2891 lines
109 KiB
C
2891 lines
109 KiB
C
/* Definitions of target machine for GNU compiler, for ARM.
|
||
Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002 Free Software Foundation, Inc.
|
||
Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
|
||
and Martin Simmons (@harleqn.co.uk).
|
||
More major hacks by Richard Earnshaw (rearnsha@arm.com)
|
||
Minor hacks by Nick Clifton (nickc@cygnus.com)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#ifndef GCC_ARM_H
|
||
#define GCC_ARM_H
|
||
|
||
#define TARGET_CPU_arm2 0x0000
|
||
#define TARGET_CPU_arm250 0x0000
|
||
#define TARGET_CPU_arm3 0x0000
|
||
#define TARGET_CPU_arm6 0x0001
|
||
#define TARGET_CPU_arm600 0x0001
|
||
#define TARGET_CPU_arm610 0x0002
|
||
#define TARGET_CPU_arm7 0x0001
|
||
#define TARGET_CPU_arm7m 0x0004
|
||
#define TARGET_CPU_arm7dm 0x0004
|
||
#define TARGET_CPU_arm7dmi 0x0004
|
||
#define TARGET_CPU_arm700 0x0001
|
||
#define TARGET_CPU_arm710 0x0002
|
||
#define TARGET_CPU_arm7100 0x0002
|
||
#define TARGET_CPU_arm7500 0x0002
|
||
#define TARGET_CPU_arm7500fe 0x1001
|
||
#define TARGET_CPU_arm7tdmi 0x0008
|
||
#define TARGET_CPU_arm8 0x0010
|
||
#define TARGET_CPU_arm810 0x0020
|
||
#define TARGET_CPU_strongarm 0x0040
|
||
#define TARGET_CPU_strongarm110 0x0040
|
||
#define TARGET_CPU_strongarm1100 0x0040
|
||
#define TARGET_CPU_arm9 0x0080
|
||
#define TARGET_CPU_arm9tdmi 0x0080
|
||
#define TARGET_CPU_xscale 0x0100
|
||
/* Configure didn't specify. */
|
||
#define TARGET_CPU_generic 0x8000
|
||
|
||
typedef enum arm_cond_code
|
||
{
|
||
ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
|
||
ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
|
||
}
|
||
arm_cc;
|
||
|
||
extern arm_cc arm_current_cc;
|
||
|
||
#define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
|
||
|
||
extern int arm_target_label;
|
||
extern int arm_ccfsm_state;
|
||
extern struct rtx_def * arm_target_insn;
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
extern int target_flags;
|
||
/* The floating point instruction architecture, can be 2 or 3 */
|
||
extern const char * target_fp_name;
|
||
/* Define the information needed to generate branch insns. This is
|
||
stored from the compare operation. Note that we can't use "rtx" here
|
||
since it hasn't been defined! */
|
||
extern struct rtx_def * arm_compare_op0;
|
||
extern struct rtx_def * arm_compare_op1;
|
||
/* The label of the current constant pool. */
|
||
extern struct rtx_def * pool_vector_label;
|
||
/* Set to 1 when a return insn is output, this means that the epilogue
|
||
is not needed. */
|
||
extern int return_used_this_function;
|
||
|
||
/* Just in case configure has failed to define anything. */
|
||
#ifndef TARGET_CPU_DEFAULT
|
||
#define TARGET_CPU_DEFAULT TARGET_CPU_generic
|
||
#endif
|
||
|
||
/* If the configuration file doesn't specify the cpu, the subtarget may
|
||
override it. If it doesn't, then default to an ARM6. */
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_generic
|
||
#undef TARGET_CPU_DEFAULT
|
||
|
||
#ifdef SUBTARGET_CPU_DEFAULT
|
||
#define TARGET_CPU_DEFAULT SUBTARGET_CPU_DEFAULT
|
||
#else
|
||
#define TARGET_CPU_DEFAULT TARGET_CPU_arm6
|
||
#endif
|
||
#endif
|
||
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm2
|
||
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_2__"
|
||
#else
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm6 || TARGET_CPU_DEFAULT == TARGET_CPU_arm610 || TARGET_CPU_DEFAULT == TARGET_CPU_arm7500fe
|
||
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_3__"
|
||
#else
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm7m
|
||
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_3M__"
|
||
#else
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm7tdmi || TARGET_CPU_DEFAULT == TARGET_CPU_arm9 || TARGET_CPU_DEFAULT == TARGET_CPU_arm9tdmi
|
||
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_4T__"
|
||
#else
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_arm8 || TARGET_CPU_DEFAULT == TARGET_CPU_arm810 || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm110 || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm1100
|
||
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_4__"
|
||
#else
|
||
#if TARGET_CPU_DEFAULT == TARGET_CPU_xscale
|
||
#define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_5TE__ -D__XSCALE__"
|
||
#else
|
||
Unrecognized value in TARGET_CPU_DEFAULT.
|
||
#endif
|
||
#endif
|
||
#endif
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
#undef CPP_SPEC
|
||
#define CPP_SPEC "\
|
||
%(cpp_cpu_arch) %(cpp_apcs_pc) %(cpp_float) \
|
||
%(cpp_endian) %(subtarget_cpp_spec) %(cpp_isa) %(cpp_interwork)"
|
||
|
||
#define CPP_ISA_SPEC "%{mthumb:-D__thumb__} %{!mthumb:-D__arm__}"
|
||
|
||
/* Set the architecture define -- if -march= is set, then it overrides
|
||
the -mcpu= setting. */
|
||
#define CPP_CPU_ARCH_SPEC "\
|
||
-Acpu=arm -Amachine=arm \
|
||
%{march=arm2:-D__ARM_ARCH_2__} \
|
||
%{march=arm250:-D__ARM_ARCH_2__} \
|
||
%{march=arm3:-D__ARM_ARCH_2__} \
|
||
%{march=arm6:-D__ARM_ARCH_3__} \
|
||
%{march=arm600:-D__ARM_ARCH_3__} \
|
||
%{march=arm610:-D__ARM_ARCH_3__} \
|
||
%{march=arm7:-D__ARM_ARCH_3__} \
|
||
%{march=arm700:-D__ARM_ARCH_3__} \
|
||
%{march=arm710:-D__ARM_ARCH_3__} \
|
||
%{march=arm720:-D__ARM_ARCH_3__} \
|
||
%{march=arm7100:-D__ARM_ARCH_3__} \
|
||
%{march=arm7500:-D__ARM_ARCH_3__} \
|
||
%{march=arm7500fe:-D__ARM_ARCH_3__} \
|
||
%{march=arm7m:-D__ARM_ARCH_3M__} \
|
||
%{march=arm7dm:-D__ARM_ARCH_3M__} \
|
||
%{march=arm7dmi:-D__ARM_ARCH_3M__} \
|
||
%{march=arm7tdmi:-D__ARM_ARCH_4T__} \
|
||
%{march=arm8:-D__ARM_ARCH_4__} \
|
||
%{march=arm810:-D__ARM_ARCH_4__} \
|
||
%{march=arm9:-D__ARM_ARCH_4T__} \
|
||
%{march=arm920:-D__ARM_ARCH_4__} \
|
||
%{march=arm920t:-D__ARM_ARCH_4T__} \
|
||
%{march=arm9tdmi:-D__ARM_ARCH_4T__} \
|
||
%{march=strongarm:-D__ARM_ARCH_4__} \
|
||
%{march=strongarm110:-D__ARM_ARCH_4__} \
|
||
%{march=strongarm1100:-D__ARM_ARCH_4__} \
|
||
%{march=xscale:-D__ARM_ARCH_5TE__} \
|
||
%{march=xscale:-D__XSCALE__} \
|
||
%{march=armv2:-D__ARM_ARCH_2__} \
|
||
%{march=armv2a:-D__ARM_ARCH_2__} \
|
||
%{march=armv3:-D__ARM_ARCH_3__} \
|
||
%{march=armv3m:-D__ARM_ARCH_3M__} \
|
||
%{march=armv4:-D__ARM_ARCH_4__} \
|
||
%{march=armv4t:-D__ARM_ARCH_4T__} \
|
||
%{march=armv5:-D__ARM_ARCH_5__} \
|
||
%{march=armv5t:-D__ARM_ARCH_5T__} \
|
||
%{march=armv5e:-D__ARM_ARCH_5E__} \
|
||
%{march=armv5te:-D__ARM_ARCH_5TE__} \
|
||
%{!march=*: \
|
||
%{mcpu=arm2:-D__ARM_ARCH_2__} \
|
||
%{mcpu=arm250:-D__ARM_ARCH_2__} \
|
||
%{mcpu=arm3:-D__ARM_ARCH_2__} \
|
||
%{mcpu=arm6:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm600:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm610:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm7:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm700:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm710:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm720:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm7100:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm7500:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm7500fe:-D__ARM_ARCH_3__} \
|
||
%{mcpu=arm7m:-D__ARM_ARCH_3M__} \
|
||
%{mcpu=arm7dm:-D__ARM_ARCH_3M__} \
|
||
%{mcpu=arm7dmi:-D__ARM_ARCH_3M__} \
|
||
%{mcpu=arm7tdmi:-D__ARM_ARCH_4T__} \
|
||
%{mcpu=arm8:-D__ARM_ARCH_4__} \
|
||
%{mcpu=arm810:-D__ARM_ARCH_4__} \
|
||
%{mcpu=arm9:-D__ARM_ARCH_4T__} \
|
||
%{mcpu=arm920:-D__ARM_ARCH_4__} \
|
||
%{mcpu=arm920t:-D__ARM_ARCH_4T__} \
|
||
%{mcpu=arm9tdmi:-D__ARM_ARCH_4T__} \
|
||
%{mcpu=strongarm:-D__ARM_ARCH_4__} \
|
||
%{mcpu=strongarm110:-D__ARM_ARCH_4__} \
|
||
%{mcpu=strongarm1100:-D__ARM_ARCH_4__} \
|
||
%{mcpu=xscale:-D__ARM_ARCH_5TE__} \
|
||
%{mcpu=xscale:-D__XSCALE__} \
|
||
%{!mcpu*:%(cpp_cpu_arch_default)}} \
|
||
"
|
||
|
||
/* Define __APCS_26__ if the PC also contains the PSR */
|
||
#define CPP_APCS_PC_SPEC "\
|
||
%{mapcs-32:%{mapcs-26:%e-mapcs-26 and -mapcs-32 may not be used together} \
|
||
-D__APCS_32__} \
|
||
%{mapcs-26:-D__APCS_26__} \
|
||
%{!mapcs-32: %{!mapcs-26:%(cpp_apcs_pc_default)}} \
|
||
"
|
||
|
||
#ifndef CPP_APCS_PC_DEFAULT_SPEC
|
||
#define CPP_APCS_PC_DEFAULT_SPEC "-D__APCS_26__"
|
||
#endif
|
||
|
||
#define CPP_FLOAT_SPEC "\
|
||
%{msoft-float:\
|
||
%{mhard-float:%e-msoft-float and -mhard_float may not be used together} \
|
||
-D__SOFTFP__} \
|
||
%{!mhard-float:%{!msoft-float:%(cpp_float_default)}} \
|
||
"
|
||
|
||
/* Default is hard float, which doesn't define anything */
|
||
#define CPP_FLOAT_DEFAULT_SPEC ""
|
||
|
||
#define CPP_ENDIAN_SPEC "\
|
||
%{mbig-endian: \
|
||
%{mlittle-endian: \
|
||
%e-mbig-endian and -mlittle-endian may not be used together} \
|
||
-D__ARMEB__ %{mwords-little-endian:-D__ARMWEL__} %{mthumb:-D__THUMBEB__}}\
|
||
%{mlittle-endian:-D__ARMEL__ %{mthumb:-D__THUMBEL__}} \
|
||
%{!mlittle-endian:%{!mbig-endian:%(cpp_endian_default)}} \
|
||
"
|
||
|
||
/* Default is little endian. */
|
||
#define CPP_ENDIAN_DEFAULT_SPEC "-D__ARMEL__ %{mthumb:-D__THUMBEL__}"
|
||
|
||
/* Add a define for interworking. Needed when building libgcc.a.
|
||
This must define __THUMB_INTERWORK__ to the pre-processor if
|
||
interworking is enabled by default. */
|
||
#ifndef CPP_INTERWORK_DEFAULT_SPEC
|
||
#define CPP_INTERWORK_DEFAULT_SPEC ""
|
||
#endif
|
||
|
||
#define CPP_INTERWORK_SPEC " \
|
||
%{mthumb-interwork: \
|
||
%{mno-thumb-interwork: %eincompatible interworking options} \
|
||
-D__THUMB_INTERWORK__} \
|
||
%{!mthumb-interwork:%{!mno-thumb-interwork:%(cpp_interwork_default)}} \
|
||
"
|
||
|
||
#ifndef CPP_PREDEFINES
|
||
#define CPP_PREDEFINES ""
|
||
#endif
|
||
|
||
#ifndef CC1_SPEC
|
||
#define CC1_SPEC ""
|
||
#endif
|
||
|
||
/* This macro defines names of additional specifications to put in the specs
|
||
that can be used in various specifications like CC1_SPEC. Its definition
|
||
is an initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
specification name, and a string constant that used by the GNU CC driver
|
||
program.
|
||
|
||
Do not define this macro if it does not need to do anything. */
|
||
#define EXTRA_SPECS \
|
||
{ "cpp_cpu_arch", CPP_CPU_ARCH_SPEC }, \
|
||
{ "cpp_cpu_arch_default", CPP_ARCH_DEFAULT_SPEC }, \
|
||
{ "cpp_apcs_pc", CPP_APCS_PC_SPEC }, \
|
||
{ "cpp_apcs_pc_default", CPP_APCS_PC_DEFAULT_SPEC }, \
|
||
{ "cpp_float", CPP_FLOAT_SPEC }, \
|
||
{ "cpp_float_default", CPP_FLOAT_DEFAULT_SPEC }, \
|
||
{ "cpp_endian", CPP_ENDIAN_SPEC }, \
|
||
{ "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
|
||
{ "cpp_isa", CPP_ISA_SPEC }, \
|
||
{ "cpp_interwork", CPP_INTERWORK_SPEC }, \
|
||
{ "cpp_interwork_default", CPP_INTERWORK_DEFAULT_SPEC }, \
|
||
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
|
||
SUBTARGET_EXTRA_SPECS
|
||
|
||
#ifndef SUBTARGET_EXTRA_SPECS
|
||
#define SUBTARGET_EXTRA_SPECS
|
||
#endif
|
||
|
||
#ifndef SUBTARGET_CPP_SPEC
|
||
#define SUBTARGET_CPP_SPEC ""
|
||
#endif
|
||
|
||
/* Run-time Target Specification. */
|
||
#ifndef TARGET_VERSION
|
||
#define TARGET_VERSION fputs (" (ARM/generic)", stderr);
|
||
#endif
|
||
|
||
/* Nonzero if the function prologue (and epilogue) should obey
|
||
the ARM Procedure Call Standard. */
|
||
#define ARM_FLAG_APCS_FRAME (1 << 0)
|
||
|
||
/* Nonzero if the function prologue should output the function name to enable
|
||
the post mortem debugger to print a backtrace (very useful on RISCOS,
|
||
unused on RISCiX). Specifying this flag also enables
|
||
-fno-omit-frame-pointer.
|
||
XXX Must still be implemented in the prologue. */
|
||
#define ARM_FLAG_POKE (1 << 1)
|
||
|
||
/* Nonzero if floating point instructions are emulated by the FPE, in which
|
||
case instruction scheduling becomes very uninteresting. */
|
||
#define ARM_FLAG_FPE (1 << 2)
|
||
|
||
/* Nonzero if destined for a processor in 32-bit program mode. Takes out bit
|
||
that assume restoration of the condition flags when returning from a
|
||
branch and link (ie a function). */
|
||
#define ARM_FLAG_APCS_32 (1 << 3)
|
||
|
||
/* FLAGS 0x0008 and 0x0010 are now spare (used to be arm3/6 selection). */
|
||
|
||
/* Nonzero if stack checking should be performed on entry to each function
|
||
which allocates temporary variables on the stack. */
|
||
#define ARM_FLAG_APCS_STACK (1 << 4)
|
||
|
||
/* Nonzero if floating point parameters should be passed to functions in
|
||
floating point registers. */
|
||
#define ARM_FLAG_APCS_FLOAT (1 << 5)
|
||
|
||
/* Nonzero if re-entrant, position independent code should be generated.
|
||
This is equivalent to -fpic. */
|
||
#define ARM_FLAG_APCS_REENT (1 << 6)
|
||
|
||
/* Nonzero if the MMU will trap unaligned word accesses, so shorts must
|
||
be loaded using either LDRH or LDRB instructions. */
|
||
#define ARM_FLAG_MMU_TRAPS (1 << 7)
|
||
|
||
/* Nonzero if all floating point instructions are missing (and there is no
|
||
emulator either). Generate function calls for all ops in this case. */
|
||
#define ARM_FLAG_SOFT_FLOAT (1 << 8)
|
||
|
||
/* Nonzero if we should compile with BYTES_BIG_ENDIAN set to 1. */
|
||
#define ARM_FLAG_BIG_END (1 << 9)
|
||
|
||
/* Nonzero if we should compile for Thumb interworking. */
|
||
#define ARM_FLAG_INTERWORK (1 << 10)
|
||
|
||
/* Nonzero if we should have little-endian words even when compiling for
|
||
big-endian (for backwards compatibility with older versions of GCC). */
|
||
#define ARM_FLAG_LITTLE_WORDS (1 << 11)
|
||
|
||
/* Nonzero if we need to protect the prolog from scheduling */
|
||
#define ARM_FLAG_NO_SCHED_PRO (1 << 12)
|
||
|
||
/* Nonzero if a call to abort should be generated if a noreturn
|
||
function tries to return. */
|
||
#define ARM_FLAG_ABORT_NORETURN (1 << 13)
|
||
|
||
/* Nonzero if function prologues should not load the PIC register. */
|
||
#define ARM_FLAG_SINGLE_PIC_BASE (1 << 14)
|
||
|
||
/* Nonzero if all call instructions should be indirect. */
|
||
#define ARM_FLAG_LONG_CALLS (1 << 15)
|
||
|
||
/* Nonzero means that the target ISA is the THUMB, not the ARM. */
|
||
#define ARM_FLAG_THUMB (1 << 16)
|
||
|
||
/* Set if a TPCS style stack frame should be generated, for non-leaf
|
||
functions, even if they do not need one. */
|
||
#define THUMB_FLAG_BACKTRACE (1 << 17)
|
||
|
||
/* Set if a TPCS style stack frame should be generated, for leaf
|
||
functions, even if they do not need one. */
|
||
#define THUMB_FLAG_LEAF_BACKTRACE (1 << 18)
|
||
|
||
/* Set if externally visible functions should assume that they
|
||
might be called in ARM mode, from a non-thumb aware code. */
|
||
#define THUMB_FLAG_CALLEE_SUPER_INTERWORKING (1 << 19)
|
||
|
||
/* Set if calls via function pointers should assume that their
|
||
destination is non-Thumb aware. */
|
||
#define THUMB_FLAG_CALLER_SUPER_INTERWORKING (1 << 20)
|
||
|
||
#define TARGET_APCS_FRAME (target_flags & ARM_FLAG_APCS_FRAME)
|
||
#define TARGET_POKE_FUNCTION_NAME (target_flags & ARM_FLAG_POKE)
|
||
#define TARGET_FPE (target_flags & ARM_FLAG_FPE)
|
||
#define TARGET_APCS_32 (target_flags & ARM_FLAG_APCS_32)
|
||
#define TARGET_APCS_STACK (target_flags & ARM_FLAG_APCS_STACK)
|
||
#define TARGET_APCS_FLOAT (target_flags & ARM_FLAG_APCS_FLOAT)
|
||
#define TARGET_APCS_REENT (target_flags & ARM_FLAG_APCS_REENT)
|
||
#define TARGET_MMU_TRAPS (target_flags & ARM_FLAG_MMU_TRAPS)
|
||
#define TARGET_SOFT_FLOAT (target_flags & ARM_FLAG_SOFT_FLOAT)
|
||
#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
|
||
#define TARGET_BIG_END (target_flags & ARM_FLAG_BIG_END)
|
||
#define TARGET_INTERWORK (target_flags & ARM_FLAG_INTERWORK)
|
||
#define TARGET_LITTLE_WORDS (target_flags & ARM_FLAG_LITTLE_WORDS)
|
||
#define TARGET_NO_SCHED_PRO (target_flags & ARM_FLAG_NO_SCHED_PRO)
|
||
#define TARGET_ABORT_NORETURN (target_flags & ARM_FLAG_ABORT_NORETURN)
|
||
#define TARGET_SINGLE_PIC_BASE (target_flags & ARM_FLAG_SINGLE_PIC_BASE)
|
||
#define TARGET_LONG_CALLS (target_flags & ARM_FLAG_LONG_CALLS)
|
||
#define TARGET_THUMB (target_flags & ARM_FLAG_THUMB)
|
||
#define TARGET_ARM (! TARGET_THUMB)
|
||
#define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
|
||
#define TARGET_CALLEE_INTERWORKING (target_flags & THUMB_FLAG_CALLEE_SUPER_INTERWORKING)
|
||
#define TARGET_CALLER_INTERWORKING (target_flags & THUMB_FLAG_CALLER_SUPER_INTERWORKING)
|
||
#define TARGET_BACKTRACE (leaf_function_p () \
|
||
? (target_flags & THUMB_FLAG_LEAF_BACKTRACE) \
|
||
: (target_flags & THUMB_FLAG_BACKTRACE))
|
||
|
||
/* SUBTARGET_SWITCHES is used to add flags on a per-config basis.
|
||
Bit 31 is reserved. See riscix.h. */
|
||
#ifndef SUBTARGET_SWITCHES
|
||
#define SUBTARGET_SWITCHES
|
||
#endif
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ \
|
||
{"apcs", ARM_FLAG_APCS_FRAME, "" }, \
|
||
{"apcs-frame", ARM_FLAG_APCS_FRAME, \
|
||
N_("Generate APCS conformant stack frames") }, \
|
||
{"no-apcs-frame", -ARM_FLAG_APCS_FRAME, "" }, \
|
||
{"poke-function-name", ARM_FLAG_POKE, \
|
||
N_("Store function names in object code") }, \
|
||
{"no-poke-function-name", -ARM_FLAG_POKE, "" }, \
|
||
{"fpe", ARM_FLAG_FPE, "" }, \
|
||
{"apcs-32", ARM_FLAG_APCS_32, \
|
||
N_("Use the 32-bit version of the APCS") }, \
|
||
{"apcs-26", -ARM_FLAG_APCS_32, \
|
||
N_("Use the 26-bit version of the APCS") }, \
|
||
{"apcs-stack-check", ARM_FLAG_APCS_STACK, "" }, \
|
||
{"no-apcs-stack-check", -ARM_FLAG_APCS_STACK, "" }, \
|
||
{"apcs-float", ARM_FLAG_APCS_FLOAT, \
|
||
N_("Pass FP arguments in FP registers") }, \
|
||
{"no-apcs-float", -ARM_FLAG_APCS_FLOAT, "" }, \
|
||
{"apcs-reentrant", ARM_FLAG_APCS_REENT, \
|
||
N_("Generate re-entrant, PIC code") }, \
|
||
{"no-apcs-reentrant", -ARM_FLAG_APCS_REENT, "" }, \
|
||
{"alignment-traps", ARM_FLAG_MMU_TRAPS, \
|
||
N_("The MMU will trap on unaligned accesses") }, \
|
||
{"no-alignment-traps", -ARM_FLAG_MMU_TRAPS, "" }, \
|
||
{"short-load-bytes", ARM_FLAG_MMU_TRAPS, "" }, \
|
||
{"no-short-load-bytes", -ARM_FLAG_MMU_TRAPS, "" }, \
|
||
{"short-load-words", -ARM_FLAG_MMU_TRAPS, "" }, \
|
||
{"no-short-load-words", ARM_FLAG_MMU_TRAPS, "" }, \
|
||
{"soft-float", ARM_FLAG_SOFT_FLOAT, \
|
||
N_("Use library calls to perform FP operations") }, \
|
||
{"hard-float", -ARM_FLAG_SOFT_FLOAT, \
|
||
N_("Use hardware floating point instructions") }, \
|
||
{"big-endian", ARM_FLAG_BIG_END, \
|
||
N_("Assume target CPU is configured as big endian") }, \
|
||
{"little-endian", -ARM_FLAG_BIG_END, \
|
||
N_("Assume target CPU is configured as little endian") }, \
|
||
{"words-little-endian", ARM_FLAG_LITTLE_WORDS, \
|
||
N_("Assume big endian bytes, little endian words") }, \
|
||
{"thumb-interwork", ARM_FLAG_INTERWORK, \
|
||
N_("Support calls between Thumb and ARM instruction sets") }, \
|
||
{"no-thumb-interwork", -ARM_FLAG_INTERWORK, "" }, \
|
||
{"abort-on-noreturn", ARM_FLAG_ABORT_NORETURN, \
|
||
N_("Generate a call to abort if a noreturn function returns")}, \
|
||
{"no-abort-on-noreturn", -ARM_FLAG_ABORT_NORETURN, "" }, \
|
||
{"no-sched-prolog", ARM_FLAG_NO_SCHED_PRO, \
|
||
N_("Do not move instructions into a function's prologue") }, \
|
||
{"sched-prolog", -ARM_FLAG_NO_SCHED_PRO, "" }, \
|
||
{"single-pic-base", ARM_FLAG_SINGLE_PIC_BASE, \
|
||
N_("Do not load the PIC register in function prologues") }, \
|
||
{"no-single-pic-base", -ARM_FLAG_SINGLE_PIC_BASE, "" }, \
|
||
{"long-calls", ARM_FLAG_LONG_CALLS, \
|
||
N_("Generate call insns as indirect calls, if necessary") }, \
|
||
{"no-long-calls", -ARM_FLAG_LONG_CALLS, "" }, \
|
||
{"thumb", ARM_FLAG_THUMB, \
|
||
N_("Compile for the Thumb not the ARM") }, \
|
||
{"no-thumb", -ARM_FLAG_THUMB, "" }, \
|
||
{"arm", -ARM_FLAG_THUMB, "" }, \
|
||
{"tpcs-frame", THUMB_FLAG_BACKTRACE, \
|
||
N_("Thumb: Generate (non-leaf) stack frames even if not needed") }, \
|
||
{"no-tpcs-frame", -THUMB_FLAG_BACKTRACE, "" }, \
|
||
{"tpcs-leaf-frame", THUMB_FLAG_LEAF_BACKTRACE, \
|
||
N_("Thumb: Generate (leaf) stack frames even if not needed") }, \
|
||
{"no-tpcs-leaf-frame", -THUMB_FLAG_LEAF_BACKTRACE, "" }, \
|
||
{"callee-super-interworking", THUMB_FLAG_CALLEE_SUPER_INTERWORKING, \
|
||
N_("Thumb: Assume non-static functions may be called from ARM code") }, \
|
||
{"no-callee-super-interworking", -THUMB_FLAG_CALLEE_SUPER_INTERWORKING, \
|
||
"" }, \
|
||
{"caller-super-interworking", THUMB_FLAG_CALLER_SUPER_INTERWORKING, \
|
||
N_("Thumb: Assume function pointers may go to non-Thumb aware code") }, \
|
||
{"no-caller-super-interworking", -THUMB_FLAG_CALLER_SUPER_INTERWORKING, \
|
||
"" }, \
|
||
SUBTARGET_SWITCHES \
|
||
{"", TARGET_DEFAULT, "" } \
|
||
}
|
||
|
||
#define TARGET_OPTIONS \
|
||
{ \
|
||
{"cpu=", & arm_select[0].string, \
|
||
N_("Specify the name of the target CPU") }, \
|
||
{"arch=", & arm_select[1].string, \
|
||
N_("Specify the name of the target architecture") }, \
|
||
{"tune=", & arm_select[2].string, "" }, \
|
||
{"fpe=", & target_fp_name, "" }, \
|
||
{"fp=", & target_fp_name, \
|
||
N_("Specify the version of the floating point emulator") }, \
|
||
{"structure-size-boundary=", & structure_size_string, \
|
||
N_("Specify the minimum bit alignment of structures") }, \
|
||
{"pic-register=", & arm_pic_register_string, \
|
||
N_("Specify the register to be used for PIC addressing") } \
|
||
}
|
||
|
||
struct arm_cpu_select
|
||
{
|
||
const char * string;
|
||
const char * name;
|
||
const struct processors * processors;
|
||
};
|
||
|
||
/* This is a magic array. If the user specifies a command line switch
|
||
which matches one of the entries in TARGET_OPTIONS then the corresponding
|
||
string pointer will be set to the value specified by the user. */
|
||
extern struct arm_cpu_select arm_select[];
|
||
|
||
enum prog_mode_type
|
||
{
|
||
prog_mode26,
|
||
prog_mode32
|
||
};
|
||
|
||
/* Recast the program mode class to be the prog_mode attribute */
|
||
#define arm_prog_mode ((enum attr_prog_mode) arm_prgmode)
|
||
|
||
extern enum prog_mode_type arm_prgmode;
|
||
|
||
/* What sort of floating point unit do we have? Hardware or software.
|
||
If software, is it issue 2 or issue 3? */
|
||
enum floating_point_type
|
||
{
|
||
FP_HARD,
|
||
FP_SOFT2,
|
||
FP_SOFT3
|
||
};
|
||
|
||
/* Recast the floating point class to be the floating point attribute. */
|
||
#define arm_fpu_attr ((enum attr_fpu) arm_fpu)
|
||
|
||
/* What type of floating point to tune for */
|
||
extern enum floating_point_type arm_fpu;
|
||
|
||
/* What type of floating point instructions are available */
|
||
extern enum floating_point_type arm_fpu_arch;
|
||
|
||
/* Default floating point architecture. Override in sub-target if
|
||
necessary. */
|
||
#ifndef FP_DEFAULT
|
||
#define FP_DEFAULT FP_SOFT2
|
||
#endif
|
||
|
||
/* Nonzero if the processor has a fast multiply insn, and one that does
|
||
a 64-bit multiply of two 32-bit values. */
|
||
extern int arm_fast_multiply;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 4 extensions */
|
||
extern int arm_arch4;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 5 extensions */
|
||
extern int arm_arch5;
|
||
|
||
/* Nonzero if this chip supports the ARM Architecture 5E extensions */
|
||
extern int arm_arch5e;
|
||
|
||
/* Nonzero if this chip can benefit from load scheduling. */
|
||
extern int arm_ld_sched;
|
||
|
||
/* Nonzero if generating thumb code. */
|
||
extern int thumb_code;
|
||
|
||
/* Nonzero if this chip is a StrongARM. */
|
||
extern int arm_is_strong;
|
||
|
||
/* Nonzero if this chip is an XScale. */
|
||
extern int arm_is_xscale;
|
||
|
||
/* Nonzero if this chip is an ARM6 or an ARM7. */
|
||
extern int arm_is_6_or_7;
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT (ARM_FLAG_APCS_FRAME)
|
||
#endif
|
||
|
||
/* The frame pointer register used in gcc has nothing to do with debugging;
|
||
that is controlled by the APCS-FRAME option. */
|
||
#define CAN_DEBUG_WITHOUT_FP
|
||
|
||
#undef TARGET_MEM_FUNCTIONS
|
||
#define TARGET_MEM_FUNCTIONS 1
|
||
|
||
#define OVERRIDE_OPTIONS arm_override_options ()
|
||
|
||
/* Nonzero if PIC code requires explicit qualifiers to generate
|
||
PLT and GOT relocs rather than the assembler doing so implicitly.
|
||
Subtargets can override these if required. */
|
||
#ifndef NEED_GOT_RELOC
|
||
#define NEED_GOT_RELOC 0
|
||
#endif
|
||
#ifndef NEED_PLT_RELOC
|
||
#define NEED_PLT_RELOC 0
|
||
#endif
|
||
|
||
/* Nonzero if we need to refer to the GOT with a PC-relative
|
||
offset. In other words, generate
|
||
|
||
.word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
|
||
|
||
rather than
|
||
|
||
.word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
|
||
|
||
The default is true, which matches NetBSD. Subtargets can
|
||
override this if required. */
|
||
#ifndef GOT_PCREL
|
||
#define GOT_PCREL 1
|
||
#endif
|
||
|
||
/* Target machine storage Layout. */
|
||
|
||
|
||
/* Define this macro if it is advisable to hold scalars in registers
|
||
in a wider mode than that declared by the program. In such cases,
|
||
the value is constrained to be within the bounds of the declared
|
||
type, but kept valid in the wider mode. The signedness of the
|
||
extension may differ from that of the type. */
|
||
|
||
/* It is far faster to zero extend chars than to sign extend them */
|
||
|
||
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
||
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < 4) \
|
||
{ \
|
||
if (MODE == QImode) \
|
||
UNSIGNEDP = 1; \
|
||
else if (MODE == HImode) \
|
||
UNSIGNEDP = TARGET_MMU_TRAPS != 0; \
|
||
(MODE) = SImode; \
|
||
}
|
||
|
||
/* Define this macro if the promotion described by `PROMOTE_MODE'
|
||
should also be done for outgoing function arguments. */
|
||
/* This is required to ensure that push insns always push a word. */
|
||
#define PROMOTE_FUNCTION_ARGS
|
||
|
||
/* Define for XFmode extended real floating point support.
|
||
This will automatically cause REAL_ARITHMETIC to be defined. */
|
||
/* For the ARM:
|
||
I think I have added all the code to make this work. Unfortunately,
|
||
early releases of the floating point emulation code on RISCiX used a
|
||
different format for extended precision numbers. On my RISCiX box there
|
||
is a bug somewhere which causes the machine to lock up when running enquire
|
||
with long doubles. There is the additional aspect that Norcroft C
|
||
treats long doubles as doubles and we ought to remain compatible.
|
||
Perhaps someone with an FPA coprocessor and not running RISCiX would like
|
||
to try this someday. */
|
||
/* #define LONG_DOUBLE_TYPE_SIZE 96 */
|
||
|
||
/* Disable XFmode patterns in md file */
|
||
#define ENABLE_XF_PATTERNS 0
|
||
|
||
/* Define if you don't want extended real, but do want to use the
|
||
software floating point emulator for REAL_ARITHMETIC and
|
||
decimal <-> binary conversion. */
|
||
/* See comment above */
|
||
#define REAL_ARITHMETIC
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered.
|
||
Most ARM processors are run in little endian mode, so that is the default.
|
||
If you want to have it run-time selectable, change the definition in a
|
||
cover file to be TARGET_BIG_ENDIAN. */
|
||
#define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered.
|
||
This is always false, even when in big-endian mode. */
|
||
#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
|
||
|
||
/* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
|
||
on processor pre-defineds when compiling libgcc2.c. */
|
||
#if defined(__ARMEB__) && !defined(__ARMWEL__)
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 1
|
||
#else
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 0
|
||
#endif
|
||
|
||
/* Define this if most significant word of doubles is the lowest numbered.
|
||
This is always true, even when in little-endian mode. */
|
||
#define FLOAT_WORDS_BIG_ENDIAN 1
|
||
|
||
/* Number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
#define BITS_PER_WORD 32
|
||
|
||
#define UNITS_PER_WORD 4
|
||
|
||
#define POINTER_SIZE 32
|
||
|
||
#define PARM_BOUNDARY 32
|
||
|
||
#define STACK_BOUNDARY 32
|
||
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* The lowest bit is used to indicate Thumb-mode functions, so the
|
||
vbit must go into the delta field of pointers to member
|
||
functions. */
|
||
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
|
||
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
#define BIGGEST_ALIGNMENT 32
|
||
|
||
/* Make strings word-aligned so strcpy from constants will be faster. */
|
||
#define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_is_xscale ? 1 : 2)
|
||
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
((TREE_CODE (EXP) == STRING_CST \
|
||
&& (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
|
||
? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
|
||
|
||
/* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
|
||
value set in previous versions of this toolchain was 8, which produces more
|
||
compact structures. The command line option -mstructure_size_boundary=<n>
|
||
can be used to change this value. For compatibility with the ARM SDK
|
||
however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
|
||
0020D) page 2-20 says "Structures are aligned on word boundaries". */
|
||
#define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
|
||
extern int arm_structure_size_boundary;
|
||
|
||
/* This is the value used to initialise arm_structure_size_boundary. If a
|
||
particular arm target wants to change the default value it should change
|
||
the definition of this macro, not STRUCTRUE_SIZE_BOUNDARY. See netbsd.h
|
||
for an example of this. */
|
||
#ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
|
||
#define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
|
||
#endif
|
||
|
||
/* Used when parsing command line option -mstructure_size_boundary. */
|
||
extern const char * structure_size_string;
|
||
|
||
/* Non-zero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
|
||
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
|
||
(S - saved over call).
|
||
|
||
r0 * argument word/integer result
|
||
r1-r3 argument word
|
||
|
||
r4-r8 S register variable
|
||
r9 S (rfp) register variable (real frame pointer)
|
||
|
||
r10 F S (sl) stack limit (used by -mapcs-stack-check)
|
||
r11 F S (fp) argument pointer
|
||
r12 (ip) temp workspace
|
||
r13 F S (sp) lower end of current stack frame
|
||
r14 (lr) link address/workspace
|
||
r15 F (pc) program counter
|
||
|
||
f0 floating point result
|
||
f1-f3 floating point scratch
|
||
|
||
f4-f7 S floating point variable
|
||
|
||
cc This is NOT a real register, but is used internally
|
||
to represent things that use or set the condition
|
||
codes.
|
||
sfp This isn't either. It is used during rtl generation
|
||
since the offset between the frame pointer and the
|
||
auto's isn't known until after register allocation.
|
||
afp Nor this, we only need this because of non-local
|
||
goto. Without it fp appears to be used and the
|
||
elimination code won't get rid of sfp. It tracks
|
||
fp exactly at all times.
|
||
|
||
*: See CONDITIONAL_REGISTER_USAGE */
|
||
|
||
/* The stack backtrace structure is as follows:
|
||
fp points to here: | save code pointer | [fp]
|
||
| return link value | [fp, #-4]
|
||
| return sp value | [fp, #-8]
|
||
| return fp value | [fp, #-12]
|
||
[| saved r10 value |]
|
||
[| saved r9 value |]
|
||
[| saved r8 value |]
|
||
[| saved r7 value |]
|
||
[| saved r6 value |]
|
||
[| saved r5 value |]
|
||
[| saved r4 value |]
|
||
[| saved r3 value |]
|
||
[| saved r2 value |]
|
||
[| saved r1 value |]
|
||
[| saved r0 value |]
|
||
[| saved f7 value |] three words
|
||
[| saved f6 value |] three words
|
||
[| saved f5 value |] three words
|
||
[| saved f4 value |] three words
|
||
r0-r3 are not normally saved in a C function. */
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator. */
|
||
#define FIXED_REGISTERS \
|
||
{ \
|
||
0,0,0,0,0,0,0,0, \
|
||
0,0,0,0,0,1,0,1, \
|
||
0,0,0,0,0,0,0,0, \
|
||
1,1,1 \
|
||
}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like.
|
||
The CC is not preserved over function calls on the ARM 6, so it is
|
||
easier to assume this for all. SFP is preserved, since FP is. */
|
||
#define CALL_USED_REGISTERS \
|
||
{ \
|
||
1,1,1,1,0,0,0,0, \
|
||
0,0,0,0,1,1,1,1, \
|
||
1,1,1,1,0,0,0,0, \
|
||
1,1,1 \
|
||
}
|
||
|
||
#ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
|
||
#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
|
||
#endif
|
||
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
{ \
|
||
int regno; \
|
||
\
|
||
if (TARGET_SOFT_FLOAT || TARGET_THUMB) \
|
||
{ \
|
||
for (regno = FIRST_ARM_FP_REGNUM; \
|
||
regno <= LAST_ARM_FP_REGNUM; ++regno) \
|
||
fixed_regs[regno] = call_used_regs[regno] = 1; \
|
||
} \
|
||
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
|
||
{ \
|
||
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
} \
|
||
else if (TARGET_APCS_STACK) \
|
||
{ \
|
||
fixed_regs[10] = 1; \
|
||
call_used_regs[10] = 1; \
|
||
} \
|
||
if (TARGET_APCS_FRAME) \
|
||
{ \
|
||
fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
|
||
call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
|
||
} \
|
||
SUBTARGET_CONDITIONAL_REGISTER_USAGE \
|
||
}
|
||
|
||
/* These are a couple of extensions to the formats accecpted
|
||
by asm_fprintf:
|
||
%@ prints out ASM_COMMENT_START
|
||
%r prints out REGISTER_PREFIX reg_names[arg] */
|
||
#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
|
||
case '@': \
|
||
fputs (ASM_COMMENT_START, FILE); \
|
||
break; \
|
||
\
|
||
case 'r': \
|
||
fputs (REGISTER_PREFIX, FILE); \
|
||
fputs (reg_names [va_arg (ARGS, int)], FILE); \
|
||
break;
|
||
|
||
/* Round X up to the nearest word. */
|
||
#define ROUND_UP(X) (((X) + 3) & ~3)
|
||
|
||
/* Convert fron bytes to ints. */
|
||
#define NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* The number of (integer) registers required to hold a quantity of type MODE. */
|
||
#define NUM_REGS(MODE) \
|
||
NUM_INTS (GET_MODE_SIZE (MODE))
|
||
|
||
/* The number of (integer) registers required to hold a quantity of TYPE MODE. */
|
||
#define NUM_REGS2(MODE, TYPE) \
|
||
NUM_INTS ((MODE) == BLKmode ? \
|
||
int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
|
||
|
||
/* The number of (integer) argument register available. */
|
||
#define NUM_ARG_REGS 4
|
||
|
||
/* Return the regiser number of the N'th (integer) argument. */
|
||
#define ARG_REGISTER(N) (N - 1)
|
||
|
||
#if 0 /* FIXME: The ARM backend has special code to handle structure
|
||
returns, and will reserve its own hidden first argument. So
|
||
if this macro is enabled a *second* hidden argument will be
|
||
reserved, which will break binary compatibility with old
|
||
toolchains and also thunk handling. One day this should be
|
||
fixed. */
|
||
/* RTX for structure returns. NULL means use a hidden first argument. */
|
||
#define STRUCT_VALUE 0
|
||
#else
|
||
/* Register in which address to store a structure value
|
||
is passed to a function. */
|
||
#define STRUCT_VALUE_REGNUM ARG_REGISTER (1)
|
||
#endif
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* The number of the last argument register. */
|
||
#define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
|
||
|
||
/* The number of the last "lo" register (thumb). */
|
||
#define LAST_LO_REGNUM 7
|
||
|
||
/* The register that holds the return address in exception handlers. */
|
||
#define EXCEPTION_LR_REGNUM 2
|
||
|
||
/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
|
||
as an invisible last argument (possible since varargs don't exist in
|
||
Pascal), so the following is not true. */
|
||
#define STATIC_CHAIN_REGNUM (TARGET_ARM ? 12 : 9)
|
||
|
||
/* Define this to be where the real frame pointer is if it is not possible to
|
||
work out the offset between the frame pointer and the automatic variables
|
||
until after register allocation has taken place. FRAME_POINTER_REGNUM
|
||
should point to a special register that we will make sure is eliminated.
|
||
|
||
For the Thumb we have another problem. The TPCS defines the frame pointer
|
||
as r11, and GCC belives that it is always possible to use the frame pointer
|
||
as base register for addressing purposes. (See comments in
|
||
find_reloads_address()). But - the Thumb does not allow high registers,
|
||
including r11, to be used as base address registers. Hence our problem.
|
||
|
||
The solution used here, and in the old thumb port is to use r7 instead of
|
||
r11 as the hard frame pointer and to have special code to generate
|
||
backtrace structures on the stack (if required to do so via a command line
|
||
option) using r11. This is the only 'user visable' use of r11 as a frame
|
||
pointer. */
|
||
#define ARM_HARD_FRAME_POINTER_REGNUM 11
|
||
#define THUMB_HARD_FRAME_POINTER_REGNUM 7
|
||
|
||
#define HARD_FRAME_POINTER_REGNUM \
|
||
(TARGET_ARM \
|
||
? ARM_HARD_FRAME_POINTER_REGNUM \
|
||
: THUMB_HARD_FRAME_POINTER_REGNUM)
|
||
|
||
#define FP_REGNUM HARD_FRAME_POINTER_REGNUM
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM SP_REGNUM
|
||
|
||
/* ARM floating pointer registers. */
|
||
#define FIRST_ARM_FP_REGNUM 16
|
||
#define LAST_ARM_FP_REGNUM 23
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 25
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 26
|
||
|
||
/* The number of hard registers is 16 ARM + 8 FPU + 1 CC + 1 SFP. */
|
||
#define FIRST_PSEUDO_REGISTER 27
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms may be accessed
|
||
via the stack pointer) in functions that seem suitable.
|
||
If we have to have a frame pointer we might as well make use of it.
|
||
APCS says that the frame pointer does not need to be pushed in leaf
|
||
functions, or simple tail call functions. */
|
||
#define FRAME_POINTER_REQUIRED \
|
||
(current_function_has_nonlocal_label \
|
||
|| (TARGET_ARM && TARGET_APCS_FRAME && ! leaf_function_p ()))
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
On the ARM regs are UNITS_PER_WORD bits wide; FPU regs can hold any FP
|
||
mode. */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((TARGET_ARM \
|
||
&& REGNO >= FIRST_ARM_FP_REGNUM \
|
||
&& REGNO != FRAME_POINTER_REGNUM \
|
||
&& REGNO != ARG_POINTER_REGNUM) \
|
||
? 1 : NUM_REGS (MODE))
|
||
|
||
/* Return true if REGNO is suitable for holding a quantity of type MODE. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
arm_hard_regno_mode_ok ((REGNO), (MODE))
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
(GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
|
||
|
||
/* The order in which register should be allocated. It is good to use ip
|
||
since no saving is required (though calls clobber it) and it never contains
|
||
function parameters. It is quite good to use lr since other calls may
|
||
clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
|
||
least likely to contain a function parameter; in addition results are
|
||
returned in r0. */
|
||
#define REG_ALLOC_ORDER \
|
||
{ \
|
||
3, 2, 1, 0, 12, 14, 4, 5, \
|
||
6, 7, 8, 10, 9, 11, 13, 15, \
|
||
16, 17, 18, 19, 20, 21, 22, 23, \
|
||
24, 25, 26 \
|
||
}
|
||
|
||
/* Interrupt functions can only use registers that have already been
|
||
saved by the prologue, even if they would normally be
|
||
call-clobbered. */
|
||
#define HARD_REGNO_RENAME_OK(SRC, DST) \
|
||
(! IS_INTERRUPT (cfun->machine->func_type) || \
|
||
regs_ever_live[DST])
|
||
|
||
/* Register and constant classes. */
|
||
|
||
/* Register classes: used to be simple, just all ARM regs or all FPU regs
|
||
Now that the Thumb is involved it has become more complicated. */
|
||
enum reg_class
|
||
{
|
||
NO_REGS,
|
||
FPU_REGS,
|
||
LO_REGS,
|
||
STACK_REG,
|
||
BASE_REGS,
|
||
HI_REGS,
|
||
CC_REG,
|
||
GENERAL_REGS,
|
||
ALL_REGS,
|
||
LIM_REG_CLASSES
|
||
};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
#define REG_CLASS_NAMES \
|
||
{ \
|
||
"NO_REGS", \
|
||
"FPU_REGS", \
|
||
"LO_REGS", \
|
||
"STACK_REG", \
|
||
"BASE_REGS", \
|
||
"HI_REGS", \
|
||
"CC_REG", \
|
||
"GENERAL_REGS", \
|
||
"ALL_REGS", \
|
||
}
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
{ 0x0000000 }, /* NO_REGS */ \
|
||
{ 0x0FF0000 }, /* FPU_REGS */ \
|
||
{ 0x00000FF }, /* LO_REGS */ \
|
||
{ 0x0002000 }, /* STACK_REG */ \
|
||
{ 0x00020FF }, /* BASE_REGS */ \
|
||
{ 0x000FF00 }, /* HI_REGS */ \
|
||
{ 0x1000000 }, /* CC_REG */ \
|
||
{ 0x200FFFF }, /* GENERAL_REGS */ \
|
||
{ 0x2FFFFFF } /* ALL_REGS */ \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
#define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
#define INDEX_REG_CLASS (TARGET_THUMB ? LO_REGS : GENERAL_REGS)
|
||
#define BASE_REG_CLASS (TARGET_THUMB ? LO_REGS : GENERAL_REGS)
|
||
|
||
/* For the Thumb the high registers cannot be used as base registers
|
||
when addressing quanitities in QI or HI mode; if we don't know the
|
||
mode, then we must be conservative. After reload we must also be
|
||
conservative, since we can't support SP+reg addressing, and we
|
||
can't fix up any bad substitutions. */
|
||
#define MODE_BASE_REG_CLASS(MODE) \
|
||
(TARGET_ARM ? GENERAL_REGS : \
|
||
(((MODE) == SImode && !reload_completed) ? BASE_REGS : LO_REGS))
|
||
|
||
/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
|
||
registers explicitly used in the rtl to be used as spill registers
|
||
but prevents the compiler from extending the lifetime of these
|
||
registers. */
|
||
#define SMALL_REGISTER_CLASSES TARGET_THUMB
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description.
|
||
We only need constraint `f' for FPU_REGS (`r' == GENERAL_REGS) for the
|
||
ARM, but several more letters for the Thumb. */
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
( (C) == 'f' ? FPU_REGS \
|
||
: (C) == 'l' ? (TARGET_ARM ? GENERAL_REGS : LO_REGS) \
|
||
: TARGET_ARM ? NO_REGS \
|
||
: (C) == 'h' ? HI_REGS \
|
||
: (C) == 'b' ? BASE_REGS \
|
||
: (C) == 'k' ? STACK_REG \
|
||
: (C) == 'c' ? CC_REG \
|
||
: NO_REGS)
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
I: immediate arithmetic operand (i.e. 8 bits shifted as required).
|
||
J: valid indexing constants.
|
||
K: ~value ok in rhs argument of data operand.
|
||
L: -value ok in rhs argument of data operand.
|
||
M: 0..32, or a power of 2 (for shifts, or mult done by shift). */
|
||
#define CONST_OK_FOR_ARM_LETTER(VALUE, C) \
|
||
((C) == 'I' ? const_ok_for_arm (VALUE) : \
|
||
(C) == 'J' ? ((VALUE) < 4096 && (VALUE) > -4096) : \
|
||
(C) == 'K' ? (const_ok_for_arm (~(VALUE))) : \
|
||
(C) == 'L' ? (const_ok_for_arm (-(VALUE))) : \
|
||
(C) == 'M' ? (((VALUE >= 0 && VALUE <= 32)) \
|
||
|| (((VALUE) & ((VALUE) - 1)) == 0)) \
|
||
: 0)
|
||
|
||
#define CONST_OK_FOR_THUMB_LETTER(VAL, C) \
|
||
((C) == 'I' ? (unsigned HOST_WIDE_INT) (VAL) < 256 : \
|
||
(C) == 'J' ? (VAL) > -256 && (VAL) < 0 : \
|
||
(C) == 'K' ? thumb_shiftable_const (VAL) : \
|
||
(C) == 'L' ? (VAL) > -8 && (VAL) < 8 : \
|
||
(C) == 'M' ? ((unsigned HOST_WIDE_INT) (VAL) < 1024 \
|
||
&& ((VAL) & 3) == 0) : \
|
||
(C) == 'N' ? ((unsigned HOST_WIDE_INT) (VAL) < 32) : \
|
||
(C) == 'O' ? ((VAL) >= -508 && (VAL) <= 508) \
|
||
: 0)
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
(TARGET_ARM ? \
|
||
CONST_OK_FOR_ARM_LETTER (VALUE, C) : CONST_OK_FOR_THUMB_LETTER (VALUE, C))
|
||
|
||
/* Constant letter 'G' for the FPU immediate constants.
|
||
'H' means the same constant negated. */
|
||
#define CONST_DOUBLE_OK_FOR_ARM_LETTER(X, C) \
|
||
((C) == 'G' ? const_double_rtx_ok_for_fpu (X) : \
|
||
(C) == 'H' ? neg_const_double_rtx_ok_for_fpu (X) : 0)
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(X, C) \
|
||
(TARGET_ARM ? \
|
||
CONST_DOUBLE_OK_FOR_ARM_LETTER (X, C) : 0)
|
||
|
||
/* For the ARM, `Q' means that this is a memory operand that is just
|
||
an offset from a register.
|
||
`S' means any symbol that has the SYMBOL_REF_FLAG set or a CONSTANT_POOL
|
||
address. This means that the symbol is in the text segment and can be
|
||
accessed without using a load. */
|
||
|
||
#define EXTRA_CONSTRAINT_ARM(OP, C) \
|
||
((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG : \
|
||
(C) == 'R' ? (GET_CODE (OP) == MEM \
|
||
&& GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
|
||
&& CONSTANT_POOL_ADDRESS_P (XEXP (OP, 0))) : \
|
||
(C) == 'S' ? (optimize > 0 && CONSTANT_ADDRESS_P (OP)) \
|
||
: 0)
|
||
|
||
#define EXTRA_CONSTRAINT_THUMB(X, C) \
|
||
((C) == 'Q' ? (GET_CODE (X) == MEM \
|
||
&& GET_CODE (XEXP (X, 0)) == LABEL_REF) : 0)
|
||
|
||
#define EXTRA_CONSTRAINT(X, C) \
|
||
(TARGET_ARM ? \
|
||
EXTRA_CONSTRAINT_ARM (X, C) : EXTRA_CONSTRAINT_THUMB (X, C))
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS, but for the Thumb we prefer
|
||
a LO_REGS class or a subset. */
|
||
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
|
||
(TARGET_ARM ? (CLASS) : \
|
||
((CLASS) == BASE_REGS ? (CLASS) : LO_REGS))
|
||
|
||
/* Must leave BASE_REGS reloads alone */
|
||
#define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
|
||
? ((true_regnum (X) == -1 ? LO_REGS \
|
||
: (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
|
||
: NO_REGS)) \
|
||
: NO_REGS)
|
||
|
||
#define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
((CLASS) != LO_REGS \
|
||
? ((true_regnum (X) == -1 ? LO_REGS \
|
||
: (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
|
||
: NO_REGS)) \
|
||
: NO_REGS)
|
||
|
||
/* Return the register class of a scratch register needed to copy IN into
|
||
or out of a register in CLASS in MODE. If it can be done directly,
|
||
NO_REGS is returned. */
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
(TARGET_ARM ? \
|
||
(((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
|
||
? GENERAL_REGS : NO_REGS) \
|
||
: THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
|
||
|
||
/* If we need to load shorts byte-at-a-time, then we need a scratch. */
|
||
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
(TARGET_ARM ? \
|
||
(((MODE) == HImode && ! arm_arch4 && TARGET_MMU_TRAPS \
|
||
&& (GET_CODE (X) == MEM \
|
||
|| ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
|
||
&& true_regnum (X) == -1))) \
|
||
? GENERAL_REGS : NO_REGS) \
|
||
: THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X))
|
||
|
||
/* Try a machine-dependent way of reloading an illegitimate address
|
||
operand. If we find one, push the reload and jump to WIN. This
|
||
macro is used in only one place: `find_reloads_address' in reload.c.
|
||
|
||
For the ARM, we wish to handle large displacements off a base
|
||
register by splitting the addend across a MOV and the mem insn.
|
||
This can cut the number of reloads needed. */
|
||
#define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
|
||
do \
|
||
{ \
|
||
if (GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
|
||
&& REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
{ \
|
||
HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
|
||
HOST_WIDE_INT low, high; \
|
||
\
|
||
if (MODE == DImode || (TARGET_SOFT_FLOAT && MODE == DFmode)) \
|
||
low = ((val & 0xf) ^ 0x8) - 0x8; \
|
||
else if (MODE == SImode \
|
||
|| (MODE == SFmode && TARGET_SOFT_FLOAT) \
|
||
|| ((MODE == HImode || MODE == QImode) && ! arm_arch4)) \
|
||
/* Need to be careful, -4096 is not a valid offset. */ \
|
||
low = val >= 0 ? (val & 0xfff) : -((-val) & 0xfff); \
|
||
else if ((MODE == HImode || MODE == QImode) && arm_arch4) \
|
||
/* Need to be careful, -256 is not a valid offset. */ \
|
||
low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \
|
||
else if (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
&& TARGET_HARD_FLOAT) \
|
||
/* Need to be careful, -1024 is not a valid offset. */ \
|
||
low = val >= 0 ? (val & 0x3ff) : -((-val) & 0x3ff); \
|
||
else \
|
||
break; \
|
||
\
|
||
high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff) \
|
||
^ (unsigned HOST_WIDE_INT) 0x80000000) \
|
||
- (unsigned HOST_WIDE_INT) 0x80000000); \
|
||
/* Check for overflow or zero */ \
|
||
if (low == 0 || high == 0 || (high + low != val)) \
|
||
break; \
|
||
\
|
||
/* Reload the high part into a base reg; leave the low part \
|
||
in the mem. */ \
|
||
X = gen_rtx_PLUS (GET_MODE (X), \
|
||
gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
|
||
GEN_INT (high)), \
|
||
GEN_INT (low)); \
|
||
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
|
||
MODE_BASE_REG_CLASS (MODE), GET_MODE (X), \
|
||
VOIDmode, 0, 0, OPNUM, TYPE); \
|
||
goto WIN; \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* ??? If an HImode FP+large_offset address is converted to an HImode
|
||
SP+large_offset address, then reload won't know how to fix it. It sees
|
||
only that SP isn't valid for HImode, and so reloads the SP into an index
|
||
register, but the resulting address is still invalid because the offset
|
||
is too big. We fix it here instead by reloading the entire address. */
|
||
/* We could probably achieve better results by defining PROMOTE_MODE to help
|
||
cope with the variances between the Thumb's signed and unsigned byte and
|
||
halfword load instructions. */
|
||
#define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
|
||
{ \
|
||
if (GET_CODE (X) == PLUS \
|
||
&& GET_MODE_SIZE (MODE) < 4 \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& XEXP (X, 0) == stack_pointer_rtx \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& ! THUMB_LEGITIMATE_OFFSET (MODE, INTVAL (XEXP (X, 1)))) \
|
||
{ \
|
||
rtx orig_X = X; \
|
||
X = copy_rtx (X); \
|
||
push_reload (orig_X, NULL_RTX, &X, NULL, \
|
||
MODE_BASE_REG_CLASS (MODE), \
|
||
Pmode, VOIDmode, 0, 0, OPNUM, TYPE); \
|
||
goto WIN; \
|
||
} \
|
||
}
|
||
|
||
#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
|
||
if (TARGET_ARM) \
|
||
ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
|
||
else \
|
||
THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS.
|
||
ARM regs are UNITS_PER_WORD bits while FPU regs can hold any FP mode */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((CLASS) == FPU_REGS ? 1 : NUM_REGS (MODE))
|
||
|
||
/* Moves between FPU_REGS and GENERAL_REGS are two memory insns. */
|
||
#define REGISTER_MOVE_COST(MODE, FROM, TO) \
|
||
(TARGET_ARM ? \
|
||
((FROM) == FPU_REGS && (TO) != FPU_REGS ? 20 : \
|
||
(FROM) != FPU_REGS && (TO) == FPU_REGS ? 20 : 2) \
|
||
: \
|
||
((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD 1
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD 1
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by. */
|
||
/* The push insns do not do this rounding implicitly.
|
||
So don't define this. */
|
||
/* #define PUSH_ROUNDING(NPUSHED) ROUND_UP (NPUSHED) */
|
||
|
||
/* Define this if the maximum size of all the outgoing args is to be
|
||
accumulated and pushed during the prologue. The amount can be
|
||
found in the variable current_function_outgoing_args_size. */
|
||
#define ACCUMULATE_OUTGOING_ARGS 1
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
|
||
|
||
/* Value is the number of byte of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the ARM, the caller does not pop any of its arguments that were passed
|
||
on the stack. */
|
||
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
#define LIBCALL_VALUE(MODE) \
|
||
(TARGET_ARM && TARGET_HARD_FLOAT && GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
? gen_rtx_REG (MODE, FIRST_ARM_FP_REGNUM) \
|
||
: gen_rtx_REG (MODE, ARG_REGISTER (1)))
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
LIBCALL_VALUE (TYPE_MODE (VALTYPE))
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the ARM, only r0 and f0 can return results. */
|
||
#define FUNCTION_VALUE_REGNO_P(REGNO) \
|
||
((REGNO) == ARG_REGISTER (1) \
|
||
|| (TARGET_ARM && ((REGNO) == FIRST_ARM_FP_REGNUM) && TARGET_HARD_FLOAT))
|
||
|
||
/* How large values are returned */
|
||
/* A C expression which can inhibit the returning of certain function values
|
||
in registers, based on the type of value. */
|
||
#define RETURN_IN_MEMORY(TYPE) arm_return_in_memory (TYPE)
|
||
|
||
/* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
|
||
values must be in memory. On the ARM, they need only do so if larger
|
||
than a word, or if they contain elements offset from zero in the struct. */
|
||
#define DEFAULT_PCC_STRUCT_RETURN 0
|
||
|
||
/* Flags for the call/call_value rtl operations set up by function_arg. */
|
||
#define CALL_NORMAL 0x00000000 /* No special processing. */
|
||
#define CALL_LONG 0x00000001 /* Always call indirect. */
|
||
#define CALL_SHORT 0x00000002 /* Never call indirect. */
|
||
|
||
/* These bits describe the different types of function supported
|
||
by the ARM backend. They are exclusive. ie a function cannot be both a
|
||
normal function and an interworked function, for example. Knowing the
|
||
type of a function is important for determining its prologue and
|
||
epilogue sequences.
|
||
Note value 7 is currently unassigned. Also note that the interrupt
|
||
function types all have bit 2 set, so that they can be tested for easily.
|
||
Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
|
||
machine_function structure is initialised (to zero) func_type will
|
||
default to unknown. This will force the first use of arm_current_func_type
|
||
to call arm_compute_func_type. */
|
||
#define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
|
||
#define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
|
||
#define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
|
||
#define ARM_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */
|
||
#define ARM_FT_ISR 4 /* An interrupt service routine. */
|
||
#define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
|
||
#define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
|
||
|
||
#define ARM_FT_TYPE_MASK ((1 << 3) - 1)
|
||
|
||
/* In addition functions can have several type modifiers,
|
||
outlined by these bit masks: */
|
||
#define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
|
||
#define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
|
||
#define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
|
||
#define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
|
||
|
||
/* Some macros to test these flags. */
|
||
#define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
|
||
#define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
|
||
#define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
|
||
#define IS_NAKED(t) (t & ARM_FT_NAKED)
|
||
#define IS_NESTED(t) (t & ARM_FT_NESTED)
|
||
|
||
/* A C structure for machine-specific, per-function data.
|
||
This is added to the cfun structure. */
|
||
typedef struct machine_function
|
||
{
|
||
/* Additionsl stack adjustment in __builtin_eh_throw. */
|
||
struct rtx_def *eh_epilogue_sp_ofs;
|
||
/* Records if LR has to be saved for far jumps. */
|
||
int far_jump_used;
|
||
/* Records if ARG_POINTER was ever live. */
|
||
int arg_pointer_live;
|
||
/* Records if the save of LR has been eliminated. */
|
||
int lr_save_eliminated;
|
||
/* Records the type of the current function. */
|
||
unsigned long func_type;
|
||
/* Record if the function has a variable argument list. */
|
||
int uses_anonymous_args;
|
||
}
|
||
machine_function;
|
||
|
||
/* A C type for declaring a variable that is used as the first argument of
|
||
`FUNCTION_ARG' and other related values. For some target machines, the
|
||
type `int' suffices and can hold the number of bytes of argument so far. */
|
||
typedef struct
|
||
{
|
||
/* This is the number of registers of arguments scanned so far. */
|
||
int nregs;
|
||
/* One of CALL_NORMAL, CALL_LONG or CALL_SHORT . */
|
||
int call_cookie;
|
||
} CUMULATIVE_ARGS;
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
|
||
On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
|
||
other arguments are passed on the stack. If (NAMED == 0) (which happens
|
||
only in assign_parms, since SETUP_INCOMING_VARARGS is defined), say it is
|
||
passed in the stack (function_prologue will indeed make it pass in the
|
||
stack if necessary). */
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
arm_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
||
( NUM_ARG_REGS > (CUM).nregs \
|
||
&& (NUM_ARG_REGS < ((CUM).nregs + NUM_REGS2 (MODE, TYPE))) \
|
||
? NUM_ARG_REGS - (CUM).nregs : 0)
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
On the ARM, the offset starts at 0. */
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
|
||
arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (INDIRECT))
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
(CUM).nregs += NUM_REGS2 (MODE, TYPE)
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the ARM, r0-r3 are used to pass args. */
|
||
#define FUNCTION_ARG_REGNO_P(REGNO) (IN_RANGE ((REGNO), 0, 3))
|
||
|
||
|
||
/* Tail calling. */
|
||
|
||
/* A C expression that evaluates to true if it is ok to perform a sibling
|
||
call to DECL. */
|
||
#define FUNCTION_OK_FOR_SIBCALL(DECL) arm_function_ok_for_sibcall ((DECL))
|
||
|
||
/* Perform any actions needed for a function that is receiving a variable
|
||
number of arguments. CUM is as above. MODE and TYPE are the mode and type
|
||
of the current parameter. PRETEND_SIZE is a variable that should be set to
|
||
the amount of stack that must be pushed by the prolog to pretend that our
|
||
caller pushed it.
|
||
|
||
Normally, this macro will push all remaining incoming registers on the
|
||
stack and set PRETEND_SIZE to the length of the registers pushed.
|
||
|
||
On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
|
||
named arg and all anonymous args onto the stack.
|
||
XXX I know the prologue shouldn't be pushing registers, but it is faster
|
||
that way. */
|
||
#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
|
||
{ \
|
||
cfun->machine->uses_anonymous_args = 1; \
|
||
if ((CUM).nregs < NUM_ARG_REGS) \
|
||
(PRETEND_SIZE) = (NUM_ARG_REGS - (CUM).nregs) * UNITS_PER_WORD; \
|
||
}
|
||
|
||
/* If your target environment doesn't prefix user functions with an
|
||
underscore, you may wish to re-define this to prevent any conflicts.
|
||
e.g. AOF may prefix mcount with an underscore. */
|
||
#ifndef ARM_MCOUNT_NAME
|
||
#define ARM_MCOUNT_NAME "*mcount"
|
||
#endif
|
||
|
||
/* Call the function profiler with a given profile label. The Acorn
|
||
compiler puts this BEFORE the prolog but gcc puts it afterwards.
|
||
On the ARM the full profile code will look like:
|
||
.data
|
||
LP1
|
||
.word 0
|
||
.text
|
||
mov ip, lr
|
||
bl mcount
|
||
.word LP1
|
||
|
||
profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
|
||
will output the .text section.
|
||
|
||
The ``mov ip,lr'' seems like a good idea to stick with cc convention.
|
||
``prof'' doesn't seem to mind about this! */
|
||
#ifndef ARM_FUNCTION_PROFILER
|
||
#define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
{ \
|
||
char temp[20]; \
|
||
rtx sym; \
|
||
\
|
||
asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
|
||
IP_REGNUM, LR_REGNUM); \
|
||
assemble_name (STREAM, ARM_MCOUNT_NAME); \
|
||
fputc ('\n', STREAM); \
|
||
ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
|
||
sym = gen_rtx (SYMBOL_REF, Pmode, temp); \
|
||
assemble_aligned_integer (UNITS_PER_WORD, sym); \
|
||
}
|
||
#endif
|
||
|
||
#ifndef THUMB_FUNCTION_PROFILER
|
||
#define THUMB_FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
{ \
|
||
fprintf (STREAM, "\tmov\tip, lr\n"); \
|
||
fprintf (STREAM, "\tbl\tmcount\n"); \
|
||
fprintf (STREAM, "\t.word\tLP%d\n", LABELNO); \
|
||
}
|
||
#endif
|
||
|
||
#define FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
if (TARGET_ARM) \
|
||
ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
|
||
else \
|
||
THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero.
|
||
|
||
On the ARM, the function epilogue recovers the stack pointer from the
|
||
frame. */
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
#define EPILOGUE_USES(REGNO) (reload_completed && (REGNO) == LR_REGNUM)
|
||
|
||
/* Determine if the epilogue should be output as RTL.
|
||
You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
|
||
#define USE_RETURN_INSN(ISCOND) \
|
||
(TARGET_ARM ? use_return_insn (ISCOND) : 0)
|
||
|
||
/* Definitions for register eliminations.
|
||
|
||
This is an array of structures. Each structure initializes one pair
|
||
of eliminable registers. The "from" register number is given first,
|
||
followed by "to". Eliminations of the same "from" register are listed
|
||
in order of preference.
|
||
|
||
We have two registers that can be eliminated on the ARM. First, the
|
||
arg pointer register can often be eliminated in favor of the stack
|
||
pointer register. Secondly, the pseudo frame pointer register can always
|
||
be eliminated; it is replaced with either the stack or the real frame
|
||
pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
|
||
because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
|
||
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
|
||
{ ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
|
||
{ ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
|
||
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
|
||
{ FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
|
||
{ FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
|
||
|
||
/* Given FROM and TO register numbers, say whether this elimination is
|
||
allowed. Frame pointer elimination is automatically handled.
|
||
|
||
All eliminations are permissible. Note that ARG_POINTER_REGNUM and
|
||
HARD_FRAME_POINTER_REGNUM are in fact the same thing. If we need a frame
|
||
pointer, we must eliminate FRAME_POINTER_REGNUM into
|
||
HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM or
|
||
ARG_POINTER_REGNUM. */
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
(((TO) == FRAME_POINTER_REGNUM && (FROM) == ARG_POINTER_REGNUM) ? 0 : \
|
||
((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 : \
|
||
((TO) == ARM_HARD_FRAME_POINTER_REGNUM && TARGET_THUMB) ? 0 : \
|
||
((TO) == THUMB_HARD_FRAME_POINTER_REGNUM && TARGET_ARM) ? 0 : \
|
||
1)
|
||
|
||
/* Define the offset between two registers, one to be eliminated, and the
|
||
other its replacement, at the start of a routine. */
|
||
#define ARM_INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
do \
|
||
{ \
|
||
(OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
|
||
} \
|
||
while (0)
|
||
|
||
/* Note: This macro must match the code in thumb_function_prologue(). */
|
||
#define THUMB_INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
{ \
|
||
(OFFSET) = 0; \
|
||
if ((FROM) == ARG_POINTER_REGNUM) \
|
||
{ \
|
||
int count_regs = 0; \
|
||
int regno; \
|
||
for (regno = 8; regno < 13; regno ++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
count_regs ++; \
|
||
if (count_regs) \
|
||
(OFFSET) += 4 * count_regs; \
|
||
count_regs = 0; \
|
||
for (regno = 0; regno <= LAST_LO_REGNUM; regno ++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
count_regs ++; \
|
||
if (count_regs || ! leaf_function_p () || thumb_far_jump_used_p (0))\
|
||
(OFFSET) += 4 * (count_regs + 1); \
|
||
if (TARGET_BACKTRACE) \
|
||
{ \
|
||
if ((count_regs & 0xFF) == 0 && (regs_ever_live[3] != 0)) \
|
||
(OFFSET) += 20; \
|
||
else \
|
||
(OFFSET) += 16; \
|
||
} \
|
||
} \
|
||
if ((TO) == STACK_POINTER_REGNUM) \
|
||
{ \
|
||
(OFFSET) += current_function_outgoing_args_size; \
|
||
(OFFSET) += ROUND_UP (get_frame_size ()); \
|
||
} \
|
||
}
|
||
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
if (TARGET_ARM) \
|
||
ARM_INITIAL_ELIMINATION_OFFSET (FROM, TO, OFFSET); \
|
||
else \
|
||
THUMB_INITIAL_ELIMINATION_OFFSET (FROM, TO, OFFSET)
|
||
|
||
/* Special case handling of the location of arguments passed on the stack. */
|
||
#define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
|
||
|
||
/* Initialize data used by insn expanders. This is called from insn_emit,
|
||
once for every function before code is generated. */
|
||
#define INIT_EXPANDERS arm_init_expanders ()
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts.
|
||
|
||
On the ARM, (if r8 is the static chain regnum, and remembering that
|
||
referencing pc adds an offset of 8) the trampoline looks like:
|
||
ldr r8, [pc, #0]
|
||
ldr pc, [pc]
|
||
.word static chain value
|
||
.word function's address
|
||
??? FIXME: When the trampoline returns, r8 will be clobbered. */
|
||
#define ARM_TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
|
||
STATIC_CHAIN_REGNUM, PC_REGNUM); \
|
||
asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
|
||
PC_REGNUM, PC_REGNUM); \
|
||
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
|
||
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
|
||
}
|
||
|
||
/* On the Thumb we always switch into ARM mode to execute the trampoline.
|
||
Why - because it is easier. This code will always be branched to via
|
||
a BX instruction and since the compiler magically generates the address
|
||
of the function the linker has no opportunity to ensure that the
|
||
bottom bit is set. Thus the processor will be in ARM mode when it
|
||
reaches this code. So we duplicate the ARM trampoline code and add
|
||
a switch into Thumb mode as well. */
|
||
#define THUMB_TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
fprintf (FILE, "\t.code 32\n"); \
|
||
fprintf (FILE, ".Ltrampoline_start:\n"); \
|
||
asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \
|
||
STATIC_CHAIN_REGNUM, PC_REGNUM); \
|
||
asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \
|
||
IP_REGNUM, PC_REGNUM); \
|
||
asm_fprintf (FILE, "\torr\t%r, %r, #1\n", \
|
||
IP_REGNUM, IP_REGNUM); \
|
||
asm_fprintf (FILE, "\tbx\t%r\n", IP_REGNUM); \
|
||
fprintf (FILE, "\t.word\t0\n"); \
|
||
fprintf (FILE, "\t.word\t0\n"); \
|
||
fprintf (FILE, "\t.code 16\n"); \
|
||
}
|
||
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
if (TARGET_ARM) \
|
||
ARM_TRAMPOLINE_TEMPLATE (FILE) \
|
||
else \
|
||
THUMB_TRAMPOLINE_TEMPLATE (FILE)
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
#define TRAMPOLINE_SIZE (TARGET_ARM ? 16 : 24)
|
||
|
||
/* Alignment required for a trampoline in bits. */
|
||
#define TRAMPOLINE_ALIGNMENT 32
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
{ \
|
||
emit_move_insn \
|
||
(gen_rtx_MEM (SImode, plus_constant (TRAMP, TARGET_ARM ? 8 : 16)), CXT); \
|
||
emit_move_insn \
|
||
(gen_rtx_MEM (SImode, plus_constant (TRAMP, TARGET_ARM ? 12 : 20)), FNADDR); \
|
||
}
|
||
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
#define HAVE_POST_INCREMENT 1
|
||
#define HAVE_PRE_INCREMENT TARGET_ARM
|
||
#define HAVE_POST_DECREMENT TARGET_ARM
|
||
#define HAVE_PRE_DECREMENT TARGET_ARM
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
#define TEST_REGNO(R, TEST, VALUE) \
|
||
((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
|
||
|
||
/* On the ARM, don't allow the pc to be used. */
|
||
#define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
|
||
(TEST_REGNO (REGNO, <, PC_REGNUM) \
|
||
|| TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
|
||
|| TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
|
||
|
||
#define THUMB_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
|
||
(TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
|
||
|| (GET_MODE_SIZE (MODE) >= 4 \
|
||
&& TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
|
||
|
||
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
|
||
(TARGET_THUMB \
|
||
? THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
|
||
: ARM_REGNO_OK_FOR_BASE_P (REGNO))
|
||
|
||
/* For ARM code, we don't care about the mode, but for Thumb, the index
|
||
must be suitable for use in a QImode load. */
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode)
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address.
|
||
Shifts in addresses can't be by a register. */
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address. */
|
||
/* XXX We can address any constant, eventually... */
|
||
|
||
#ifdef AOF_ASSEMBLER
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X))
|
||
|
||
#else
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == SYMBOL_REF \
|
||
&& (CONSTANT_POOL_ADDRESS_P (X) \
|
||
|| (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
|
||
|
||
#endif /* AOF_ASSEMBLER */
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
|
||
|
||
On the ARM, allow any integer (invalid ones are removed later by insn
|
||
patterns), nice doubles and symbol_refs which refer to the function's
|
||
constant pool XXX.
|
||
|
||
When generating pic allow anything. */
|
||
#define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
|
||
|
||
#define THUMB_LEGITIMATE_CONSTANT_P(X) \
|
||
( GET_CODE (X) == CONST_INT \
|
||
|| GET_CODE (X) == CONST_DOUBLE \
|
||
|| CONSTANT_ADDRESS_P (X) \
|
||
|| flag_pic)
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
(TARGET_ARM ? ARM_LEGITIMATE_CONSTANT_P (X) : THUMB_LEGITIMATE_CONSTANT_P (X))
|
||
|
||
/* Special characters prefixed to function names
|
||
in order to encode attribute like information.
|
||
Note, '@' and '*' have already been taken. */
|
||
#define SHORT_CALL_FLAG_CHAR '^'
|
||
#define LONG_CALL_FLAG_CHAR '#'
|
||
|
||
#define ENCODED_SHORT_CALL_ATTR_P(SYMBOL_NAME) \
|
||
(*(SYMBOL_NAME) == SHORT_CALL_FLAG_CHAR)
|
||
|
||
#define ENCODED_LONG_CALL_ATTR_P(SYMBOL_NAME) \
|
||
(*(SYMBOL_NAME) == LONG_CALL_FLAG_CHAR)
|
||
|
||
#ifndef SUBTARGET_NAME_ENCODING_LENGTHS
|
||
#define SUBTARGET_NAME_ENCODING_LENGTHS
|
||
#endif
|
||
|
||
/* This is a C fragement for the inside of a switch statement.
|
||
Each case label should return the number of characters to
|
||
be stripped from the start of a function's name, if that
|
||
name starts with the indicated character. */
|
||
#define ARM_NAME_ENCODING_LENGTHS \
|
||
case SHORT_CALL_FLAG_CHAR: return 1; \
|
||
case LONG_CALL_FLAG_CHAR: return 1; \
|
||
case '*': return 1; \
|
||
SUBTARGET_NAME_ENCODING_LENGTHS
|
||
|
||
/* This has to be handled by a function because more than part of the
|
||
ARM backend uses function name prefixes to encode attributes. */
|
||
#undef STRIP_NAME_ENCODING
|
||
#define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
|
||
(VAR) = arm_strip_name_encoding (SYMBOL_NAME)
|
||
|
||
/* This is how to output a reference to a user-level label named NAME.
|
||
`assemble_name' uses this. */
|
||
#undef ASM_OUTPUT_LABELREF
|
||
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
|
||
asm_fprintf (FILE, "%U%s", arm_strip_name_encoding (NAME))
|
||
|
||
/* If we are referencing a function that is weak then encode a long call
|
||
flag in the function name, otherwise if the function is static or
|
||
or known to be defined in this file then encode a short call flag.
|
||
This macro is used inside the ENCODE_SECTION macro. */
|
||
#define ARM_ENCODE_CALL_TYPE(decl) \
|
||
if (TREE_CODE_CLASS (TREE_CODE (decl)) == 'd') \
|
||
{ \
|
||
if (TREE_CODE (decl) == FUNCTION_DECL && DECL_WEAK (decl)) \
|
||
arm_encode_call_attribute (decl, LONG_CALL_FLAG_CHAR); \
|
||
else if (! TREE_PUBLIC (decl)) \
|
||
arm_encode_call_attribute (decl, SHORT_CALL_FLAG_CHAR); \
|
||
}
|
||
|
||
/* Symbols in the text segment can be accessed without indirecting via the
|
||
constant pool; it may take an extra binary operation, but this is still
|
||
faster than indirecting via memory. Don't do this when not optimizing,
|
||
since we won't be calculating al of the offsets necessary to do this
|
||
simplification. */
|
||
/* This doesn't work with AOF syntax, since the string table may be in
|
||
a different AREA. */
|
||
#ifndef AOF_ASSEMBLER
|
||
#define ENCODE_SECTION_INFO(decl) \
|
||
{ \
|
||
if (optimize > 0 && TREE_CONSTANT (decl) \
|
||
&& (!flag_writable_strings || TREE_CODE (decl) != STRING_CST)) \
|
||
{ \
|
||
rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd' \
|
||
? TREE_CST_RTL (decl) : DECL_RTL (decl)); \
|
||
SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1; \
|
||
} \
|
||
ARM_ENCODE_CALL_TYPE (decl) \
|
||
}
|
||
#else
|
||
#define ENCODE_SECTION_INFO(decl) \
|
||
{ \
|
||
ARM_ENCODE_CALL_TYPE (decl) \
|
||
}
|
||
#endif
|
||
|
||
#define ARM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \
|
||
arm_encode_call_attribute (DECL, SHORT_CALL_FLAG_CHAR)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used. */
|
||
#ifndef REG_OK_STRICT
|
||
|
||
#define ARM_REG_OK_FOR_BASE_P(X) \
|
||
(REGNO (X) <= LAST_ARM_REGNUM \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
||
|| REGNO (X) == FRAME_POINTER_REGNUM \
|
||
|| REGNO (X) == ARG_POINTER_REGNUM)
|
||
|
||
#define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
(REGNO (X) <= LAST_LO_REGNUM \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
||
|| (GET_MODE_SIZE (MODE) >= 4 \
|
||
&& (REGNO (X) == STACK_POINTER_REGNUM \
|
||
|| (X) == hard_frame_pointer_rtx \
|
||
|| (X) == arg_pointer_rtx)))
|
||
|
||
#else /* REG_OK_STRICT */
|
||
|
||
#define ARM_REG_OK_FOR_BASE_P(X) \
|
||
ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
|
||
|
||
#endif /* REG_OK_STRICT */
|
||
|
||
/* Now define some helpers in terms of the above. */
|
||
|
||
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
(TARGET_THUMB \
|
||
? THUMB_REG_MODE_OK_FOR_BASE_P (X, MODE) \
|
||
: ARM_REG_OK_FOR_BASE_P (X))
|
||
|
||
#define ARM_REG_OK_FOR_INDEX_P(X) ARM_REG_OK_FOR_BASE_P (X)
|
||
|
||
/* For Thumb, a valid index register is anything that can be used in
|
||
a byte load instruction. */
|
||
#define THUMB_REG_OK_FOR_INDEX_P(X) THUMB_REG_MODE_OK_FOR_BASE_P (X, QImode)
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. On the Thumb, the stack pointer
|
||
is not suitable. */
|
||
#define REG_OK_FOR_INDEX_P(X) \
|
||
(TARGET_THUMB \
|
||
? THUMB_REG_OK_FOR_INDEX_P (X) \
|
||
: ARM_REG_OK_FOR_INDEX_P (X))
|
||
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
|
||
|
||
/* --------------------------------arm version----------------------------- */
|
||
#define ARM_BASE_REGISTER_RTX_P(X) \
|
||
(GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
|
||
|
||
#define ARM_INDEX_REGISTER_RTX_P(X) \
|
||
(GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
|
||
|
||
/* A C statement (sans semicolon) to jump to LABEL for legitimate index RTXs
|
||
used by the macro GO_IF_LEGITIMATE_ADDRESS. Floating point indices can
|
||
only be small constants. */
|
||
#define ARM_GO_IF_LEGITIMATE_INDEX(MODE, BASE_REGNO, INDEX, LABEL) \
|
||
do \
|
||
{ \
|
||
HOST_WIDE_INT range; \
|
||
enum rtx_code code = GET_CODE (INDEX); \
|
||
\
|
||
if (TARGET_HARD_FLOAT && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
|
||
{ \
|
||
if (code == CONST_INT && INTVAL (INDEX) < 1024 \
|
||
&& INTVAL (INDEX) > -1024 \
|
||
&& (INTVAL (INDEX) & 3) == 0) \
|
||
goto LABEL; \
|
||
} \
|
||
else \
|
||
{ \
|
||
if (ARM_INDEX_REGISTER_RTX_P (INDEX) \
|
||
&& GET_MODE_SIZE (MODE) <= 4) \
|
||
goto LABEL; \
|
||
if (GET_MODE_SIZE (MODE) <= 4 && code == MULT \
|
||
&& (! arm_arch4 || (MODE) != HImode)) \
|
||
{ \
|
||
rtx xiop0 = XEXP (INDEX, 0); \
|
||
rtx xiop1 = XEXP (INDEX, 1); \
|
||
if (ARM_INDEX_REGISTER_RTX_P (xiop0) \
|
||
&& power_of_two_operand (xiop1, SImode)) \
|
||
goto LABEL; \
|
||
if (ARM_INDEX_REGISTER_RTX_P (xiop1) \
|
||
&& power_of_two_operand (xiop0, SImode)) \
|
||
goto LABEL; \
|
||
} \
|
||
if (GET_MODE_SIZE (MODE) <= 4 \
|
||
&& (code == LSHIFTRT || code == ASHIFTRT \
|
||
|| code == ASHIFT || code == ROTATERT) \
|
||
&& (! arm_arch4 || (MODE) != HImode)) \
|
||
{ \
|
||
rtx op = XEXP (INDEX, 1); \
|
||
if (ARM_INDEX_REGISTER_RTX_P (XEXP (INDEX, 0)) \
|
||
&& GET_CODE (op) == CONST_INT && INTVAL (op) > 0 \
|
||
&& INTVAL (op) <= 31) \
|
||
goto LABEL; \
|
||
} \
|
||
/* NASTY: Since this limits the addressing of unsigned \
|
||
byte loads. */ \
|
||
range = ((MODE) == HImode || (MODE) == QImode) \
|
||
? (arm_arch4 ? 256 : 4095) : 4096; \
|
||
if (code == CONST_INT && INTVAL (INDEX) < range \
|
||
&& INTVAL (INDEX) > -range) \
|
||
goto LABEL; \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* Jump to LABEL if X is a valid address RTX. This must take
|
||
REG_OK_STRICT into account when deciding about valid registers.
|
||
|
||
Allow REG, REG+REG, REG+INDEX, INDEX+REG, REG-INDEX, and non
|
||
floating SYMBOL_REF to the constant pool. Allow REG-only and
|
||
AUTINC-REG if handling TImode or HImode. Other symbol refs must be
|
||
forced though a static cell to ensure addressability. */
|
||
#define ARM_GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
|
||
{ \
|
||
if (ARM_BASE_REGISTER_RTX_P (X)) \
|
||
goto LABEL; \
|
||
else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& ARM_REG_OK_FOR_BASE_P (XEXP (X, 0))) \
|
||
goto LABEL; \
|
||
else if (GET_MODE_SIZE (MODE) >= 4 && reload_completed \
|
||
&& (GET_CODE (X) == LABEL_REF \
|
||
|| (GET_CODE (X) == CONST \
|
||
&& GET_CODE (XEXP ((X), 0)) == PLUS \
|
||
&& GET_CODE (XEXP (XEXP ((X), 0), 0)) == LABEL_REF \
|
||
&& GET_CODE (XEXP (XEXP ((X), 0), 1)) == CONST_INT)))\
|
||
goto LABEL; \
|
||
else if ((MODE) == TImode) \
|
||
; \
|
||
else if ((MODE) == DImode || (TARGET_SOFT_FLOAT && (MODE) == DFmode)) \
|
||
{ \
|
||
if (GET_CODE (X) == PLUS && ARM_BASE_REGISTER_RTX_P (XEXP (X, 0)) \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
{ \
|
||
HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
|
||
if (val == 4 || val == -4 || val == -8) \
|
||
goto LABEL; \
|
||
} \
|
||
} \
|
||
else if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
rtx xop0 = XEXP (X, 0); \
|
||
rtx xop1 = XEXP (X, 1); \
|
||
\
|
||
if (ARM_BASE_REGISTER_RTX_P (xop0)) \
|
||
ARM_GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
|
||
else if (ARM_BASE_REGISTER_RTX_P (xop1)) \
|
||
ARM_GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
|
||
} \
|
||
/* Reload currently can't handle MINUS, so disable this for now */ \
|
||
/* else if (GET_CODE (X) == MINUS) \
|
||
{ \
|
||
rtx xop0 = XEXP (X,0); \
|
||
rtx xop1 = XEXP (X,1); \
|
||
\
|
||
if (ARM_BASE_REGISTER_RTX_P (xop0)) \
|
||
ARM_GO_IF_LEGITIMATE_INDEX (MODE, -1, xop1, LABEL); \
|
||
} */ \
|
||
else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
|
||
&& GET_CODE (X) == SYMBOL_REF \
|
||
&& CONSTANT_POOL_ADDRESS_P (X) \
|
||
&& ! (flag_pic \
|
||
&& symbol_mentioned_p (get_pool_constant (X)))) \
|
||
goto LABEL; \
|
||
else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
|
||
&& (GET_MODE_SIZE (MODE) <= 4) \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& ARM_REG_OK_FOR_BASE_P (XEXP (X, 0))) \
|
||
goto LABEL; \
|
||
}
|
||
|
||
/* ---------------------thumb version----------------------------------*/
|
||
#define THUMB_LEGITIMATE_OFFSET(MODE, VAL) \
|
||
(GET_MODE_SIZE (MODE) == 1 ? ((unsigned HOST_WIDE_INT) (VAL) < 32) \
|
||
: GET_MODE_SIZE (MODE) == 2 ? ((unsigned HOST_WIDE_INT) (VAL) < 64 \
|
||
&& ((VAL) & 1) == 0) \
|
||
: ((VAL) >= 0 && ((VAL) + GET_MODE_SIZE (MODE)) <= 128 \
|
||
&& ((VAL) & 3) == 0))
|
||
|
||
/* The AP may be eliminated to either the SP or the FP, so we use the
|
||
least common denominator, e.g. SImode, and offsets from 0 to 64. */
|
||
|
||
/* ??? Verify whether the above is the right approach. */
|
||
|
||
/* ??? Also, the FP may be eliminated to the SP, so perhaps that
|
||
needs special handling also. */
|
||
|
||
/* ??? Look at how the mips16 port solves this problem. It probably uses
|
||
better ways to solve some of these problems. */
|
||
|
||
/* Although it is not incorrect, we don't accept QImode and HImode
|
||
addresses based on the frame pointer or arg pointer until the
|
||
reload pass starts. This is so that eliminating such addresses
|
||
into stack based ones won't produce impossible code. */
|
||
#define THUMB_GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
|
||
{ \
|
||
/* ??? Not clear if this is right. Experiment. */ \
|
||
if (GET_MODE_SIZE (MODE) < 4 \
|
||
&& ! (reload_in_progress || reload_completed) \
|
||
&& ( reg_mentioned_p (frame_pointer_rtx, X) \
|
||
|| reg_mentioned_p (arg_pointer_rtx, X) \
|
||
|| reg_mentioned_p (virtual_incoming_args_rtx, X) \
|
||
|| reg_mentioned_p (virtual_outgoing_args_rtx, X) \
|
||
|| reg_mentioned_p (virtual_stack_dynamic_rtx, X) \
|
||
|| reg_mentioned_p (virtual_stack_vars_rtx, X))) \
|
||
; \
|
||
/* Accept any base register. SP only in SImode or larger. */ \
|
||
else if (GET_CODE (X) == REG \
|
||
&& THUMB_REG_MODE_OK_FOR_BASE_P (X, MODE)) \
|
||
goto WIN; \
|
||
/* This is PC relative data before MACHINE_DEPENDENT_REORG runs. */ \
|
||
else if (GET_MODE_SIZE (MODE) >= 4 && CONSTANT_P (X) \
|
||
&& CONSTANT_POOL_ADDRESS_P (X) && ! flag_pic) \
|
||
goto WIN; \
|
||
/* This is PC relative data after MACHINE_DEPENDENT_REORG runs. */ \
|
||
else if (GET_MODE_SIZE (MODE) >= 4 && reload_completed \
|
||
&& (GET_CODE (X) == LABEL_REF \
|
||
|| (GET_CODE (X) == CONST \
|
||
&& GET_CODE (XEXP (X, 0)) == PLUS \
|
||
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF \
|
||
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))) \
|
||
goto WIN; \
|
||
/* Post-inc indexing only supported for SImode and larger. */ \
|
||
else if (GET_CODE (X) == POST_INC && GET_MODE_SIZE (MODE) >= 4 \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
|
||
goto WIN; \
|
||
else if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
/* REG+REG address can be any two index registers. */ \
|
||
/* We disallow FRAME+REG addressing since we know that FRAME \
|
||
will be replaced with STACK, and SP relative addressing only \
|
||
permits SP+OFFSET. */ \
|
||
if (GET_MODE_SIZE (MODE) <= 4 \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& GET_CODE (XEXP (X, 1)) == REG \
|
||
&& XEXP (X, 0) != frame_pointer_rtx \
|
||
&& XEXP (X, 1) != frame_pointer_rtx \
|
||
&& XEXP (X, 0) != virtual_stack_vars_rtx \
|
||
&& XEXP (X, 1) != virtual_stack_vars_rtx \
|
||
&& THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 0)) \
|
||
&& THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
|
||
goto WIN; \
|
||
/* REG+const has 5-7 bit offset for non-SP registers. */ \
|
||
else if (GET_CODE (XEXP (X, 0)) == REG \
|
||
&& (THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 0)) \
|
||
|| XEXP (X, 0) == arg_pointer_rtx) \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& THUMB_LEGITIMATE_OFFSET (MODE, INTVAL (XEXP (X, 1)))) \
|
||
goto WIN; \
|
||
/* REG+const has 10 bit offset for SP, but only SImode and \
|
||
larger is supported. */ \
|
||
/* ??? Should probably check for DI/DFmode overflow here \
|
||
just like GO_IF_LEGITIMATE_OFFSET does. */ \
|
||
else if (GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM \
|
||
&& GET_MODE_SIZE (MODE) >= 4 \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& ((unsigned HOST_WIDE_INT) INTVAL (XEXP (X, 1)) \
|
||
+ GET_MODE_SIZE (MODE)) <= 1024 \
|
||
&& (INTVAL (XEXP (X, 1)) & 3) == 0) \
|
||
goto WIN; \
|
||
else if (GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REGNO (XEXP (X, 0)) == FRAME_POINTER_REGNUM \
|
||
&& GET_MODE_SIZE (MODE) >= 4 \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& (INTVAL (XEXP (X, 1)) & 3) == 0) \
|
||
goto WIN; \
|
||
} \
|
||
else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
|
||
&& GET_CODE (X) == SYMBOL_REF \
|
||
&& CONSTANT_POOL_ADDRESS_P (X) \
|
||
&& ! (flag_pic \
|
||
&& symbol_mentioned_p (get_pool_constant (X)))) \
|
||
goto WIN; \
|
||
}
|
||
|
||
/* ------------------------------------------------------------------- */
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
|
||
if (TARGET_ARM) \
|
||
ARM_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN) \
|
||
else /* if (TARGET_THUMB) */ \
|
||
THUMB_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN)
|
||
/* ------------------------------------------------------------------- */
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
On the ARM, try to convert [REG, #BIGCONST]
|
||
into ADD BASE, REG, #UPPERCONST and [BASE, #VALIDCONST],
|
||
where VALIDCONST == 0 in case of TImode. */
|
||
#define ARM_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
{ \
|
||
if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
rtx xop0 = XEXP (X, 0); \
|
||
rtx xop1 = XEXP (X, 1); \
|
||
\
|
||
if (CONSTANT_P (xop0) && ! symbol_mentioned_p (xop0)) \
|
||
xop0 = force_reg (SImode, xop0); \
|
||
if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
|
||
xop1 = force_reg (SImode, xop1); \
|
||
if (ARM_BASE_REGISTER_RTX_P (xop0) \
|
||
&& GET_CODE (xop1) == CONST_INT) \
|
||
{ \
|
||
HOST_WIDE_INT n, low_n; \
|
||
rtx base_reg, val; \
|
||
n = INTVAL (xop1); \
|
||
\
|
||
if (MODE == DImode || (TARGET_SOFT_FLOAT && MODE == DFmode)) \
|
||
{ \
|
||
low_n = n & 0x0f; \
|
||
n &= ~0x0f; \
|
||
if (low_n > 4) \
|
||
{ \
|
||
n += 16; \
|
||
low_n -= 16; \
|
||
} \
|
||
} \
|
||
else \
|
||
{ \
|
||
low_n = ((MODE) == TImode ? 0 \
|
||
: n >= 0 ? (n & 0xfff) : -((-n) & 0xfff)); \
|
||
n -= low_n; \
|
||
} \
|
||
base_reg = gen_reg_rtx (SImode); \
|
||
val = force_operand (gen_rtx_PLUS (SImode, xop0, \
|
||
GEN_INT (n)), NULL_RTX); \
|
||
emit_move_insn (base_reg, val); \
|
||
(X) = (low_n == 0 ? base_reg \
|
||
: gen_rtx_PLUS (SImode, base_reg, GEN_INT (low_n))); \
|
||
} \
|
||
else if (xop0 != XEXP (X, 0) || xop1 != XEXP (x, 1)) \
|
||
(X) = gen_rtx_PLUS (SImode, xop0, xop1); \
|
||
} \
|
||
else if (GET_CODE (X) == MINUS) \
|
||
{ \
|
||
rtx xop0 = XEXP (X, 0); \
|
||
rtx xop1 = XEXP (X, 1); \
|
||
\
|
||
if (CONSTANT_P (xop0)) \
|
||
xop0 = force_reg (SImode, xop0); \
|
||
if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
|
||
xop1 = force_reg (SImode, xop1); \
|
||
if (xop0 != XEXP (X, 0) || xop1 != XEXP (X, 1)) \
|
||
(X) = gen_rtx_MINUS (SImode, xop0, xop1); \
|
||
} \
|
||
if (flag_pic) \
|
||
(X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
|
||
if (memory_address_p (MODE, X)) \
|
||
goto WIN; \
|
||
}
|
||
|
||
#define THUMB_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
if (flag_pic) \
|
||
(X) = legitimize_pic_address (OLDX, MODE, NULL_RTX);
|
||
|
||
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
if (TARGET_ARM) \
|
||
ARM_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN) \
|
||
else \
|
||
THUMB_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN)
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for. */
|
||
#define ARM_GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
{ \
|
||
if ( GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC \
|
||
|| GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC) \
|
||
goto LABEL; \
|
||
}
|
||
|
||
/* Nothing helpful to do for the Thumb */
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
if (TARGET_ARM) \
|
||
ARM_GO_IF_MODE_DEPENDENT_ADDRESS (ADDR, LABEL)
|
||
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE Pmode
|
||
|
||
/* Define as C expression which evaluates to nonzero if the tablejump
|
||
instruction expects the table to contain offsets from the address of the
|
||
table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
/* #define CASE_VECTOR_PC_RELATIVE 1 */
|
||
|
||
/* signed 'char' is most compatible, but RISC OS wants it unsigned.
|
||
unsigned is probably best, but may break some code. */
|
||
#ifndef DEFAULT_SIGNED_CHAR
|
||
#define DEFAULT_SIGNED_CHAR 0
|
||
#endif
|
||
|
||
/* Don't cse the address of the function being compiled. */
|
||
#define NO_RECURSIVE_FUNCTION_CSE 1
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 4
|
||
|
||
#undef MOVE_RATIO
|
||
#define MOVE_RATIO (arm_is_xscale ? 4 : 2)
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
||
will either zero-extend or sign-extend. The value of this macro should
|
||
be the code that says which one of the two operations is implicitly
|
||
done, NIL if none. */
|
||
#define LOAD_EXTEND_OP(MODE) \
|
||
(TARGET_THUMB ? ZERO_EXTEND : \
|
||
((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
|
||
: ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : NIL)))
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
|
||
|
||
/* Immediate shift counts are truncated by the output routines (or was it
|
||
the assembler?). Shift counts in a register are truncated by ARM. Note
|
||
that the native compiler puts too large (> 32) immediate shift counts
|
||
into a register and shifts by the register, letting the ARM decide what
|
||
to do instead of doing that itself. */
|
||
/* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
|
||
code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
|
||
On the arm, Y in a register is used modulo 256 for the shift. Only for
|
||
rotates is modulo 32 used. */
|
||
/* #define SHIFT_COUNT_TRUNCATED 1 */
|
||
|
||
/* All integers have the same format so truncation is easy. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* Calling from registers is a massive pain. */
|
||
#define NO_FUNCTION_CSE 1
|
||
|
||
/* Chars and shorts should be passed as ints. */
|
||
#define PROMOTE_PROTOTYPES 1
|
||
|
||
/* The machine modes of pointers and functions */
|
||
#define Pmode SImode
|
||
#define FUNCTION_MODE Pmode
|
||
|
||
#define ARM_FRAME_RTX(X) \
|
||
( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
|
||
|| (X) == arg_pointer_rtx)
|
||
|
||
#define DEFAULT_RTX_COSTS(X, CODE, OUTER_CODE) \
|
||
return arm_rtx_costs (X, CODE, OUTER_CODE);
|
||
|
||
/* Moves to and from memory are quite expensive */
|
||
#define MEMORY_MOVE_COST(M, CLASS, IN) \
|
||
(TARGET_ARM ? 10 : \
|
||
((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
|
||
* (CLASS == LO_REGS ? 1 : 2)))
|
||
|
||
/* All address computations that can be done are free, but rtx cost returns
|
||
the same for practically all of them. So we weight the different types
|
||
of address here in the order (most pref first):
|
||
PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
|
||
#define ARM_ADDRESS_COST(X) \
|
||
(10 - ((GET_CODE (X) == MEM || GET_CODE (X) == LABEL_REF \
|
||
|| GET_CODE (X) == SYMBOL_REF) \
|
||
? 0 \
|
||
: ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC \
|
||
|| GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
|
||
? 10 \
|
||
: (((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS) \
|
||
? 6 + (GET_CODE (XEXP (X, 1)) == CONST_INT ? 2 \
|
||
: ((GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == '2' \
|
||
|| GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == 'c' \
|
||
|| GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == '2' \
|
||
|| GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == 'c') \
|
||
? 1 : 0)) \
|
||
: 4)))))
|
||
|
||
#define THUMB_ADDRESS_COST(X) \
|
||
((GET_CODE (X) == REG \
|
||
|| (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT)) \
|
||
? 1 : 2)
|
||
|
||
#define ADDRESS_COST(X) \
|
||
(TARGET_ARM ? ARM_ADDRESS_COST (X) : THUMB_ADDRESS_COST (X))
|
||
|
||
/* Try to generate sequences that don't involve branches, we can then use
|
||
conditional instructions */
|
||
#define BRANCH_COST \
|
||
(TARGET_ARM ? 4 : (optimize > 1 ? 1 : 0))
|
||
|
||
/* Position Independent Code. */
|
||
/* We decide which register to use based on the compilation options and
|
||
the assembler in use; this is more general than the APCS restriction of
|
||
using sb (r9) all the time. */
|
||
extern int arm_pic_register;
|
||
|
||
/* Used when parsing command line option -mpic-register=. */
|
||
extern const char * arm_pic_register_string;
|
||
|
||
/* The register number of the register used to address a table of static
|
||
data addresses in memory. */
|
||
#define PIC_OFFSET_TABLE_REGNUM arm_pic_register
|
||
|
||
#define FINALIZE_PIC arm_finalize_pic (1)
|
||
|
||
/* We can't directly access anything that contains a symbol,
|
||
nor can we indirect via the constant pool. */
|
||
#define LEGITIMATE_PIC_OPERAND_P(X) \
|
||
( ! symbol_mentioned_p (X) \
|
||
&& ! label_mentioned_p (X) \
|
||
&& (! CONSTANT_POOL_ADDRESS_P (X) \
|
||
|| ( ! symbol_mentioned_p (get_pool_constant (X)) \
|
||
&& ! label_mentioned_p (get_pool_constant (X)))))
|
||
|
||
/* We need to know when we are making a constant pool; this determines
|
||
whether data needs to be in the GOT or can be referenced via a GOT
|
||
offset. */
|
||
extern int making_const_table;
|
||
|
||
/* Handle pragmas for compatibility with Intel's compilers. */
|
||
#define REGISTER_TARGET_PRAGMAS(PFILE) do { \
|
||
cpp_register_pragma (PFILE, 0, "long_calls", arm_pr_long_calls); \
|
||
cpp_register_pragma (PFILE, 0, "no_long_calls", arm_pr_no_long_calls); \
|
||
cpp_register_pragma (PFILE, 0, "long_calls_off", arm_pr_long_calls_off); \
|
||
} while (0)
|
||
|
||
/* Condition code information. */
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison.
|
||
CCFPEmode should be used with floating inequalities,
|
||
CCFPmode should be used with floating equalities.
|
||
CC_NOOVmode should be used with SImode integer equalities.
|
||
CC_Zmode should be used if only the Z flag is set correctly
|
||
CCmode should be used otherwise. */
|
||
|
||
#define EXTRA_CC_MODES \
|
||
CC(CC_NOOVmode, "CC_NOOV") \
|
||
CC(CC_Zmode, "CC_Z") \
|
||
CC(CC_SWPmode, "CC_SWP") \
|
||
CC(CCFPmode, "CCFP") \
|
||
CC(CCFPEmode, "CCFPE") \
|
||
CC(CC_DNEmode, "CC_DNE") \
|
||
CC(CC_DEQmode, "CC_DEQ") \
|
||
CC(CC_DLEmode, "CC_DLE") \
|
||
CC(CC_DLTmode, "CC_DLT") \
|
||
CC(CC_DGEmode, "CC_DGE") \
|
||
CC(CC_DGTmode, "CC_DGT") \
|
||
CC(CC_DLEUmode, "CC_DLEU") \
|
||
CC(CC_DLTUmode, "CC_DLTU") \
|
||
CC(CC_DGEUmode, "CC_DGEU") \
|
||
CC(CC_DGTUmode, "CC_DGTU") \
|
||
CC(CC_Cmode, "CC_C")
|
||
|
||
#define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
|
||
|
||
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
|
||
|
||
#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
|
||
do \
|
||
{ \
|
||
if (GET_CODE (OP1) == CONST_INT \
|
||
&& ! (const_ok_for_arm (INTVAL (OP1)) \
|
||
|| (const_ok_for_arm (- INTVAL (OP1))))) \
|
||
{ \
|
||
rtx const_op = OP1; \
|
||
CODE = arm_canonicalize_comparison ((CODE), &const_op); \
|
||
OP1 = const_op; \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
#define STORE_FLAG_VALUE 1
|
||
|
||
|
||
|
||
/* Gcc puts the pool in the wrong place for ARM, since we can only
|
||
load addresses a limited distance around the pc. We do some
|
||
special munging to move the constant pool values to the correct
|
||
point in the code. */
|
||
#define MACHINE_DEPENDENT_REORG(INSN) \
|
||
arm_reorg (INSN); \
|
||
|
||
#undef ASM_APP_OFF
|
||
#define ASM_APP_OFF (TARGET_THUMB ? "\t.code\t16\n" : "")
|
||
|
||
/* Output an internal label definition. */
|
||
#ifndef ASM_OUTPUT_INTERNAL_LABEL
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX, NUM) \
|
||
do \
|
||
{ \
|
||
char * s = (char *) alloca (40 + strlen (PREFIX)); \
|
||
\
|
||
if (arm_ccfsm_state == 3 && arm_target_label == (NUM) \
|
||
&& !strcmp (PREFIX, "L")) \
|
||
{ \
|
||
arm_ccfsm_state = 0; \
|
||
arm_target_insn = NULL; \
|
||
} \
|
||
ASM_GENERATE_INTERNAL_LABEL (s, (PREFIX), (NUM)); \
|
||
ASM_OUTPUT_LABEL (STREAM, s); \
|
||
} \
|
||
while (0)
|
||
#endif
|
||
|
||
/* Output a push or a pop instruction (only used when profiling). */
|
||
#define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
|
||
if (TARGET_ARM) \
|
||
asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
|
||
STACK_POINTER_REGNUM, REGNO); \
|
||
else \
|
||
asm_fprintf (STREAM, "\tpush {%r}\n", REGNO)
|
||
|
||
|
||
#define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
|
||
if (TARGET_ARM) \
|
||
asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
|
||
STACK_POINTER_REGNUM, REGNO); \
|
||
else \
|
||
asm_fprintf (STREAM, "\tpop {%r}\n", REGNO)
|
||
|
||
/* This is how to output a label which precedes a jumptable. Since
|
||
Thumb instructions are 2 bytes, we may need explicit alignment here. */
|
||
#undef ASM_OUTPUT_CASE_LABEL
|
||
#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
|
||
do \
|
||
{ \
|
||
if (TARGET_THUMB) \
|
||
ASM_OUTPUT_ALIGN (FILE, 2); \
|
||
ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
|
||
} \
|
||
while (0)
|
||
|
||
#define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
|
||
do \
|
||
{ \
|
||
if (TARGET_THUMB) \
|
||
{ \
|
||
if (is_called_in_ARM_mode (DECL)) \
|
||
fprintf (STREAM, "\t.code 32\n") ; \
|
||
else \
|
||
fprintf (STREAM, "\t.thumb_func\n") ; \
|
||
} \
|
||
if (TARGET_POKE_FUNCTION_NAME) \
|
||
arm_poke_function_name (STREAM, (char *) NAME); \
|
||
} \
|
||
while (0)
|
||
|
||
/* For aliases of functions we use .thumb_set instead. */
|
||
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
|
||
do \
|
||
{ \
|
||
const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
|
||
const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
|
||
\
|
||
if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
|
||
{ \
|
||
fprintf (FILE, "\t.thumb_set "); \
|
||
assemble_name (FILE, LABEL1); \
|
||
fprintf (FILE, ","); \
|
||
assemble_name (FILE, LABEL2); \
|
||
fprintf (FILE, "\n"); \
|
||
} \
|
||
else \
|
||
ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
|
||
} \
|
||
while (0)
|
||
|
||
#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
|
||
/* To support -falign-* switches we need to use .p2align so
|
||
that alignment directives in code sections will be padded
|
||
with no-op instructions, rather than zeroes. */
|
||
#define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE,LOG,MAX_SKIP) \
|
||
if ((LOG) != 0) \
|
||
{ \
|
||
if ((MAX_SKIP) == 0) \
|
||
fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
|
||
else \
|
||
fprintf ((FILE), "\t.p2align %d,,%d\n", \
|
||
(LOG), (MAX_SKIP)); \
|
||
}
|
||
#endif
|
||
|
||
/* Only perform branch elimination (by making instructions conditional) if
|
||
we're optimising. Otherwise it's of no use anyway. */
|
||
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
|
||
if (TARGET_ARM && optimize) \
|
||
arm_final_prescan_insn (INSN); \
|
||
else if (TARGET_THUMB) \
|
||
thumb_final_prescan_insn (INSN)
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
(CODE == '@' || CODE == '|' \
|
||
|| (TARGET_ARM && (CODE == '?')) \
|
||
|| (TARGET_THUMB && (CODE == '_')))
|
||
|
||
/* Output an operand of an instruction. */
|
||
#define PRINT_OPERAND(STREAM, X, CODE) \
|
||
arm_print_operand (STREAM, X, CODE)
|
||
|
||
#define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
|
||
(HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
|
||
: ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
|
||
((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
|
||
? ((~ (unsigned HOST_WIDE_INT) 0) \
|
||
& ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
|
||
: 0))))
|
||
|
||
/* Output the address of an operand. */
|
||
#define ARM_PRINT_OPERAND_ADDRESS(STREAM, X) \
|
||
{ \
|
||
int is_minus = GET_CODE (X) == MINUS; \
|
||
\
|
||
if (GET_CODE (X) == REG) \
|
||
asm_fprintf (STREAM, "[%r, #0]", REGNO (X)); \
|
||
else if (GET_CODE (X) == PLUS || is_minus) \
|
||
{ \
|
||
rtx base = XEXP (X, 0); \
|
||
rtx index = XEXP (X, 1); \
|
||
HOST_WIDE_INT offset = 0; \
|
||
if (GET_CODE (base) != REG) \
|
||
{ \
|
||
/* Ensure that BASE is a register */ \
|
||
/* (one of them must be). */ \
|
||
rtx temp = base; \
|
||
base = index; \
|
||
index = temp; \
|
||
} \
|
||
switch (GET_CODE (index)) \
|
||
{ \
|
||
case CONST_INT: \
|
||
offset = INTVAL (index); \
|
||
if (is_minus) \
|
||
offset = -offset; \
|
||
asm_fprintf (STREAM, "[%r, #%d]", \
|
||
REGNO (base), offset); \
|
||
break; \
|
||
\
|
||
case REG: \
|
||
asm_fprintf (STREAM, "[%r, %s%r]", \
|
||
REGNO (base), is_minus ? "-" : "", \
|
||
REGNO (index)); \
|
||
break; \
|
||
\
|
||
case MULT: \
|
||
case ASHIFTRT: \
|
||
case LSHIFTRT: \
|
||
case ASHIFT: \
|
||
case ROTATERT: \
|
||
{ \
|
||
asm_fprintf (STREAM, "[%r, %s%r", \
|
||
REGNO (base), is_minus ? "-" : "", \
|
||
REGNO (XEXP (index, 0))); \
|
||
arm_print_operand (STREAM, index, 'S'); \
|
||
fputs ("]", STREAM); \
|
||
break; \
|
||
} \
|
||
\
|
||
default: \
|
||
abort(); \
|
||
} \
|
||
} \
|
||
else if ( GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC\
|
||
|| GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC)\
|
||
{ \
|
||
extern int output_memory_reference_mode; \
|
||
\
|
||
if (GET_CODE (XEXP (X, 0)) != REG) \
|
||
abort (); \
|
||
\
|
||
if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
|
||
asm_fprintf (STREAM, "[%r, #%s%d]!", \
|
||
REGNO (XEXP (X, 0)), \
|
||
GET_CODE (X) == PRE_DEC ? "-" : "", \
|
||
GET_MODE_SIZE (output_memory_reference_mode));\
|
||
else \
|
||
asm_fprintf (STREAM, "[%r], #%s%d", \
|
||
REGNO (XEXP (X, 0)), \
|
||
GET_CODE (X) == POST_DEC ? "-" : "", \
|
||
GET_MODE_SIZE (output_memory_reference_mode));\
|
||
} \
|
||
else output_addr_const (STREAM, X); \
|
||
}
|
||
|
||
#define THUMB_PRINT_OPERAND_ADDRESS(STREAM, X) \
|
||
{ \
|
||
if (GET_CODE (X) == REG) \
|
||
asm_fprintf (STREAM, "[%r]", REGNO (X)); \
|
||
else if (GET_CODE (X) == POST_INC) \
|
||
asm_fprintf (STREAM, "%r!", REGNO (XEXP (X, 0))); \
|
||
else if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
asm_fprintf (STREAM, "[%r, #%d]", \
|
||
REGNO (XEXP (X, 0)), \
|
||
(int) INTVAL (XEXP (X, 1))); \
|
||
else \
|
||
asm_fprintf (STREAM, "[%r, %r]", \
|
||
REGNO (XEXP (X, 0)), \
|
||
REGNO (XEXP (X, 1))); \
|
||
} \
|
||
else \
|
||
output_addr_const (STREAM, X); \
|
||
}
|
||
|
||
#define PRINT_OPERAND_ADDRESS(STREAM, X) \
|
||
if (TARGET_ARM) \
|
||
ARM_PRINT_OPERAND_ADDRESS (STREAM, X) \
|
||
else \
|
||
THUMB_PRINT_OPERAND_ADDRESS (STREAM, X)
|
||
|
||
/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
|
||
Used for C++ multiple inheritance. */
|
||
#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
|
||
do \
|
||
{ \
|
||
int mi_delta = (DELTA); \
|
||
const char *const mi_op = mi_delta < 0 ? "sub" : "add"; \
|
||
int shift = 0; \
|
||
int this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) \
|
||
? 1 : 0); \
|
||
if (mi_delta < 0) \
|
||
mi_delta = - mi_delta; \
|
||
while (mi_delta != 0) \
|
||
{ \
|
||
if ((mi_delta & (3 << shift)) == 0) \
|
||
shift += 2; \
|
||
else \
|
||
{ \
|
||
asm_fprintf (FILE, "\t%s\t%r, %r, #%d\n", \
|
||
mi_op, this_regno, this_regno, \
|
||
mi_delta & (0xff << shift)); \
|
||
mi_delta &= ~(0xff << shift); \
|
||
shift += 8; \
|
||
} \
|
||
} \
|
||
fputs ("\tb\t", FILE); \
|
||
assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
|
||
if (NEED_PLT_RELOC) \
|
||
fputs ("(PLT)", FILE); \
|
||
fputc ('\n', FILE); \
|
||
} \
|
||
while (0)
|
||
|
||
/* A C expression whose value is RTL representing the value of the return
|
||
address for the frame COUNT steps up from the current frame. */
|
||
|
||
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
||
arm_return_addr (COUNT, FRAME)
|
||
|
||
/* Mask of the bits in the PC that contain the real return address
|
||
when running in 26-bit mode. */
|
||
#define RETURN_ADDR_MASK26 (0x03fffffc)
|
||
|
||
/* Pick up the return address upon entry to a procedure. Used for
|
||
dwarf2 unwind information. This also enables the table driven
|
||
mechanism. */
|
||
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
|
||
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
|
||
|
||
/* Used to mask out junk bits from the return address, such as
|
||
processor state, interrupt status, condition codes and the like. */
|
||
#define MASK_RETURN_ADDR \
|
||
/* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
|
||
in 26 bit mode, the condition codes must be masked out of the \
|
||
return address. This does not apply to ARM6 and later processors \
|
||
when running in 32 bit mode. */ \
|
||
((!TARGET_APCS_32) ? (GEN_INT (RETURN_ADDR_MASK26)) \
|
||
: (GEN_INT ((unsigned long)0xffffffff)))
|
||
|
||
|
||
/* Define the codes that are matched by predicates in arm.c */
|
||
#define PREDICATE_CODES \
|
||
{"s_register_operand", {SUBREG, REG}}, \
|
||
{"arm_hard_register_operand", {REG}}, \
|
||
{"f_register_operand", {SUBREG, REG}}, \
|
||
{"arm_add_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"fpu_add_operand", {SUBREG, REG, CONST_DOUBLE}}, \
|
||
{"fpu_rhs_operand", {SUBREG, REG, CONST_DOUBLE}}, \
|
||
{"arm_rhs_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"arm_not_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"reg_or_int_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"index_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"thumb_cmp_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"offsettable_memory_operand", {MEM}}, \
|
||
{"bad_signed_byte_operand", {MEM}}, \
|
||
{"alignable_memory_operand", {MEM}}, \
|
||
{"shiftable_operator", {PLUS, MINUS, AND, IOR, XOR}}, \
|
||
{"minmax_operator", {SMIN, SMAX, UMIN, UMAX}}, \
|
||
{"shift_operator", {ASHIFT, ASHIFTRT, LSHIFTRT, ROTATERT, MULT}}, \
|
||
{"di_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
|
||
{"nonimmediate_di_operand", {SUBREG, REG, MEM}}, \
|
||
{"soft_df_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
|
||
{"nonimmediate_soft_df_operand", {SUBREG, REG, MEM}}, \
|
||
{"load_multiple_operation", {PARALLEL}}, \
|
||
{"store_multiple_operation", {PARALLEL}}, \
|
||
{"equality_operator", {EQ, NE}}, \
|
||
{"arm_comparison_operator", {EQ, NE, LE, LT, GE, GT, GEU, GTU, LEU, \
|
||
LTU, UNORDERED, ORDERED, UNLT, UNLE, \
|
||
UNGE, UNGT}}, \
|
||
{"arm_rhsm_operand", {SUBREG, REG, CONST_INT, MEM}}, \
|
||
{"const_shift_operand", {CONST_INT}}, \
|
||
{"multi_register_push", {PARALLEL}}, \
|
||
{"cc_register", {REG}}, \
|
||
{"logical_binary_operator", {AND, IOR, XOR}}, \
|
||
{"dominant_cc_register", {REG}},
|
||
|
||
/* Define this if you have special predicates that know special things
|
||
about modes. Genrecog will warn about certain forms of
|
||
match_operand without a mode; if the operand predicate is listed in
|
||
SPECIAL_MODE_PREDICATES, the warning will be suppressed. */
|
||
#define SPECIAL_MODE_PREDICATES \
|
||
"cc_register", "dominant_cc_register",
|
||
|
||
enum arm_builtins
|
||
{
|
||
ARM_BUILTIN_CLZ,
|
||
ARM_BUILTIN_MAX
|
||
};
|
||
#endif /* ! GCC_ARM_H */
|