{
struct camcontrol_opts *opts;
int num_matches = 0;
for (opts = option_table; (opts != NULL) && (opts->optname != NULL);
opts++) {
if (strncmp(opts->optname, arg, strlen(arg)) == 0) {
*argnum = opts->argnum;
*subopt = (char *)opts->subopt;
if (++num_matches > 1)
return(CC_OR_AMBIGUOUS);
}
}
if (num_matches > 0)
return(CC_OR_FOUND);
else
return(CC_OR_NOT_FOUND);
}
static int
getdevlist(struct cam_device *device)
{
union ccb *ccb;
char status[32];
int error = 0;
ccb = cam_getccb(device);
ccb->ccb_h.func_code = XPT_GDEVLIST;
ccb->ccb_h.flags = CAM_DIR_NONE;
ccb->ccb_h.retry_count = 1;
ccb->cgdl.index = 0;
ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
if (cam_send_ccb(device, ccb) < 0) {
perror("error getting device list");
cam_freeccb(ccb);
return(1);
}
status[0] = '\0';
switch (ccb->cgdl.status) {
case CAM_GDEVLIST_MORE_DEVS:
strcpy(status, "MORE");
break;
case CAM_GDEVLIST_LAST_DEVICE:
strcpy(status, "LAST");
break;
case CAM_GDEVLIST_LIST_CHANGED:
strcpy(status, "CHANGED");
break;
case CAM_GDEVLIST_ERROR:
strcpy(status, "ERROR");
error = 1;
break;
}
fprintf(stdout, "%s%d: generation: %d index: %d status: %s\n",
ccb->cgdl.periph_name,
ccb->cgdl.unit_number,
ccb->cgdl.generation,
ccb->cgdl.index,
status);
/*
* If the list has changed, we need to start over from the
* beginning.
*/
if (ccb->cgdl.status == CAM_GDEVLIST_LIST_CHANGED)
ccb->cgdl.index = 0;
}
cam_freeccb(ccb);
return(error);
}
static int
getdevtree(void)
{
union ccb ccb;
int bufsize, i, fd;
int need_close = 0;
int error = 0;
if ((fd = open(XPT_DEVICE, O_RDWR)) == -1) {
warn("couldn't open %s", XPT_DEVICE);
return(1);
}
bzero(&(&ccb.ccb_h)[1], sizeof(struct ccb_dev_match));
ccb.ccb_h.func_code = XPT_DEV_MATCH;
bufsize = sizeof(struct dev_match_result) * 100;
ccb.cdm.match_buf_len = bufsize;
ccb.cdm.matches = (struct dev_match_result *)malloc(bufsize);
ccb.cdm.num_matches = 0;
/*
* We fetch all nodes, since we display most of them in the default
* case, and all in the verbose case.
*/
ccb.cdm.num_patterns = 0;
ccb.cdm.pattern_buf_len = 0;
/*
* We do the ioctl multiple times if necessary, in case there are
* more than 100 nodes in the EDT.
*/
do {
if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
warn("error sending CAMIOCOMMAND ioctl");
error = 1;
break;
}
if ((ccb.ccb_h.status != CAM_REQ_CMP)
|| ((ccb.cdm.status != CAM_DEV_MATCH_LAST)
&& (ccb.cdm.status != CAM_DEV_MATCH_MORE))) {
fprintf(stderr, "got CAM error %#x, CDM error %d\n",
ccb.ccb_h.status, ccb.cdm.status);
error = 1;
break;
}
for (i = 0; i < ccb.cdm.num_matches; i++) {
switch(ccb.cdm.matches[i].type) {
case DEV_MATCH_BUS: {
struct bus_match_result *bus_result;
/*
* Only print the bus information if the
* user turns on the verbose flag.
*/
if ((arglist & CAM_ARG_VERBOSE) == 0)
break;
bus_result =
&ccb.cdm.matches[i].result.bus_result;
if (need_close) {
fprintf(stdout, ")\n");
need_close = 0;
}
fprintf(stdout, "scbus%d on %s%d bus %d:\n",
bus_result->path_id,
bus_result->dev_name,
bus_result->unit_number,
bus_result->bus_id);
break;
}
case DEV_MATCH_DEVICE: {
struct device_match_result *dev_result;
char vendor[16], product[48], revision[16];
char tmpstr[256];
dev_result =
&ccb.cdm.matches[i].result.device_result;
cam_strvis(vendor, dev_result->inq_data.vendor,
sizeof(dev_result->inq_data.vendor),
sizeof(vendor));
cam_strvis(product,
dev_result->inq_data.product,
sizeof(dev_result->inq_data.product),
sizeof(product));
cam_strvis(revision,
dev_result->inq_data.revision,
sizeof(dev_result->inq_data.revision),
sizeof(revision));
sprintf(tmpstr, "<%s %s %s>", vendor, product,
revision);
if (need_close) {
fprintf(stdout, ")\n");
need_close = 0;
}
fprintf(stdout, "%-33s at scbus%d "
"target %d lun %d (",
tmpstr,
dev_result->path_id,
dev_result->target_id,
dev_result->target_lun);
break;
}
case DEV_MATCH_PERIPH: {
struct periph_match_result *periph_result;
periph_result =
&ccb.cdm.matches[i].result.periph_result;
if (need_close)
fprintf(stdout, ",");
fprintf(stdout, "%s%d",
periph_result->periph_name,
periph_result->unit_number);
need_close = 1;
break;
}
default:
fprintf(stdout, "unknown match type\n");
break;
}
}
} while ((ccb.ccb_h.status == CAM_REQ_CMP)
&& (ccb.cdm.status == CAM_DEV_MATCH_MORE));
if (need_close)
fprintf(stdout, ")\n");
close(fd);
return(error);
}
static int
testunitready(struct cam_device *device, int retry_count, int timeout)
{
int error = 0;
union ccb *ccb;
ccb = cam_getccb(device);
scsi_test_unit_ready(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending test unit ready");
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
cam_freeccb(ccb);
return(1);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
fprintf(stdout, "Unit is ready\n");
else {
fprintf(stdout, "Unit is not ready\n");
error = 1;
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
}
cam_freeccb(ccb);
return(error);
}
static int
scsistart(struct cam_device *device, int startstop, int loadeject,
int retry_count, int timeout)
{
union ccb *ccb;
int error = 0;
ccb = cam_getccb(device);
/*
* If we're stopping, send an ordered tag so the drive in question
* will finish any previously queued writes before stopping. If
* the device isn't capable of tagged queueing, or if tagged
* queueing is turned off, the tag action is a no-op.
*/
scsi_start_stop(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ startstop ? MSG_SIMPLE_Q_TAG :
MSG_ORDERED_Q_TAG,
/* start/stop */ startstop,
/* load_eject */ loadeject,
/* immediate */ 0,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 120000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending start unit");
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
cam_freeccb(ccb);
return(1);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
if (startstop) {
fprintf(stdout, "Unit started successfully");
if (loadeject)
fprintf(stdout,", Media loaded\n");
else
fprintf(stdout,"\n");
} else {
fprintf(stdout, "Unit stopped successfully");
if (loadeject)
fprintf(stdout, ", Media ejected\n");
else
fprintf(stdout, "\n");
}
else {
error = 1;
if (startstop)
fprintf(stdout,
"Error received from start unit command\n");
else
fprintf(stdout,
"Error received from stop unit command\n");
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
}
cam_freeccb(ccb);
return(error);
}
static int
scsidoinquiry(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout)
{
int c;
int error = 0;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'D':
arglist |= CAM_ARG_GET_STDINQ;
break;
case 'R':
arglist |= CAM_ARG_GET_XFERRATE;
break;
case 'S':
arglist |= CAM_ARG_GET_SERIAL;
break;
default:
break;
}
}
/*
* If the user didn't specify any inquiry options, he wants all of
* them.
*/
if ((arglist & CAM_ARG_INQ_MASK) == 0)
arglist |= CAM_ARG_INQ_MASK;
if (arglist & CAM_ARG_GET_STDINQ)
error = scsiinquiry(device, retry_count, timeout);
if (error != 0)
return(error);
if (arglist & CAM_ARG_GET_SERIAL)
scsiserial(device, retry_count, timeout);
if (error != 0)
return(error);
if (arglist & CAM_ARG_GET_XFERRATE)
error = scsixferrate(device);
return(error);
}
static int
scsiinquiry(struct cam_device *device, int retry_count, int timeout)
{
union ccb *ccb;
struct scsi_inquiry_data *inq_buf;
int error = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("couldn't allocate CCB");
return(1);
}
/* cam_getccb cleans up the header, caller has to zero the payload */
bzero(&(&ccb->ccb_h)[1], sizeof(struct ccb_scsiio));
inq_buf = (struct scsi_inquiry_data *)malloc(
sizeof(struct scsi_inquiry_data));
if (inq_buf == NULL) {
cam_freeccb(ccb);
warnx("can't malloc memory for inquiry\n");
return(1);
}
bzero(inq_buf, sizeof(*inq_buf));
scsi_inquiry(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* inq_buf */ (u_int8_t *)inq_buf,
/* inq_len */ sizeof(struct scsi_inquiry_data),
/* evpd */ 0,
/* page_code */ 0,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending SCSI inquiry");
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
cam_freeccb(ccb);
return(1);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
error = 1;
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
}
cam_freeccb(ccb);
if (error != 0) {
free(inq_buf);
return(error);
}
scsi_print_inquiry(inq_buf);
free(inq_buf);
if (arglist & CAM_ARG_GET_SERIAL)
fprintf(stdout, "Serial Number ");
return(0);
}
static int
scsiserial(struct cam_device *device, int retry_count, int timeout)
{
union ccb *ccb;
struct scsi_vpd_unit_serial_number *serial_buf;
char serial_num[SVPD_SERIAL_NUM_SIZE + 1];
int error = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("couldn't allocate CCB");
return(1);
}
/* cam_getccb cleans up the header, caller has to zero the payload */
bzero(&(&ccb->ccb_h)[1], sizeof(struct ccb_scsiio));
serial_buf = (struct scsi_vpd_unit_serial_number *)
malloc(sizeof(*serial_buf));
if (serial_buf == NULL) {
cam_freeccb(ccb);
warnx("can't malloc memory for serial number");
return(1);
}
scsi_inquiry(&ccb->csio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* inq_buf */ (u_int8_t *)serial_buf,
/* inq_len */ sizeof(*serial_buf),
/* evpd */ 1,
/* page_code */ SVPD_UNIT_SERIAL_NUMBER,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
warn("error getting serial number");
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
cam_freeccb(ccb);
free(serial_buf);
return(1);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
error = 1;
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
}
cam_freeccb(ccb);
if (error != 0) {
free(serial_buf);
return(error);
}
bcopy(serial_buf->serial_num, serial_num, serial_buf->length);
serial_num[serial_buf->length] = '\0';
if (((arglist & CAM_ARG_GET_STDINQ) == 0)
&& (arglist & CAM_ARG_GET_XFERRATE))
fprintf(stdout, "Serial Number ");
fprintf(stdout, "%.60s\n", serial_num);
free(serial_buf);
return(0);
}
static int
scsixferrate(struct cam_device *device)
{
u_int32_t freq;
u_int32_t speed;
if (device->sync_period != 0)
freq = scsi_calc_syncsrate(device->sync_period);
else
freq = 0;
speed = freq;
speed *= (0x01 << device->bus_width);
fprintf(stdout, "%d.%dMB/s transfers ", speed / 1000, speed % 1000);
if (device->sync_period != 0)
fprintf(stdout, "(%d.%dMHz, offset %d", freq / 1000,
freq % 1000, device->sync_offset);
if (device->bus_width != 0) {
if (device->sync_period == 0)
fprintf(stdout, "(");
else
fprintf(stdout, ", ");
fprintf(stdout, "%dbit)", 8 * (0x01 << device->bus_width));
} else if (device->sync_period != 0)
fprintf(stdout, ")");
if (device->inq_data.flags & SID_CmdQue)
fprintf(stdout, ", Tagged Queueing Enabled");
fprintf(stdout, "\n");
return(0);
}
static int
dorescan_or_reset(int argc, char **argv, int rescan)
{
static const char *must =
"you must specify a bus, or a bus:target:lun to %s";
int error = 0;
int bus = -1, target = -1, lun = -1;
char *tstr, *tmpstr = NULL;
if (argc < 3) {
warnx(must, rescan? "rescan" : "reset");
return(1);
}
/*
* Parse out a bus, or a bus, target and lun in the following
* format:
* bus
* bus:target:lun
* It is an error to specify a bus and target, but not a lun.
*/
tstr = argv[optind];
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
tmpstr = (char *)strtok(tstr, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')){
bus = strtol(tmpstr, NULL, 0);
arglist |= CAM_ARG_BUS;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')){
target = strtol(tmpstr, NULL, 0);
arglist |= CAM_ARG_TARGET;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')){
lun = strtol(tmpstr, NULL, 0);
arglist |= CAM_ARG_LUN;
} else {
error = 1;
warnx(must, rescan? "rescan" : "reset");
}
}
} else {
error = 1;
warnx(must, rescan? "rescan" : "reset");
}
if (error == 0) {
if ((arglist & CAM_ARG_BUS)
&& (arglist & CAM_ARG_TARGET)
&& (arglist & CAM_ARG_LUN))
error = scanlun_or_reset_dev(bus, target, lun, rescan);
else if (arglist & CAM_ARG_BUS)
error = rescan_or_reset_bus(bus, rescan);
else {
error = 1;
warnx(must, rescan? "rescan" : "reset");
}
}
return(error);
}
static int
rescan_or_reset_bus(int bus, int rescan)
{
union ccb ccb;
int fd;
if (bus < 0) {
warnx("invalid bus number %d", bus);
return(1);
}
if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) {
warnx("error opening tranport layer device %s", XPT_DEVICE);
warn("%s", XPT_DEVICE);
return(1);
}
ccb.ccb_h.func_code = rescan? XPT_SCAN_BUS : XPT_RESET_BUS;
ccb.ccb_h.path_id = bus;
ccb.ccb_h.target_id = CAM_TARGET_WILDCARD;
ccb.ccb_h.target_lun = CAM_LUN_WILDCARD;
ccb.crcn.flags = CAM_FLAG_NONE;
/* run this at a low priority */
ccb.ccb_h.pinfo.priority = 5;
if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
warn("CAMIOCOMMAND ioctl failed");
close(fd);
return(1);
}
close(fd);
if ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
fprintf(stdout, "%s of bus %d was successful\n",
rescan? "Re-scan" : "Reset", bus);
return(0);
} else {
fprintf(stdout, "%s of bus %d returned error %#x\n",
rescan? "Re-scan" : "Reset", bus,
ccb.ccb_h.status & CAM_STATUS_MASK);
return(1);
}
}
static int
scanlun_or_reset_dev(int bus, int target, int lun, int scan)
{
union ccb ccb;
int fd;
if (bus < 0) {
warnx("invalid bus number %d", bus);
return(1);
}
if (target < 0) {
warnx("invalid target number %d", target);
return(1);
}
if (lun < 0) {
warnx("invalid lun number %d", lun);
return(1);
}
if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) {
warnx("error opening tranport layer device %s\n",
XPT_DEVICE);
warn("%s", XPT_DEVICE);
return(1);
}
ccb.ccb_h.func_code = (scan)? XPT_SCAN_LUN : XPT_RESET_DEV;
ccb.ccb_h.path_id = bus;
ccb.ccb_h.target_id = target;
ccb.ccb_h.target_lun = lun;
ccb.crcn.flags = CAM_FLAG_NONE;
/* run this at a low priority */
ccb.ccb_h.pinfo.priority = 5;
if (ioctl(fd, CAMIOCOMMAND, &ccb) < 0) {
warn("CAMIOCOMMAND ioctl failed");
close(fd);
return(1);
}
close(fd);
if ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
fprintf(stdout, "%s of %d:%d:%d was successful\n",
scan? "Re-scan" : "Reset", bus, target, lun);
return(0);
} else {
fprintf(stdout, "%s of %d:%d:%d returned error %#x\n",
scan? "Re-scan" : "Reset", bus, target, lun,
ccb.ccb_h.status & CAM_STATUS_MASK);
return(1);
}
}
static int
readdefects(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout)
{
union ccb *ccb = NULL;
struct scsi_read_defect_data_10 *rdd_cdb;
u_int8_t *defect_list = NULL;
u_int32_t dlist_length = 65000;
u_int32_t returned_length = 0;
u_int32_t num_returned = 0;
u_int8_t returned_format;
register int i;
int c, error = 0;
int lists_specified = 0;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c){
case 'f':
{
char *tstr;
tstr = optarg;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
if (strcmp(tstr, "block") == 0)
arglist |= CAM_ARG_FORMAT_BLOCK;
else if (strcmp(tstr, "bfi") == 0)
arglist |= CAM_ARG_FORMAT_BFI;
else if (strcmp(tstr, "phys") == 0)
arglist |= CAM_ARG_FORMAT_PHYS;
else {
error = 1;
warnx("invalid defect format %s", tstr);
goto defect_bailout;
}
break;
}
case 'G':
arglist |= CAM_ARG_GLIST;
break;
case 'P':
arglist |= CAM_ARG_PLIST;
break;
default:
break;
}
}
ccb = cam_getccb(device);
/*
* Hopefully 65000 bytes is enough to hold the defect list. If it
* isn't, the disk is probably dead already. We'd have to go with
* 12 byte command (i.e. alloc_length is 32 bits instead of 16)
* to hold them all.
*/
defect_list = malloc(dlist_length);
rdd_cdb =(struct scsi_read_defect_data_10 *)&ccb->csio.cdb_io.cdb_bytes;
/*
* cam_getccb() zeros the CCB header only. So we need to zero the
* payload portion of the ccb.
*/
bzero(&(&ccb->ccb_h)[1], sizeof(struct ccb_scsiio));
cam_fill_csio(&ccb->csio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_IN | (arglist & CAM_ARG_ERR_RECOVER) ?
CAM_PASS_ERR_RECOVER : 0,
/*tag_action*/ MSG_SIMPLE_Q_TAG,
/*data_ptr*/ defect_list,
/*dxfer_len*/ dlist_length,
/*sense_len*/ SSD_FULL_SIZE,
/*cdb_len*/ sizeof(struct scsi_read_defect_data_10),
/*timeout*/ timeout ? timeout : 5000);
rdd_cdb->opcode = READ_DEFECT_DATA_10;
if (arglist & CAM_ARG_FORMAT_BLOCK)
rdd_cdb->format = SRDD10_BLOCK_FORMAT;
else if (arglist & CAM_ARG_FORMAT_BFI)
rdd_cdb->format = SRDD10_BYTES_FROM_INDEX_FORMAT;
else if (arglist & CAM_ARG_FORMAT_PHYS)
rdd_cdb->format = SRDD10_PHYSICAL_SECTOR_FORMAT;
else {
error = 1;
warnx("no defect list format specified");
goto defect_bailout;
}
if (arglist & CAM_ARG_PLIST) {
rdd_cdb->format |= SRDD10_PLIST;
lists_specified++;
}
if (arglist & CAM_ARG_GLIST) {
rdd_cdb->format |= SRDD10_GLIST;
lists_specified++;
}
scsi_ulto2b(dlist_length, rdd_cdb->alloc_length);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (cam_send_ccb(device, ccb) < 0) {
perror("error reading defect list");
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
error = 1;
goto defect_bailout;
}
if (arglist & CAM_ARG_VERBOSE)
scsi_sense_print(device, &ccb->csio, stderr);
returned_length = scsi_2btoul(((struct
scsi_read_defect_data_hdr_10 *)defect_list)->length);
returned_format = ((struct scsi_read_defect_data_hdr_10 *)
defect_list)->format;
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
struct scsi_sense_data *sense;
int error_code, sense_key, asc, ascq;
sense = &ccb->csio.sense_data;
scsi_extract_sense(sense, &error_code, &sense_key, &asc, &ascq);
/*
* According to the SCSI spec, if the disk doesn't support
* the requested format, it will generally return a sense
* key of RECOVERED ERROR, and an additional sense code
* of "DEFECT LIST NOT FOUND". So, we check for that, and
* also check to make sure that the returned length is
* greater than 0, and then print out whatever format the
* disk gave us.
*/
if ((sense_key == SSD_KEY_RECOVERED_ERROR)
&& (asc == 0x1c) && (ascq == 0x00)
&& (returned_length > 0)) {
warnx("requested defect format not available");
switch(returned_format & SRDDH10_DLIST_FORMAT_MASK) {
case SRDD10_BLOCK_FORMAT:
warnx("Device returned block format");
break;
case SRDD10_BYTES_FROM_INDEX_FORMAT:
warnx("Device returned bytes from index"
" format");
break;
case SRDD10_PHYSICAL_SECTOR_FORMAT:
warnx("Device returned physical sector format");
break;
default:
error = 1;
warnx("Device returned unknown defect"
" data format %#x", returned_format);
goto defect_bailout;
break; /* NOTREACHED */
}
} else {
error = 1;
warnx("Error returned from read defect data command");
goto defect_bailout;
}
}
/*
* XXX KDM I should probably clean up the printout format for the
* disk defects.
*/
switch (returned_format & SRDDH10_DLIST_FORMAT_MASK){
case SRDDH10_PHYSICAL_SECTOR_FORMAT:
{
struct scsi_defect_desc_phys_sector *dlist;
dlist = (struct scsi_defect_desc_phys_sector *)
(defect_list +
sizeof(struct scsi_read_defect_data_hdr_10));
num_returned = returned_length /
sizeof(struct scsi_defect_desc_phys_sector);
fprintf(stderr, "Got %d defect", num_returned);
if ((lists_specified == 0) || (num_returned == 0)) {
fprintf(stderr, "s.\n");
break;
} else if (num_returned == 1)
fprintf(stderr, ":\n");
else
fprintf(stderr, "s:\n");
for (i = 0; i < num_returned; i++) {
fprintf(stdout, "%d:%d:%d\n",
scsi_3btoul(dlist[i].cylinder),
dlist[i].head,
scsi_4btoul(dlist[i].sector));
}
break;
}
case SRDDH10_BYTES_FROM_INDEX_FORMAT:
{
struct scsi_defect_desc_bytes_from_index *dlist;
dlist = (struct scsi_defect_desc_bytes_from_index *)
(defect_list +
sizeof(struct scsi_read_defect_data_hdr_10));
num_returned = returned_length /
sizeof(struct scsi_defect_desc_bytes_from_index);
fprintf(stderr, "Got %d defect", num_returned);
if ((lists_specified == 0) || (num_returned == 0)) {
fprintf(stderr, "s.\n");
break;
} else if (num_returned == 1)
fprintf(stderr, ":\n");
else
fprintf(stderr, "s:\n");
for (i = 0; i < num_returned; i++) {
fprintf(stdout, "%d:%d:%d\n",
scsi_3btoul(dlist[i].cylinder),
dlist[i].head,
scsi_4btoul(dlist[i].bytes_from_index));
}
break;
}
case SRDDH10_BLOCK_FORMAT:
{
struct scsi_defect_desc_block *dlist;
dlist = (struct scsi_defect_desc_block *)(defect_list +
sizeof(struct scsi_read_defect_data_hdr_10));
num_returned = returned_length /
sizeof(struct scsi_defect_desc_block);
fprintf(stderr, "Got %d defect", num_returned);
if ((lists_specified == 0) || (num_returned == 0)) {
fprintf(stderr, "s.\n");
break;
} else if (num_returned == 1)
fprintf(stderr, ":\n");
else
fprintf(stderr, "s:\n");
for (i = 0; i < num_returned; i++)
fprintf(stdout, "%u\n",
scsi_4btoul(dlist[i].address));
break;
}
default:
fprintf(stderr, "Unknown defect format %d\n",
returned_format & SRDDH10_DLIST_FORMAT_MASK);
error = 1;
break;
}
defect_bailout:
if (defect_list != NULL)
free(defect_list);
if (ccb != NULL)
cam_freeccb(ccb);
return(error);
}
#if 0
void
reassignblocks(struct cam_device *device, u_int32_t *blocks, int num_blocks)
{
union ccb *ccb;
ccb = cam_getccb(device);
cam_freeccb(ccb);
}
#endif
void
mode_sense(struct cam_device *device, int mode_page, int page_control,
int dbd, int retry_count, int timeout, u_int8_t *data, int datalen)
{
union ccb *ccb;
int retval;
ccb = cam_getccb(device);
if (ccb == NULL)
errx(1, "mode_sense: couldn't allocate CCB");
bzero(&(&ccb->ccb_h)[1], sizeof(struct ccb_scsiio));
scsi_mode_sense(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* dbd */ dbd,
/* page_code */ page_control << 6,
/* page */ mode_page,
/* param_buf */ data,
/* param_len */ datalen,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (((retval = cam_send_ccb(device, ccb)) < 0)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
cam_freeccb(ccb);
cam_close_device(device);
if (retval < 0)
err(1, "error sending mode sense command");
else
errx(1, "error sending mode sense command");
}
cam_freeccb(ccb);
}
void
mode_select(struct cam_device *device, int save_pages, int retry_count,
int timeout, u_int8_t *data, int datalen)
{
union ccb *ccb;
int retval;
ccb = cam_getccb(device);
if (ccb == NULL)
errx(1, "mode_select: couldn't allocate CCB");
bzero(&(&ccb->ccb_h)[1], sizeof(struct ccb_scsiio));
scsi_mode_select(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* scsi_page_fmt */ 1,
/* save_pages */ save_pages,
/* param_buf */ data,
/* param_len */ datalen,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (((retval = cam_send_ccb(device, ccb)) < 0)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
cam_freeccb(ccb);
cam_close_device(device);
if (retval < 0)
err(1, "error sending mode select command");
else
errx(1, "error sending mode select command");
}
cam_freeccb(ccb);
}
void
modepage(struct cam_device *device, int argc, char **argv, char *combinedopt,
int retry_count, int timeout)
{
int c, mode_page = -1, page_control = 0;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'd':
arglist |= CAM_ARG_DBD;
break;
case 'e':
arglist |= CAM_ARG_MODE_EDIT;
break;
case 'm':
mode_page = strtol(optarg, NULL, 0);
if (mode_page < 0)
errx(1, "invalid mode page %d", mode_page);
break;
case 'P':
page_control = strtol(optarg, NULL, 0);
if ((page_control < 0) || (page_control > 3))
errx(1, "invalid page control field %d",
page_control);
arglist |= CAM_ARG_PAGE_CNTL;
break;
default:
break;
}
}
if (mode_page == -1)
errx(1, "you must specify a mode page!");
mode_edit(device, mode_page, page_control, arglist & CAM_ARG_DBD,
arglist & CAM_ARG_MODE_EDIT, retry_count, timeout);
}
static int
scsicmd(struct cam_device *device, int argc, char **argv, char *combinedopt,
int retry_count, int timeout)
{
union ccb *ccb;
u_int32_t flags = CAM_DIR_NONE;
u_int8_t *data_ptr = NULL;
u_int8_t cdb[20];
struct get_hook hook;
int c, data_bytes = 0;
int cdb_len = 0;
char *datastr = NULL, *tstr;
int error = 0;
int fd_data = 0;
int retval;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("scsicmd: error allocating ccb");
return(1);
}
bzero(&(&ccb->ccb_h)[1], sizeof(struct ccb_scsiio));
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'c':
tstr = optarg;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
hook.argc = argc - optind;
hook.argv = argv + optind;
hook.got = 0;
buff_encode_visit(cdb, sizeof(cdb), tstr,
iget, &hook);
/*
* Increment optind by the number of arguments the
* encoding routine processed. After each call to
* getopt(3), optind points to the argument that
* getopt should process _next_. In this case,
* that means it points to the first command string
* argument, if there is one. Once we increment
* this, it should point to either the next command
* line argument, or it should be past the end of
* the list.
*/
optind += hook.got;
break;
case 'i':
if (arglist & CAM_ARG_CMD_OUT) {
warnx("command must either be "
"read or write, not both");
error = 1;
goto scsicmd_bailout;
}
arglist |= CAM_ARG_CMD_IN;
flags = CAM_DIR_IN;
data_bytes = strtol(optarg, NULL, 0);
if (data_bytes <= 0) {
warnx("invalid number of input bytes %d",
data_bytes);
error = 1;
goto scsicmd_bailout;
}
hook.argc = argc - optind;
hook.argv = argv + optind;
hook.got = 0;
optind++;
datastr = cget(&hook, NULL);
/*
* If the user supplied "-" instead of a format, he
* wants the data to be written to stdout.
*/
if ((datastr != NULL)
&& (datastr[0] == '-'))
fd_data = 1;
data_ptr = (u_int8_t *)malloc(data_bytes);
break;
case 'o':
if (arglist & CAM_ARG_CMD_IN) {
warnx("command must either be "
"read or write, not both");
error = 1;
goto scsicmd_bailout;
}
arglist |= CAM_ARG_CMD_OUT;
flags = CAM_DIR_OUT;
data_bytes = strtol(optarg, NULL, 0);
if (data_bytes <= 0) {
warnx("invalid number of output bytes %d",
data_bytes);
error = 1;
goto scsicmd_bailout;
}
hook.argc = argc - optind;
hook.argv = argv + optind;
hook.got = 0;
datastr = cget(&hook, NULL);
data_ptr = (u_int8_t *)malloc(data_bytes);
/*
* If the user supplied "-" instead of a format, he
* wants the data to be read from stdin.
*/
if ((datastr != NULL)
&& (datastr[0] == '-'))
fd_data = 1;
else
buff_encode_visit(data_ptr, data_bytes, datastr,
iget, &hook);
optind += hook.got;
break;
default:
break;
}
}
/*
* If fd_data is set, and we're writing to the device, we need to
* read the data the user wants written from stdin.
*/
if ((fd_data == 1) && (arglist & CAM_ARG_CMD_OUT)) {
size_t amt_read;
int amt_to_read = data_bytes;
u_int8_t *buf_ptr = data_ptr;
for (amt_read = 0; amt_to_read > 0;
amt_read = read(0, buf_ptr, amt_to_read)) {
if (amt_read == -1) {
warn("error reading data from stdin");
error = 1;
goto scsicmd_bailout;
}
amt_to_read -= amt_read;
buf_ptr += amt_read;
}
}
if (arglist & CAM_ARG_ERR_RECOVER)
flags |= CAM_PASS_ERR_RECOVER;
/* Disable freezing the device queue */
flags |= CAM_DEV_QFRZDIS;
/*
* This is taken from the SCSI-3 draft spec.
* (T10/1157D revision 0.3)
* The top 3 bits of an opcode are the group code. The next 5 bits
* are the command code.
* Group 0: six byte commands
* Group 1: ten byte commands
* Group 2: ten byte commands
* Group 3: reserved
* Group 4: sixteen byte commands
* Group 5: twelve byte commands
* Group 6: vendor specific
* Group 7: vendor specific
*/
switch((cdb[0] >> 5) & 0x7) {
case 0:
cdb_len = 6;
break;
case 1:
case 2:
cdb_len = 10;
break;
case 3:
case 6:
case 7:
cdb_len = 1;
break;
case 4:
cdb_len = 16;
break;
case 5:
cdb_len = 12;
break;
}
/*
* We should probably use csio_build_visit or something like that
* here, but it's easier to encode arguments as you go. The
* alternative would be skipping the CDB argument and then encoding
* it here, since we've got the data buffer argument by now.
*/
bcopy(cdb, &ccb->csio.cdb_io.cdb_bytes, cdb_len);
cam_fill_csio(&ccb->csio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/*flags*/ flags,
/*tag_action*/ MSG_SIMPLE_Q_TAG,
/*data_ptr*/ data_ptr,
/*dxfer_len*/ data_bytes,
/*sense_len*/ SSD_FULL_SIZE,
/*cdb_len*/ cdb_len,
/*timeout*/ timeout ? timeout : 5000);
if (((retval = cam_send_ccb(device, ccb)) < 0)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
if (retval < 0)
warn("error sending command");
else
warnx("error sending command");
if (arglist & CAM_ARG_VERBOSE) {
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_SCSI_STATUS_ERROR)
scsi_sense_print(device, &ccb->csio, stderr);
else
fprintf(stderr, "CAM status is %#x\n",
ccb->ccb_h.status);
}
error = 1;
goto scsicmd_bailout;
}
if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
&& (arglist & CAM_ARG_CMD_IN)
&& (data_bytes > 0)) {
if (fd_data == 0) {
buff_decode_visit(data_ptr, data_bytes, datastr,
arg_put, NULL);
fprintf(stdout, "\n");
} else {
size_t amt_written;
int amt_to_write = data_bytes;
u_int8_t *buf_ptr = data_ptr;
for (amt_written = 0; (amt_to_write > 0) &&
(amt_written =write(1, buf_ptr,amt_to_write))> 0;){
amt_to_write -= amt_written;
buf_ptr += amt_written;
}
if (amt_written == -1) {
warn("error writing data to stdout");
error = 1;
goto scsicmd_bailout;
} else if ((amt_written == 0)
&& (amt_to_write > 0)) {
warnx("only wrote %u bytes out of %u",
data_bytes - amt_to_write, data_bytes);
}
}
}
scsicmd_bailout:
if ((data_bytes > 0) && (data_ptr != NULL))
free(data_ptr);
cam_freeccb(ccb);
return(error);
}
static int
camdebug(int argc, char **argv, char *combinedopt)
{
int c, fd;
int bus = -1, target = -1, lun = -1;
char *tstr, *tmpstr = NULL;
union ccb ccb;
int error = 0;
bzero(&ccb, sizeof(union ccb));
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'I':
arglist |= CAM_ARG_DEBUG_INFO;
ccb.cdbg.flags |= CAM_DEBUG_INFO;
break;
case 'S':
arglist |= CAM_ARG_DEBUG_TRACE;
ccb.cdbg.flags |= CAM_DEBUG_TRACE;
break;
case 'T':
arglist |= CAM_ARG_DEBUG_SUBTRACE;
ccb.cdbg.flags |= CAM_DEBUG_SUBTRACE;
break;
case 'c':
arglist |= CAM_ARG_DEBUG_CDB;
ccb.cdbg.flags |= CAM_DEBUG_CDB;
break;
default:
break;
}
}
if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) {
warnx("error opening transport layer device %s", XPT_DEVICE);
warn("%s", XPT_DEVICE);
return(1);
}
argc -= optind;
argv += optind;
if (argc <= 0) {
warnx("you must specify \"off\", \"all\" or a bus,");
warnx("bus:target, or bus:target:lun");
close(fd);
return(1);
}
tstr = *argv;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
if (strncmp(tstr, "off", 3) == 0) {
ccb.cdbg.flags = CAM_DEBUG_NONE;
arglist &= ~(CAM_ARG_DEBUG_INFO|CAM_ARG_DEBUG_TRACE|
CAM_ARG_DEBUG_SUBTRACE);
} else if (strncmp(tstr, "all", 3) != 0) {
tmpstr = (char *)strtok(tstr, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')){
bus = strtol(tmpstr, NULL, 0);
arglist |= CAM_ARG_BUS;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')){
target = strtol(tmpstr, NULL, 0);
arglist |= CAM_ARG_TARGET;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')){
lun = strtol(tmpstr, NULL, 0);
arglist |= CAM_ARG_LUN;
}
}
} else {
error = 1;
warnx("you must specify \"all\", \"off\", or a bus,");
warnx("bus:target, or bus:target:lun to debug");
}
}
if (error == 0) {
ccb.ccb_h.func_code = XPT_DEBUG;
ccb.ccb_h.path_id = bus;
ccb.ccb_h.target_id = target;
ccb.ccb_h.target_lun = lun;
if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
warn("CAMIOCOMMAND ioctl failed");
error = 1;
}
if (error == 0) {
if ((ccb.ccb_h.status & CAM_STATUS_MASK) ==
CAM_FUNC_NOTAVAIL) {
warnx("CAM debugging not available");
warnx("you need to put options CAMDEBUG in"
" your kernel config file!");
error = 1;
} else if ((ccb.ccb_h.status & CAM_STATUS_MASK) !=
CAM_REQ_CMP) {
warnx("XPT_DEBUG CCB failed with status %#x",
ccb.ccb_h.status);
error = 1;
} else {
if (ccb.cdbg.flags == CAM_DEBUG_NONE) {
fprintf(stderr,
"Debugging turned off\n");
} else {
fprintf(stderr,
"Debugging enabled for "
"%d:%d:%d\n",
bus, target, lun);
}
}
}
close(fd);
}
return(error);
}
void
usage(void)
{
fprintf(stderr,
"usage: camcontrol <command> [ generic args ] [ command args ]\n"
" camcontrol devlist [-v]\n"
" camcontrol periphlist [-n dev_name] [-u unit]\n"
" camcontrol tur [generic args]\n"
" camcontrol inquiry [generic args] [-D] [-S] [-R]\n"
" camcontrol start [generic args]\n"
" camcontrol stop [generic args]\n"
" camcontrol eject [generic args]\n"
" camcontrol rescan <bus[:target:lun]>\n"
" camcontrol reset <bus[:target:lun]>\n"
" camcontrol defects [generic args] <-f format> [-P][-G]\n"
" camcontrol modepage [generic args] <-m page> [-P pagectl][-e][-d]\n"
" camcontrol cmd [generic args] <-c cmd [args]> \n"
" [-i len fmt|-o len fmt [args]]\n"
" camcontrol debug [-I][-T][-S][-c] <all|bus[:target[:lun]]|off>\n"
"Specify one of the following options:\n"
"devlist list all CAM devices\n"
"periphlist list all CAM peripheral drivers attached to a device\n"
"tur send a test unit ready to the named device\n"
"inquiry send a SCSI inquiry command to the named device\n"
"start send a Start Unit command to the device\n"
"stop send a Stop Unit command to the device\n"
"eject send a Stop Unit command to the device with the eject bit set\n"
"rescan rescan the given bus, or bus:target:lun\n"
"reset reset the given bus, or bus:target:lun\n"
"defects read the defect list of the specified device\n"
"modepage display or edit (-e) the given mode page\n"
"cmd send the given scsi command, may need -i or -o as well\n"
"debug turn debugging on/off for a bus, target, or lun, or all devices\n"
"Generic arguments:\n"
"-v be verbose, print out sense information\n"
"-t timeout command timeout in seconds, overrides default timeout\n"
"-n dev_name specify device name (default is %s)\n"
"-u unit specify unit number (default is %d)\n"
"-E have the kernel attempt to perform SCSI error recovery\n"
"-C count specify the SCSI command retry count (needs -E to work)\n"
"modepage arguments:\n"
"-e edit the specified mode page\n"
"-B disable block descriptors for mode sense\n"
"-P pgctl page control field 0-3\n"
"defects arguments:\n"
"-f format specify defect list format (block, bfi or phys)\n"
"-G get the grown defect list\n"
"-P get the permanant defect list\n"
"inquiry arguments:\n"
"-D get the standard inquiry data\n"
"-S get the serial number\n"
"-R get the transfer rate, etc.\n"
"cmd arguments:\n"
"-c cdb [args] specify the SCSI CDB\n"
"-i len fmt specify input data and input data format\n"
"-o len fmt [args] specify output data and output data fmt\n"
"debug arguments:\n"
"-I CAM_DEBUG_INFO -- scsi commands, errors, data\n"
"-T CAM_DEBUG_TRACE -- routine flow tracking\n"
"-S CAM_DEBUG_SUBTRACE -- internal routine command flow\n"
"-c CAM_DEBUG_CDB -- print out SCSI CDBs only\n",
DEFAULT_DEVICE, DEFAULT_UNIT);
}
int
main(int argc, char **argv)
{
int c;
char *device = NULL;
int unit = 0;
struct cam_device *cam_dev = NULL;
int timeout = 0, retry_count = 1;
camcontrol_optret optreturn;
char *tstr;
char *mainopt = "C:En:t:u:v";
char *subopt = NULL;
char combinedopt[256];
int error = 0;
arglist = CAM_ARG_NONE;
if (argc < 2) {
usage();
exit(1);
}
/*
* Get the base option.
*/
optreturn = getoption(argv[1], &arglist, &subopt);
if (optreturn == CC_OR_AMBIGUOUS) {
warnx("ambiguous option %s", argv[1]);
usage();
exit(1);
} else if (optreturn == CC_OR_NOT_FOUND) {
warnx("option %s not found", argv[1]);
usage();
exit(1);
}
/*
* Ahh, getopt(3) is a pain.
*
* This is a gross hack. There really aren't many other good
* options (excuse the pun) for parsing options in a situation like
* this. getopt is kinda braindead, so you end up having to run
* through the options twice, and give each invocation of getopt
* the option string for the other invocation.
*
* You would think that you could just have two groups of options.
* The first group would get parsed by the first invocation of
* getopt, and the second group would get parsed by the second
* invocation of getopt. It doesn't quite work out that way. When
* the first invocation of getopt finishes, it leaves optind pointing
* to the argument _after_ the first argument in the second group.
* So when the second invocation of getopt comes around, it doesn't
* recognize the first argument it gets and then bails out.
*
* A nice alternative would be to have a flag for getopt that says
* "just keep parsing arguments even when you encounter an unknown
* argument", but there isn't one. So there's no real clean way to
* easily parse two sets of arguments without having one invocation
* of getopt know about the other.
*
* Without this hack, the first invocation of getopt would work as
* long as the generic arguments are first, but the second invocation
* (in the subfunction) would fail in one of two ways. In the case
* where you don't set optreset, it would fail because optind may be
* pointing to the argument after the one it should be pointing at.
* In the case where you do set optreset, and reset optind, it would
* fail because getopt would run into the first set of options, which
* it doesn't understand.
*
* All of this would "sort of" work if you could somehow figure out
* whether optind had been incremented one option too far. The
* mechanics of that, however, are more daunting than just giving
* both invocations all of the expect options for either invocation.
*
* Needless to say, I wouldn't mind if someone invented a better
* (non-GPL!) command line parsing interface than getopt. I
* wouldn't mind if someone added more knobs to getopt to make it
* work better. Who knows, I may talk myself into doing it someday,
* if the standards weenies let me. As it is, it just leads to
* hackery like this and causes people to avoid it in some cases.
*
* KDM, September 8th, 1998
*/
if (subopt != NULL)
sprintf(combinedopt, "%s%s", mainopt, subopt);
else
sprintf(combinedopt, "%s", mainopt);
/*
* Start getopt processing at argv[2], since we've already accepted
* argv[1] as the command name.
*/
optind = 2;
/*
* Now we run through the argument list looking for generic
* options, and ignoring options that possibly belong to
* subfunctions.
*/
while ((c = getopt(argc, argv, combinedopt))!= -1){
switch(c) {
case 'C':
retry_count = strtol(optarg, NULL, 0);
if (retry_count < 0)
errx(1, "retry count %d is < 0",
retry_count);
arglist |= CAM_ARG_RETRIES;
break;
case 'E':
arglist |= CAM_ARG_ERR_RECOVER;
break;
case 'n':
arglist |= CAM_ARG_DEVICE;
tstr = optarg;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
device = (char *)strdup(tstr);
break;
case 't':
timeout = strtol(optarg, NULL, 0);
if (timeout < 0)
errx(1, "invalid timeout %d", timeout);
/* Convert the timeout from seconds to ms */
timeout *= 1000;
arglist |= CAM_ARG_TIMEOUT;
break;
case 'u':
arglist |= CAM_ARG_UNIT;
unit = strtol(optarg, NULL, 0);
break;
case 'v':
arglist |= CAM_ARG_VERBOSE;
break;
default:
break;
}
}
if ((arglist & CAM_ARG_DEVICE) == 0)
device = (char *)strdup(DEFAULT_DEVICE);
if ((arglist & CAM_ARG_UNIT) == 0)
unit = DEFAULT_UNIT;
/*
* For most commands we'll want to open the passthrough device
* associated with the specified device. In the case of the rescan
* commands, we don't use a passthrough device at all, just the
* transport layer device.
*/
if (((arglist & CAM_ARG_OPT_MASK) != CAM_ARG_RESCAN)
&& ((arglist & CAM_ARG_OPT_MASK) != CAM_ARG_RESET)
&& ((arglist & CAM_ARG_OPT_MASK) != CAM_ARG_DEVTREE)
&& ((arglist & CAM_ARG_OPT_MASK) != CAM_ARG_USAGE)
&& ((arglist & CAM_ARG_OPT_MASK) != CAM_ARG_DEBUG)) {
if ((cam_dev = cam_open_spec_device(device,unit,O_RDWR,
NULL))== NULL)
errx(1,"%s", cam_errbuf);
}
/*
* Reset optind to 2, and reset getopt, so these routines can parse
* the arguments again.
*/
optind = 2;
optreset = 1;
switch(arglist & CAM_ARG_OPT_MASK) {
case CAM_ARG_DEVLIST:
error = getdevlist(cam_dev);
break;
case CAM_ARG_DEVTREE:
error = getdevtree();
break;
case CAM_ARG_TUR:
error = testunitready(cam_dev, retry_count, timeout);
break;
case CAM_ARG_INQUIRY:
error = scsidoinquiry(cam_dev, argc, argv, combinedopt,
retry_count, timeout);
break;
case CAM_ARG_STARTSTOP:
error = scsistart(cam_dev, arglist & CAM_ARG_START_UNIT,
arglist & CAM_ARG_EJECT, retry_count,
timeout);
break;
case CAM_ARG_RESCAN:
error = dorescan_or_reset(argc, argv, 1);
break;
case CAM_ARG_RESET:
error = dorescan_or_reset(argc, argv, 0);
break;
case CAM_ARG_READ_DEFECTS:
error = readdefects(cam_dev, argc, argv, combinedopt,
retry_count, timeout);
break;
case CAM_ARG_MODE_PAGE:
modepage(cam_dev, argc, argv, combinedopt,
retry_count, timeout);
break;
case CAM_ARG_SCSI_CMD:
error = scsicmd(cam_dev, argc, argv, combinedopt,
retry_count, timeout);
break;
case CAM_ARG_DEBUG:
error = camdebug(argc, argv, combinedopt);
break;
default:
usage();
error = 1;
break;
}
if (cam_dev != NULL)
cam_close_device(cam_dev);
exit(error);
}