freebsd-skq/sys/dev/ciss/ciss.c
Peter Wemm ed2b5a0aef Remove redundant mtx_lock/unlock in ciss_name_device. This is a guaranteed
insta-panic on device add/remove.  This is only called from the notify
thread which already holds the lock while calling this function.
2015-04-02 23:12:18 +00:00

4733 lines
137 KiB
C

/*-
* Copyright (c) 2001 Michael Smith
* Copyright (c) 2004 Paul Saab
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Common Interface for SCSI-3 Support driver.
*
* CISS claims to provide a common interface between a generic SCSI
* transport and an intelligent host adapter.
*
* This driver supports CISS as defined in the document "CISS Command
* Interface for SCSI-3 Support Open Specification", Version 1.04,
* Valence Number 1, dated 20001127, produced by Compaq Computer
* Corporation. This document appears to be a hastily and somewhat
* arbitrarlily cut-down version of a larger (and probably even more
* chaotic and inconsistent) Compaq internal document. Various
* details were also gleaned from Compaq's "cciss" driver for Linux.
*
* We provide a shim layer between the CISS interface and CAM,
* offloading most of the queueing and being-a-disk chores onto CAM.
* Entry to the driver is via the PCI bus attachment (ciss_probe,
* ciss_attach, etc) and via the CAM interface (ciss_cam_action,
* ciss_cam_poll). The Compaq CISS adapters are, however, poor SCSI
* citizens and we have to fake up some responses to get reasonable
* behaviour out of them. In addition, the CISS command set is by no
* means adequate to support the functionality of a RAID controller,
* and thus the supported Compaq adapters utilise portions of the
* control protocol from earlier Compaq adapter families.
*
* Note that we only support the "simple" transport layer over PCI.
* This interface (ab)uses the I2O register set (specifically the post
* queues) to exchange commands with the adapter. Other interfaces
* are available, but we aren't supposed to know about them, and it is
* dubious whether they would provide major performance improvements
* except under extreme load.
*
* Currently the only supported CISS adapters are the Compaq Smart
* Array 5* series (5300, 5i, 532). Even with only three adapters,
* Compaq still manage to have interface variations.
*
*
* Thanks must go to Fred Harris and Darryl DeVinney at Compaq, as
* well as Paul Saab at Yahoo! for their assistance in making this
* driver happen.
*
* More thanks must go to John Cagle at HP for the countless hours
* spent making this driver "work" with the MSA* series storage
* enclosures. Without his help (and nagging), this driver could not
* be used with these enclosures.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/kthread.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/ciss/cissreg.h>
#include <dev/ciss/cissio.h>
#include <dev/ciss/cissvar.h>
static MALLOC_DEFINE(CISS_MALLOC_CLASS, "ciss_data",
"ciss internal data buffers");
/* pci interface */
static int ciss_lookup(device_t dev);
static int ciss_probe(device_t dev);
static int ciss_attach(device_t dev);
static int ciss_detach(device_t dev);
static int ciss_shutdown(device_t dev);
/* (de)initialisation functions, control wrappers */
static int ciss_init_pci(struct ciss_softc *sc);
static int ciss_setup_msix(struct ciss_softc *sc);
static int ciss_init_perf(struct ciss_softc *sc);
static int ciss_wait_adapter(struct ciss_softc *sc);
static int ciss_flush_adapter(struct ciss_softc *sc);
static int ciss_init_requests(struct ciss_softc *sc);
static void ciss_command_map_helper(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static int ciss_identify_adapter(struct ciss_softc *sc);
static int ciss_init_logical(struct ciss_softc *sc);
static int ciss_init_physical(struct ciss_softc *sc);
static int ciss_filter_physical(struct ciss_softc *sc, struct ciss_lun_report *cll);
static int ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld);
static int ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld);
static int ciss_update_config(struct ciss_softc *sc);
static int ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld);
static void ciss_init_sysctl(struct ciss_softc *sc);
static void ciss_soft_reset(struct ciss_softc *sc);
static void ciss_free(struct ciss_softc *sc);
static void ciss_spawn_notify_thread(struct ciss_softc *sc);
static void ciss_kill_notify_thread(struct ciss_softc *sc);
/* request submission/completion */
static int ciss_start(struct ciss_request *cr);
static void ciss_done(struct ciss_softc *sc, cr_qhead_t *qh);
static void ciss_perf_done(struct ciss_softc *sc, cr_qhead_t *qh);
static void ciss_intr(void *arg);
static void ciss_perf_intr(void *arg);
static void ciss_perf_msi_intr(void *arg);
static void ciss_complete(struct ciss_softc *sc, cr_qhead_t *qh);
static int _ciss_report_request(struct ciss_request *cr, int *command_status, int *scsi_status, const char *func);
static int ciss_synch_request(struct ciss_request *cr, int timeout);
static int ciss_poll_request(struct ciss_request *cr, int timeout);
static int ciss_wait_request(struct ciss_request *cr, int timeout);
#if 0
static int ciss_abort_request(struct ciss_request *cr);
#endif
/* request queueing */
static int ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp);
static void ciss_preen_command(struct ciss_request *cr);
static void ciss_release_request(struct ciss_request *cr);
/* request helpers */
static int ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp,
int opcode, void **bufp, size_t bufsize);
static int ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc);
/* DMA map/unmap */
static int ciss_map_request(struct ciss_request *cr);
static void ciss_request_map_helper(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static void ciss_unmap_request(struct ciss_request *cr);
/* CAM interface */
static int ciss_cam_init(struct ciss_softc *sc);
static void ciss_cam_rescan_target(struct ciss_softc *sc,
int bus, int target);
static void ciss_cam_action(struct cam_sim *sim, union ccb *ccb);
static int ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
static int ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio);
static void ciss_cam_poll(struct cam_sim *sim);
static void ciss_cam_complete(struct ciss_request *cr);
static void ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio);
static int ciss_name_device(struct ciss_softc *sc, int bus, int target);
/* periodic status monitoring */
static void ciss_periodic(void *arg);
static void ciss_nop_complete(struct ciss_request *cr);
static void ciss_disable_adapter(struct ciss_softc *sc);
static void ciss_notify_event(struct ciss_softc *sc);
static void ciss_notify_complete(struct ciss_request *cr);
static int ciss_notify_abort(struct ciss_softc *sc);
static int ciss_notify_abort_bmic(struct ciss_softc *sc);
static void ciss_notify_hotplug(struct ciss_softc *sc, struct ciss_notify *cn);
static void ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn);
static void ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn);
/* debugging output */
static void ciss_print_request(struct ciss_request *cr);
static void ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld);
static const char *ciss_name_ldrive_status(int status);
static int ciss_decode_ldrive_status(int status);
static const char *ciss_name_ldrive_org(int org);
static const char *ciss_name_command_status(int status);
/*
* PCI bus interface.
*/
static device_method_t ciss_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ciss_probe),
DEVMETHOD(device_attach, ciss_attach),
DEVMETHOD(device_detach, ciss_detach),
DEVMETHOD(device_shutdown, ciss_shutdown),
{ 0, 0 }
};
static driver_t ciss_pci_driver = {
"ciss",
ciss_methods,
sizeof(struct ciss_softc)
};
static devclass_t ciss_devclass;
DRIVER_MODULE(ciss, pci, ciss_pci_driver, ciss_devclass, 0, 0);
MODULE_DEPEND(ciss, cam, 1, 1, 1);
MODULE_DEPEND(ciss, pci, 1, 1, 1);
/*
* Control device interface.
*/
static d_open_t ciss_open;
static d_close_t ciss_close;
static d_ioctl_t ciss_ioctl;
static struct cdevsw ciss_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = ciss_open,
.d_close = ciss_close,
.d_ioctl = ciss_ioctl,
.d_name = "ciss",
};
/*
* This tunable can be set at boot time and controls whether physical devices
* that are marked hidden by the firmware should be exposed anyways.
*/
static unsigned int ciss_expose_hidden_physical = 0;
TUNABLE_INT("hw.ciss.expose_hidden_physical", &ciss_expose_hidden_physical);
static unsigned int ciss_nop_message_heartbeat = 0;
TUNABLE_INT("hw.ciss.nop_message_heartbeat", &ciss_nop_message_heartbeat);
/*
* This tunable can force a particular transport to be used:
* <= 0 : use default
* 1 : force simple
* 2 : force performant
*/
static int ciss_force_transport = 0;
TUNABLE_INT("hw.ciss.force_transport", &ciss_force_transport);
/*
* This tunable can force a particular interrupt delivery method to be used:
* <= 0 : use default
* 1 : force INTx
* 2 : force MSIX
*/
static int ciss_force_interrupt = 0;
TUNABLE_INT("hw.ciss.force_interrupt", &ciss_force_interrupt);
/************************************************************************
* CISS adapters amazingly don't have a defined programming interface
* value. (One could say some very despairing things about PCI and
* people just not getting the general idea.) So we are forced to
* stick with matching against subvendor/subdevice, and thus have to
* be updated for every new CISS adapter that appears.
*/
#define CISS_BOARD_UNKNWON 0
#define CISS_BOARD_SA5 1
#define CISS_BOARD_SA5B 2
#define CISS_BOARD_NOMSI (1<<4)
#define CISS_BOARD_SIMPLE (1<<5)
static struct
{
u_int16_t subvendor;
u_int16_t subdevice;
int flags;
char *desc;
} ciss_vendor_data[] = {
{ 0x0e11, 0x4070, CISS_BOARD_SA5|CISS_BOARD_NOMSI|CISS_BOARD_SIMPLE,
"Compaq Smart Array 5300" },
{ 0x0e11, 0x4080, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "Compaq Smart Array 5i" },
{ 0x0e11, 0x4082, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "Compaq Smart Array 532" },
{ 0x0e11, 0x4083, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "HP Smart Array 5312" },
{ 0x0e11, 0x4091, CISS_BOARD_SA5, "HP Smart Array 6i" },
{ 0x0e11, 0x409A, CISS_BOARD_SA5, "HP Smart Array 641" },
{ 0x0e11, 0x409B, CISS_BOARD_SA5, "HP Smart Array 642" },
{ 0x0e11, 0x409C, CISS_BOARD_SA5, "HP Smart Array 6400" },
{ 0x0e11, 0x409D, CISS_BOARD_SA5, "HP Smart Array 6400 EM" },
{ 0x103C, 0x3211, CISS_BOARD_SA5, "HP Smart Array E200i" },
{ 0x103C, 0x3212, CISS_BOARD_SA5, "HP Smart Array E200" },
{ 0x103C, 0x3213, CISS_BOARD_SA5, "HP Smart Array E200i" },
{ 0x103C, 0x3214, CISS_BOARD_SA5, "HP Smart Array E200i" },
{ 0x103C, 0x3215, CISS_BOARD_SA5, "HP Smart Array E200i" },
{ 0x103C, 0x3220, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3222, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3223, CISS_BOARD_SA5, "HP Smart Array P800" },
{ 0x103C, 0x3225, CISS_BOARD_SA5, "HP Smart Array P600" },
{ 0x103C, 0x3230, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3231, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3232, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3233, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3234, CISS_BOARD_SA5, "HP Smart Array P400" },
{ 0x103C, 0x3235, CISS_BOARD_SA5, "HP Smart Array P400i" },
{ 0x103C, 0x3236, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3237, CISS_BOARD_SA5, "HP Smart Array E500" },
{ 0x103C, 0x3238, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3239, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x323A, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x323B, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x323C, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x323D, CISS_BOARD_SA5, "HP Smart Array P700m" },
{ 0x103C, 0x3241, CISS_BOARD_SA5, "HP Smart Array P212" },
{ 0x103C, 0x3243, CISS_BOARD_SA5, "HP Smart Array P410" },
{ 0x103C, 0x3245, CISS_BOARD_SA5, "HP Smart Array P410i" },
{ 0x103C, 0x3247, CISS_BOARD_SA5, "HP Smart Array P411" },
{ 0x103C, 0x3249, CISS_BOARD_SA5, "HP Smart Array P812" },
{ 0x103C, 0x324A, CISS_BOARD_SA5, "HP Smart Array P712m" },
{ 0x103C, 0x324B, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3350, CISS_BOARD_SA5, "HP Smart Array P222" },
{ 0x103C, 0x3351, CISS_BOARD_SA5, "HP Smart Array P420" },
{ 0x103C, 0x3352, CISS_BOARD_SA5, "HP Smart Array P421" },
{ 0x103C, 0x3353, CISS_BOARD_SA5, "HP Smart Array P822" },
{ 0x103C, 0x3354, CISS_BOARD_SA5, "HP Smart Array P420i" },
{ 0x103C, 0x3355, CISS_BOARD_SA5, "HP Smart Array P220i" },
{ 0x103C, 0x3356, CISS_BOARD_SA5, "HP Smart Array P721m" },
{ 0x103C, 0x1920, CISS_BOARD_SA5, "HP Smart Array P430i" },
{ 0x103C, 0x1921, CISS_BOARD_SA5, "HP Smart Array P830i" },
{ 0x103C, 0x1922, CISS_BOARD_SA5, "HP Smart Array P430" },
{ 0x103C, 0x1923, CISS_BOARD_SA5, "HP Smart Array P431" },
{ 0x103C, 0x1924, CISS_BOARD_SA5, "HP Smart Array P830" },
{ 0x103C, 0x1926, CISS_BOARD_SA5, "HP Smart Array P731m" },
{ 0x103C, 0x1928, CISS_BOARD_SA5, "HP Smart Array P230i" },
{ 0x103C, 0x1929, CISS_BOARD_SA5, "HP Smart Array P530" },
{ 0x103C, 0x192A, CISS_BOARD_SA5, "HP Smart Array P531" },
{ 0x103C, 0x21BD, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21BE, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21BF, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C0, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C2, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C3, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C5, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C6, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C7, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C8, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CA, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CB, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CC, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CD, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CE, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0, 0, 0, NULL }
};
/************************************************************************
* Find a match for the device in our list of known adapters.
*/
static int
ciss_lookup(device_t dev)
{
int i;
for (i = 0; ciss_vendor_data[i].desc != NULL; i++)
if ((pci_get_subvendor(dev) == ciss_vendor_data[i].subvendor) &&
(pci_get_subdevice(dev) == ciss_vendor_data[i].subdevice)) {
return(i);
}
return(-1);
}
/************************************************************************
* Match a known CISS adapter.
*/
static int
ciss_probe(device_t dev)
{
int i;
i = ciss_lookup(dev);
if (i != -1) {
device_set_desc(dev, ciss_vendor_data[i].desc);
return(BUS_PROBE_DEFAULT);
}
return(ENOENT);
}
/************************************************************************
* Attach the driver to this adapter.
*/
static int
ciss_attach(device_t dev)
{
struct ciss_softc *sc;
int error;
debug_called(1);
#ifdef CISS_DEBUG
/* print structure/union sizes */
debug_struct(ciss_command);
debug_struct(ciss_header);
debug_union(ciss_device_address);
debug_struct(ciss_cdb);
debug_struct(ciss_report_cdb);
debug_struct(ciss_notify_cdb);
debug_struct(ciss_notify);
debug_struct(ciss_message_cdb);
debug_struct(ciss_error_info_pointer);
debug_struct(ciss_error_info);
debug_struct(ciss_sg_entry);
debug_struct(ciss_config_table);
debug_struct(ciss_bmic_cdb);
debug_struct(ciss_bmic_id_ldrive);
debug_struct(ciss_bmic_id_lstatus);
debug_struct(ciss_bmic_id_table);
debug_struct(ciss_bmic_id_pdrive);
debug_struct(ciss_bmic_blink_pdrive);
debug_struct(ciss_bmic_flush_cache);
debug_const(CISS_MAX_REQUESTS);
debug_const(CISS_MAX_LOGICAL);
debug_const(CISS_INTERRUPT_COALESCE_DELAY);
debug_const(CISS_INTERRUPT_COALESCE_COUNT);
debug_const(CISS_COMMAND_ALLOC_SIZE);
debug_const(CISS_COMMAND_SG_LENGTH);
debug_type(cciss_pci_info_struct);
debug_type(cciss_coalint_struct);
debug_type(cciss_coalint_struct);
debug_type(NodeName_type);
debug_type(NodeName_type);
debug_type(Heartbeat_type);
debug_type(BusTypes_type);
debug_type(FirmwareVer_type);
debug_type(DriverVer_type);
debug_type(IOCTL_Command_struct);
#endif
sc = device_get_softc(dev);
sc->ciss_dev = dev;
mtx_init(&sc->ciss_mtx, "cissmtx", NULL, MTX_DEF);
callout_init_mtx(&sc->ciss_periodic, &sc->ciss_mtx, 0);
/*
* Do PCI-specific init.
*/
if ((error = ciss_init_pci(sc)) != 0)
goto out;
/*
* Initialise driver queues.
*/
ciss_initq_free(sc);
ciss_initq_notify(sc);
/*
* Initalize device sysctls.
*/
ciss_init_sysctl(sc);
/*
* Initialise command/request pool.
*/
if ((error = ciss_init_requests(sc)) != 0)
goto out;
/*
* Get adapter information.
*/
if ((error = ciss_identify_adapter(sc)) != 0)
goto out;
/*
* Find all the physical devices.
*/
if ((error = ciss_init_physical(sc)) != 0)
goto out;
/*
* Build our private table of logical devices.
*/
if ((error = ciss_init_logical(sc)) != 0)
goto out;
/*
* Enable interrupts so that the CAM scan can complete.
*/
CISS_TL_SIMPLE_ENABLE_INTERRUPTS(sc);
/*
* Initialise the CAM interface.
*/
if ((error = ciss_cam_init(sc)) != 0)
goto out;
/*
* Start the heartbeat routine and event chain.
*/
ciss_periodic(sc);
/*
* Create the control device.
*/
sc->ciss_dev_t = make_dev(&ciss_cdevsw, device_get_unit(sc->ciss_dev),
UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
"ciss%d", device_get_unit(sc->ciss_dev));
sc->ciss_dev_t->si_drv1 = sc;
/*
* The adapter is running; synchronous commands can now sleep
* waiting for an interrupt to signal completion.
*/
sc->ciss_flags |= CISS_FLAG_RUNNING;
ciss_spawn_notify_thread(sc);
error = 0;
out:
if (error != 0) {
/* ciss_free() expects the mutex to be held */
mtx_lock(&sc->ciss_mtx);
ciss_free(sc);
}
return(error);
}
/************************************************************************
* Detach the driver from this adapter.
*/
static int
ciss_detach(device_t dev)
{
struct ciss_softc *sc = device_get_softc(dev);
debug_called(1);
mtx_lock(&sc->ciss_mtx);
if (sc->ciss_flags & CISS_FLAG_CONTROL_OPEN) {
mtx_unlock(&sc->ciss_mtx);
return (EBUSY);
}
/* flush adapter cache */
ciss_flush_adapter(sc);
/* release all resources. The mutex is released and freed here too. */
ciss_free(sc);
return(0);
}
/************************************************************************
* Prepare adapter for system shutdown.
*/
static int
ciss_shutdown(device_t dev)
{
struct ciss_softc *sc = device_get_softc(dev);
debug_called(1);
mtx_lock(&sc->ciss_mtx);
/* flush adapter cache */
ciss_flush_adapter(sc);
if (sc->ciss_soft_reset)
ciss_soft_reset(sc);
mtx_unlock(&sc->ciss_mtx);
return(0);
}
static void
ciss_init_sysctl(struct ciss_softc *sc)
{
SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->ciss_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ciss_dev)),
OID_AUTO, "soft_reset", CTLFLAG_RW, &sc->ciss_soft_reset, 0, "");
}
/************************************************************************
* Perform PCI-specific attachment actions.
*/
static int
ciss_init_pci(struct ciss_softc *sc)
{
uintptr_t cbase, csize, cofs;
uint32_t method, supported_methods;
int error, sqmask, i;
void *intr;
debug_called(1);
/*
* Work out adapter type.
*/
i = ciss_lookup(sc->ciss_dev);
if (i < 0) {
ciss_printf(sc, "unknown adapter type\n");
return (ENXIO);
}
if (ciss_vendor_data[i].flags & CISS_BOARD_SA5) {
sqmask = CISS_TL_SIMPLE_INTR_OPQ_SA5;
} else if (ciss_vendor_data[i].flags & CISS_BOARD_SA5B) {
sqmask = CISS_TL_SIMPLE_INTR_OPQ_SA5B;
} else {
/*
* XXX Big hammer, masks/unmasks all possible interrupts. This should
* work on all hardware variants. Need to add code to handle the
* "controller crashed" interupt bit that this unmasks.
*/
sqmask = ~0;
}
/*
* Allocate register window first (we need this to find the config
* struct).
*/
error = ENXIO;
sc->ciss_regs_rid = CISS_TL_SIMPLE_BAR_REGS;
if ((sc->ciss_regs_resource =
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY,
&sc->ciss_regs_rid, RF_ACTIVE)) == NULL) {
ciss_printf(sc, "can't allocate register window\n");
return(ENXIO);
}
sc->ciss_regs_bhandle = rman_get_bushandle(sc->ciss_regs_resource);
sc->ciss_regs_btag = rman_get_bustag(sc->ciss_regs_resource);
/*
* Find the BAR holding the config structure. If it's not the one
* we already mapped for registers, map it too.
*/
sc->ciss_cfg_rid = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_BAR) & 0xffff;
if (sc->ciss_cfg_rid != sc->ciss_regs_rid) {
if ((sc->ciss_cfg_resource =
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY,
&sc->ciss_cfg_rid, RF_ACTIVE)) == NULL) {
ciss_printf(sc, "can't allocate config window\n");
return(ENXIO);
}
cbase = (uintptr_t)rman_get_virtual(sc->ciss_cfg_resource);
csize = rman_get_end(sc->ciss_cfg_resource) -
rman_get_start(sc->ciss_cfg_resource) + 1;
} else {
cbase = (uintptr_t)rman_get_virtual(sc->ciss_regs_resource);
csize = rman_get_end(sc->ciss_regs_resource) -
rman_get_start(sc->ciss_regs_resource) + 1;
}
cofs = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_OFF);
/*
* Use the base/size/offset values we just calculated to
* sanity-check the config structure. If it's OK, point to it.
*/
if ((cofs + sizeof(struct ciss_config_table)) > csize) {
ciss_printf(sc, "config table outside window\n");
return(ENXIO);
}
sc->ciss_cfg = (struct ciss_config_table *)(cbase + cofs);
debug(1, "config struct at %p", sc->ciss_cfg);
/*
* Calculate the number of request structures/commands we are
* going to provide for this adapter.
*/
sc->ciss_max_requests = min(CISS_MAX_REQUESTS, sc->ciss_cfg->max_outstanding_commands);
/*
* Validate the config structure. If we supported other transport
* methods, we could select amongst them at this point in time.
*/
if (strncmp(sc->ciss_cfg->signature, "CISS", 4)) {
ciss_printf(sc, "config signature mismatch (got '%c%c%c%c')\n",
sc->ciss_cfg->signature[0], sc->ciss_cfg->signature[1],
sc->ciss_cfg->signature[2], sc->ciss_cfg->signature[3]);
return(ENXIO);
}
/*
* Select the mode of operation, prefer Performant.
*/
if (!(sc->ciss_cfg->supported_methods &
(CISS_TRANSPORT_METHOD_SIMPLE | CISS_TRANSPORT_METHOD_PERF))) {
ciss_printf(sc, "No supported transport layers: 0x%x\n",
sc->ciss_cfg->supported_methods);
}
switch (ciss_force_transport) {
case 1:
supported_methods = CISS_TRANSPORT_METHOD_SIMPLE;
break;
case 2:
supported_methods = CISS_TRANSPORT_METHOD_PERF;
break;
default:
/*
* Override the capabilities of the BOARD and specify SIMPLE
* MODE
*/
if (ciss_vendor_data[i].flags & CISS_BOARD_SIMPLE)
supported_methods = CISS_TRANSPORT_METHOD_SIMPLE;
else
supported_methods = sc->ciss_cfg->supported_methods;
break;
}
setup:
if ((supported_methods & CISS_TRANSPORT_METHOD_PERF) != 0) {
method = CISS_TRANSPORT_METHOD_PERF;
sc->ciss_perf = (struct ciss_perf_config *)(cbase + cofs +
sc->ciss_cfg->transport_offset);
if (ciss_init_perf(sc)) {
supported_methods &= ~method;
goto setup;
}
} else if (supported_methods & CISS_TRANSPORT_METHOD_SIMPLE) {
method = CISS_TRANSPORT_METHOD_SIMPLE;
} else {
ciss_printf(sc, "No supported transport methods: 0x%x\n",
sc->ciss_cfg->supported_methods);
return(ENXIO);
}
/*
* Tell it we're using the low 4GB of RAM. Set the default interrupt
* coalescing options.
*/
sc->ciss_cfg->requested_method = method;
sc->ciss_cfg->command_physlimit = 0;
sc->ciss_cfg->interrupt_coalesce_delay = CISS_INTERRUPT_COALESCE_DELAY;
sc->ciss_cfg->interrupt_coalesce_count = CISS_INTERRUPT_COALESCE_COUNT;
#ifdef __i386__
sc->ciss_cfg->host_driver |= CISS_DRIVER_SCSI_PREFETCH;
#endif
if (ciss_update_config(sc)) {
ciss_printf(sc, "adapter refuses to accept config update (IDBR 0x%x)\n",
CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR));
return(ENXIO);
}
if ((sc->ciss_cfg->active_method & method) == 0) {
supported_methods &= ~method;
if (supported_methods == 0) {
ciss_printf(sc, "adapter refuses to go into available transports "
"mode (0x%x, 0x%x)\n", supported_methods,
sc->ciss_cfg->active_method);
return(ENXIO);
} else
goto setup;
}
/*
* Wait for the adapter to come ready.
*/
if ((error = ciss_wait_adapter(sc)) != 0)
return(error);
/* Prepare to possibly use MSIX and/or PERFORMANT interrupts. Normal
* interrupts have a rid of 0, this will be overridden if MSIX is used.
*/
sc->ciss_irq_rid[0] = 0;
if (method == CISS_TRANSPORT_METHOD_PERF) {
ciss_printf(sc, "PERFORMANT Transport\n");
if ((ciss_force_interrupt != 1) && (ciss_setup_msix(sc) == 0)) {
intr = ciss_perf_msi_intr;
} else {
intr = ciss_perf_intr;
}
/* XXX The docs say that the 0x01 bit is only for SAS controllers.
* Unfortunately, there is no good way to know if this is a SAS
* controller. Hopefully enabling this bit universally will work OK.
* It seems to work fine for SA6i controllers.
*/
sc->ciss_interrupt_mask = CISS_TL_PERF_INTR_OPQ | CISS_TL_PERF_INTR_MSI;
} else {
ciss_printf(sc, "SIMPLE Transport\n");
/* MSIX doesn't seem to work in SIMPLE mode, only enable if it forced */
if (ciss_force_interrupt == 2)
/* If this fails, we automatically revert to INTx */
ciss_setup_msix(sc);
sc->ciss_perf = NULL;
intr = ciss_intr;
sc->ciss_interrupt_mask = sqmask;
}
/*
* Turn off interrupts before we go routing anything.
*/
CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc);
/*
* Allocate and set up our interrupt.
*/
if ((sc->ciss_irq_resource =
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_IRQ, &sc->ciss_irq_rid[0],
RF_ACTIVE | RF_SHAREABLE)) == NULL) {
ciss_printf(sc, "can't allocate interrupt\n");
return(ENXIO);
}
if (bus_setup_intr(sc->ciss_dev, sc->ciss_irq_resource,
INTR_TYPE_CAM|INTR_MPSAFE, NULL, intr, sc,
&sc->ciss_intr)) {
ciss_printf(sc, "can't set up interrupt\n");
return(ENXIO);
}
/*
* Allocate the parent bus DMA tag appropriate for our PCI
* interface.
*
* Note that "simple" adapters can only address within a 32-bit
* span.
*/
if (bus_dma_tag_create(bus_get_dma_tag(sc->ciss_dev),/* PCI parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
BUS_SPACE_UNRESTRICTED, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ciss_parent_dmat)) {
ciss_printf(sc, "can't allocate parent DMA tag\n");
return(ENOMEM);
}
/*
* Create DMA tag for mapping buffers into adapter-addressable
* space.
*/
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
(CISS_MAX_SG_ELEMENTS - 1) * PAGE_SIZE, /* maxsize */
CISS_MAX_SG_ELEMENTS, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, &sc->ciss_mtx, /* lockfunc, lockarg */
&sc->ciss_buffer_dmat)) {
ciss_printf(sc, "can't allocate buffer DMA tag\n");
return(ENOMEM);
}
return(0);
}
/************************************************************************
* Setup MSI/MSIX operation (Performant only)
* Four interrupts are available, but we only use 1 right now. If MSI-X
* isn't avaialble, try using MSI instead.
*/
static int
ciss_setup_msix(struct ciss_softc *sc)
{
int val, i;
/* Weed out devices that don't actually support MSI */
i = ciss_lookup(sc->ciss_dev);
if (ciss_vendor_data[i].flags & CISS_BOARD_NOMSI)
return (EINVAL);
/*
* Only need to use the minimum number of MSI vectors, as the driver
* doesn't support directed MSIX interrupts.
*/
val = pci_msix_count(sc->ciss_dev);
if (val < CISS_MSI_COUNT) {
val = pci_msi_count(sc->ciss_dev);
device_printf(sc->ciss_dev, "got %d MSI messages]\n", val);
if (val < CISS_MSI_COUNT)
return (EINVAL);
}
val = MIN(val, CISS_MSI_COUNT);
if (pci_alloc_msix(sc->ciss_dev, &val) != 0) {
if (pci_alloc_msi(sc->ciss_dev, &val) != 0)
return (EINVAL);
}
sc->ciss_msi = val;
if (bootverbose)
ciss_printf(sc, "Using %d MSIX interrupt%s\n", val,
(val != 1) ? "s" : "");
for (i = 0; i < val; i++)
sc->ciss_irq_rid[i] = i + 1;
return (0);
}
/************************************************************************
* Setup the Performant structures.
*/
static int
ciss_init_perf(struct ciss_softc *sc)
{
struct ciss_perf_config *pc = sc->ciss_perf;
int reply_size;
/*
* Create the DMA tag for the reply queue.
*/
reply_size = sizeof(uint64_t) * sc->ciss_max_requests;
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
reply_size, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ciss_reply_dmat)) {
ciss_printf(sc, "can't allocate reply DMA tag\n");
return(ENOMEM);
}
/*
* Allocate memory and make it available for DMA.
*/
if (bus_dmamem_alloc(sc->ciss_reply_dmat, (void **)&sc->ciss_reply,
BUS_DMA_NOWAIT, &sc->ciss_reply_map)) {
ciss_printf(sc, "can't allocate reply memory\n");
return(ENOMEM);
}
bus_dmamap_load(sc->ciss_reply_dmat, sc->ciss_reply_map, sc->ciss_reply,
reply_size, ciss_command_map_helper, &sc->ciss_reply_phys, 0);
bzero(sc->ciss_reply, reply_size);
sc->ciss_cycle = 0x1;
sc->ciss_rqidx = 0;
/*
* Preload the fetch table with common command sizes. This allows the
* hardware to not waste bus cycles for typical i/o commands, but also not
* tax the driver to be too exact in choosing sizes. The table is optimized
* for page-aligned i/o's, but since most i/o comes from the various pagers,
* it's a reasonable assumption to make.
*/
pc->fetch_count[CISS_SG_FETCH_NONE] = (sizeof(struct ciss_command) + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_1] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 1 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_2] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 2 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_4] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 4 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_8] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 8 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_16] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 16 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_32] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 32 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_MAX] = (CISS_COMMAND_ALLOC_SIZE + 15) / 16;
pc->rq_size = sc->ciss_max_requests; /* XXX less than the card supports? */
pc->rq_count = 1; /* XXX Hardcode for a single queue */
pc->rq_bank_hi = 0;
pc->rq_bank_lo = 0;
pc->rq[0].rq_addr_hi = 0x0;
pc->rq[0].rq_addr_lo = sc->ciss_reply_phys;
return(0);
}
/************************************************************************
* Wait for the adapter to come ready.
*/
static int
ciss_wait_adapter(struct ciss_softc *sc)
{
int i;
debug_called(1);
/*
* Wait for the adapter to come ready.
*/
if (!(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY)) {
ciss_printf(sc, "waiting for adapter to come ready...\n");
for (i = 0; !(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY); i++) {
DELAY(1000000); /* one second */
if (i > 30) {
ciss_printf(sc, "timed out waiting for adapter to come ready\n");
return(EIO);
}
}
}
return(0);
}
/************************************************************************
* Flush the adapter cache.
*/
static int
ciss_flush_adapter(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_bmic_flush_cache *cbfc;
int error, command_status;
debug_called(1);
cr = NULL;
cbfc = NULL;
/*
* Build a BMIC request to flush the cache. We don't disable
* it, as we may be going to do more I/O (eg. we are emulating
* the Synchronise Cache command).
*/
if ((cbfc = malloc(sizeof(*cbfc), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
error = ENOMEM;
goto out;
}
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_FLUSH_CACHE,
(void **)&cbfc, sizeof(*cbfc))) != 0)
goto out;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC FLUSH_CACHE command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
break;
default:
ciss_printf(sc, "error flushing cache (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
out:
if (cbfc != NULL)
free(cbfc, CISS_MALLOC_CLASS);
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
static void
ciss_soft_reset(struct ciss_softc *sc)
{
struct ciss_request *cr = NULL;
struct ciss_command *cc;
int i, error = 0;
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
/* only reset proxy controllers */
if (sc->ciss_controllers[i].physical.bus == 0)
continue;
if ((error = ciss_get_request(sc, &cr)) != 0)
break;
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_SOFT_RESET,
NULL, 0)) != 0)
break;
cc = cr->cr_cc;
cc->header.address = sc->ciss_controllers[i];
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0)
break;
ciss_release_request(cr);
}
if (error)
ciss_printf(sc, "error resetting controller (%d)\n", error);
if (cr != NULL)
ciss_release_request(cr);
}
/************************************************************************
* Allocate memory for the adapter command structures, initialise
* the request structures.
*
* Note that the entire set of commands are allocated in a single
* contiguous slab.
*/
static int
ciss_init_requests(struct ciss_softc *sc)
{
struct ciss_request *cr;
int i;
debug_called(1);
if (bootverbose)
ciss_printf(sc, "using %d of %d available commands\n",
sc->ciss_max_requests, sc->ciss_cfg->max_outstanding_commands);
/*
* Create the DMA tag for commands.
*/
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
32, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
CISS_COMMAND_ALLOC_SIZE *
sc->ciss_max_requests, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ciss_command_dmat)) {
ciss_printf(sc, "can't allocate command DMA tag\n");
return(ENOMEM);
}
/*
* Allocate memory and make it available for DMA.
*/
if (bus_dmamem_alloc(sc->ciss_command_dmat, (void **)&sc->ciss_command,
BUS_DMA_NOWAIT, &sc->ciss_command_map)) {
ciss_printf(sc, "can't allocate command memory\n");
return(ENOMEM);
}
bus_dmamap_load(sc->ciss_command_dmat, sc->ciss_command_map,sc->ciss_command,
CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests,
ciss_command_map_helper, &sc->ciss_command_phys, 0);
bzero(sc->ciss_command, CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests);
/*
* Set up the request and command structures, push requests onto
* the free queue.
*/
for (i = 1; i < sc->ciss_max_requests; i++) {
cr = &sc->ciss_request[i];
cr->cr_sc = sc;
cr->cr_tag = i;
cr->cr_cc = (struct ciss_command *)((uintptr_t)sc->ciss_command +
CISS_COMMAND_ALLOC_SIZE * i);
cr->cr_ccphys = sc->ciss_command_phys + CISS_COMMAND_ALLOC_SIZE * i;
bus_dmamap_create(sc->ciss_buffer_dmat, 0, &cr->cr_datamap);
ciss_enqueue_free(cr);
}
return(0);
}
static void
ciss_command_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
uint32_t *addr;
addr = arg;
*addr = segs[0].ds_addr;
}
/************************************************************************
* Identify the adapter, print some information about it.
*/
static int
ciss_identify_adapter(struct ciss_softc *sc)
{
struct ciss_request *cr;
int error, command_status;
debug_called(1);
cr = NULL;
/*
* Get a request, allocate storage for the adapter data.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_CTLR,
(void **)&sc->ciss_id,
sizeof(*sc->ciss_id))) != 0)
goto out;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC ID_CTLR command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
break;
case CISS_CMD_STATUS_DATA_UNDERRUN:
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "data over/underrun reading adapter information\n");
default:
ciss_printf(sc, "error reading adapter information (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
/* sanity-check reply */
if (!(sc->ciss_id->controller_flags & CONTROLLER_FLAGS_BIG_MAP_SUPPORT)) {
ciss_printf(sc, "adapter does not support BIG_MAP\n");
error = ENXIO;
goto out;
}
#if 0
/* XXX later revisions may not need this */
sc->ciss_flags |= CISS_FLAG_FAKE_SYNCH;
#endif
/* XXX only really required for old 5300 adapters? */
sc->ciss_flags |= CISS_FLAG_BMIC_ABORT;
/*
* Earlier controller specs do not contain these config
* entries, so assume that a 0 means its old and assign
* these values to the defaults that were established
* when this driver was developed for them
*/
if (sc->ciss_cfg->max_logical_supported == 0)
sc->ciss_cfg->max_logical_supported = CISS_MAX_LOGICAL;
if (sc->ciss_cfg->max_physical_supported == 0)
sc->ciss_cfg->max_physical_supported = CISS_MAX_PHYSICAL;
/* print information */
if (bootverbose) {
ciss_printf(sc, " %d logical drive%s configured\n",
sc->ciss_id->configured_logical_drives,
(sc->ciss_id->configured_logical_drives == 1) ? "" : "s");
ciss_printf(sc, " firmware %4.4s\n", sc->ciss_id->running_firmware_revision);
ciss_printf(sc, " %d SCSI channels\n", sc->ciss_id->scsi_chip_count);
ciss_printf(sc, " signature '%.4s'\n", sc->ciss_cfg->signature);
ciss_printf(sc, " valence %d\n", sc->ciss_cfg->valence);
ciss_printf(sc, " supported I/O methods 0x%b\n",
sc->ciss_cfg->supported_methods,
"\20\1READY\2simple\3performant\4MEMQ\n");
ciss_printf(sc, " active I/O method 0x%b\n",
sc->ciss_cfg->active_method, "\20\2simple\3performant\4MEMQ\n");
ciss_printf(sc, " 4G page base 0x%08x\n",
sc->ciss_cfg->command_physlimit);
ciss_printf(sc, " interrupt coalesce delay %dus\n",
sc->ciss_cfg->interrupt_coalesce_delay);
ciss_printf(sc, " interrupt coalesce count %d\n",
sc->ciss_cfg->interrupt_coalesce_count);
ciss_printf(sc, " max outstanding commands %d\n",
sc->ciss_cfg->max_outstanding_commands);
ciss_printf(sc, " bus types 0x%b\n", sc->ciss_cfg->bus_types,
"\20\1ultra2\2ultra3\10fibre1\11fibre2\n");
ciss_printf(sc, " server name '%.16s'\n", sc->ciss_cfg->server_name);
ciss_printf(sc, " heartbeat 0x%x\n", sc->ciss_cfg->heartbeat);
ciss_printf(sc, " max logical logical volumes: %d\n", sc->ciss_cfg->max_logical_supported);
ciss_printf(sc, " max physical disks supported: %d\n", sc->ciss_cfg->max_physical_supported);
ciss_printf(sc, " max physical disks per logical volume: %d\n", sc->ciss_cfg->max_physical_per_logical);
ciss_printf(sc, " JBOD Support is %s\n", (sc->ciss_id->uiYetMoreControllerFlags & YMORE_CONTROLLER_FLAGS_JBOD_SUPPORTED) ?
"Available" : "Unavailable");
ciss_printf(sc, " JBOD Mode is %s\n", (sc->ciss_id->PowerUPNvramFlags & PWR_UP_FLAG_JBOD_ENABLED) ?
"Enabled" : "Disabled");
}
out:
if (error) {
if (sc->ciss_id != NULL) {
free(sc->ciss_id, CISS_MALLOC_CLASS);
sc->ciss_id = NULL;
}
}
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Helper routine for generating a list of logical and physical luns.
*/
static struct ciss_lun_report *
ciss_report_luns(struct ciss_softc *sc, int opcode, int nunits)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_report_cdb *crc;
struct ciss_lun_report *cll;
int command_status;
int report_size;
int error = 0;
debug_called(1);
cr = NULL;
cll = NULL;
/*
* Get a request, allocate storage for the address list.
*/
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
report_size = sizeof(*cll) + nunits * sizeof(union ciss_device_address);
if ((cll = malloc(report_size, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
ciss_printf(sc, "can't allocate memory for lun report\n");
error = ENOMEM;
goto out;
}
/*
* Build the Report Logical/Physical LUNs command.
*/
cc = cr->cr_cc;
cr->cr_data = cll;
cr->cr_length = report_size;
cr->cr_flags = CISS_REQ_DATAIN;
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*crc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 30; /* XXX better suggestions? */
crc = (struct ciss_report_cdb *)&(cc->cdb.cdb[0]);
bzero(crc, sizeof(*crc));
crc->opcode = opcode;
crc->length = htonl(report_size); /* big-endian field */
cll->list_size = htonl(report_size - sizeof(*cll)); /* big-endian field */
/*
* Submit the request and wait for it to complete. (timeout
* here should be much greater than above)
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending %d LUN command (%d)\n", opcode, error);
goto out;
}
/*
* Check response. Note that data over/underrun is OK.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
case CISS_CMD_STATUS_DATA_UNDERRUN: /* buffer too large, not bad */
break;
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "WARNING: more units than driver limit (%d)\n",
sc->ciss_cfg->max_logical_supported);
break;
default:
ciss_printf(sc, "error detecting logical drive configuration (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
ciss_release_request(cr);
cr = NULL;
out:
if (cr != NULL)
ciss_release_request(cr);
if (error && cll != NULL) {
free(cll, CISS_MALLOC_CLASS);
cll = NULL;
}
return(cll);
}
/************************************************************************
* Find logical drives on the adapter.
*/
static int
ciss_init_logical(struct ciss_softc *sc)
{
struct ciss_lun_report *cll;
int error = 0, i, j;
int ndrives;
debug_called(1);
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS,
sc->ciss_cfg->max_logical_supported);
if (cll == NULL) {
error = ENXIO;
goto out;
}
/* sanity-check reply */
ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
if ((ndrives < 0) || (ndrives > sc->ciss_cfg->max_logical_supported)) {
ciss_printf(sc, "adapter claims to report absurd number of logical drives (%d > %d)\n",
ndrives, sc->ciss_cfg->max_logical_supported);
error = ENXIO;
goto out;
}
/*
* Save logical drive information.
*/
if (bootverbose) {
ciss_printf(sc, "%d logical drive%s\n",
ndrives, (ndrives > 1 || ndrives == 0) ? "s" : "");
}
sc->ciss_logical =
malloc(sc->ciss_max_logical_bus * sizeof(struct ciss_ldrive *),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_logical == NULL) {
error = ENXIO;
goto out;
}
for (i = 0; i <= sc->ciss_max_logical_bus; i++) {
sc->ciss_logical[i] =
malloc(sc->ciss_cfg->max_logical_supported *
sizeof(struct ciss_ldrive),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_logical[i] == NULL) {
error = ENXIO;
goto out;
}
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++)
sc->ciss_logical[i][j].cl_status = CISS_LD_NONEXISTENT;
}
for (i = 0; i < sc->ciss_cfg->max_logical_supported; i++) {
if (i < ndrives) {
struct ciss_ldrive *ld;
int bus, target;
bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun);
target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun);
ld = &sc->ciss_logical[bus][target];
ld->cl_address = cll->lun[i];
ld->cl_controller = &sc->ciss_controllers[bus];
if (ciss_identify_logical(sc, ld) != 0)
continue;
/*
* If the drive has had media exchanged, we should bring it online.
*/
if (ld->cl_lstatus->media_exchanged)
ciss_accept_media(sc, ld);
}
}
out:
if (cll != NULL)
free(cll, CISS_MALLOC_CLASS);
return(error);
}
static int
ciss_init_physical(struct ciss_softc *sc)
{
struct ciss_lun_report *cll;
int error = 0, i;
int nphys;
int bus, target;
debug_called(1);
bus = 0;
target = 0;
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_PHYSICAL_LUNS,
sc->ciss_cfg->max_physical_supported);
if (cll == NULL) {
error = ENXIO;
goto out;
}
nphys = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
if (bootverbose) {
ciss_printf(sc, "%d physical device%s\n",
nphys, (nphys > 1 || nphys == 0) ? "s" : "");
}
/*
* Figure out the bus mapping.
* Logical buses include both the local logical bus for local arrays and
* proxy buses for remote arrays. Physical buses are numbered by the
* controller and represent physical buses that hold physical devices.
* We shift these bus numbers so that everything fits into a single flat
* numbering space for CAM. Logical buses occupy the first 32 CAM bus
* numbers, and the physical bus numbers are shifted to be above that.
* This results in the various driver arrays being indexed as follows:
*
* ciss_controllers[] - indexed by logical bus
* ciss_cam_sim[] - indexed by both logical and physical, with physical
* being shifted by 32.
* ciss_logical[][] - indexed by logical bus
* ciss_physical[][] - indexed by physical bus
*
* XXX This is getting more and more hackish. CISS really doesn't play
* well with a standard SCSI model; devices are addressed via magic
* cookies, not via b/t/l addresses. Since there is no way to store
* the cookie in the CAM device object, we have to keep these lookup
* tables handy so that the devices can be found quickly at the cost
* of wasting memory and having a convoluted lookup scheme. This
* driver should probably be converted to block interface.
*/
/*
* If the L2 and L3 SCSI addresses are 0, this signifies a proxy
* controller. A proxy controller is another physical controller
* behind the primary PCI controller. We need to know about this
* so that BMIC commands can be properly targeted. There can be
* proxy controllers attached to a single PCI controller, so
* find the highest numbered one so the array can be properly
* sized.
*/
sc->ciss_max_logical_bus = 1;
for (i = 0; i < nphys; i++) {
if (cll->lun[i].physical.extra_address == 0) {
bus = cll->lun[i].physical.bus;
sc->ciss_max_logical_bus = max(sc->ciss_max_logical_bus, bus) + 1;
} else {
bus = CISS_EXTRA_BUS2(cll->lun[i].physical.extra_address);
sc->ciss_max_physical_bus = max(sc->ciss_max_physical_bus, bus);
}
}
sc->ciss_controllers =
malloc(sc->ciss_max_logical_bus * sizeof (union ciss_device_address),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_controllers == NULL) {
ciss_printf(sc, "Could not allocate memory for controller map\n");
error = ENOMEM;
goto out;
}
/* setup a map of controller addresses */
for (i = 0; i < nphys; i++) {
if (cll->lun[i].physical.extra_address == 0) {
sc->ciss_controllers[cll->lun[i].physical.bus] = cll->lun[i];
}
}
sc->ciss_physical =
malloc(sc->ciss_max_physical_bus * sizeof(struct ciss_pdrive *),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_physical == NULL) {
ciss_printf(sc, "Could not allocate memory for physical device map\n");
error = ENOMEM;
goto out;
}
for (i = 0; i < sc->ciss_max_physical_bus; i++) {
sc->ciss_physical[i] =
malloc(sizeof(struct ciss_pdrive) * CISS_MAX_PHYSTGT,
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_physical[i] == NULL) {
ciss_printf(sc, "Could not allocate memory for target map\n");
error = ENOMEM;
goto out;
}
}
ciss_filter_physical(sc, cll);
out:
if (cll != NULL)
free(cll, CISS_MALLOC_CLASS);
return(error);
}
static int
ciss_filter_physical(struct ciss_softc *sc, struct ciss_lun_report *cll)
{
u_int32_t ea;
int i, nphys;
int bus, target;
nphys = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
for (i = 0; i < nphys; i++) {
if (cll->lun[i].physical.extra_address == 0)
continue;
/*
* Filter out devices that we don't want. Level 3 LUNs could
* probably be supported, but the docs don't give enough of a
* hint to know how.
*
* The mode field of the physical address is likely set to have
* hard disks masked out. Honor it unless the user has overridden
* us with the tunable. We also munge the inquiry data for these
* disks so that they only show up as passthrough devices. Keeping
* them visible in this fashion is useful for doing things like
* flashing firmware.
*/
ea = cll->lun[i].physical.extra_address;
if ((CISS_EXTRA_BUS3(ea) != 0) || (CISS_EXTRA_TARGET3(ea) != 0) ||
(CISS_EXTRA_MODE2(ea) == 0x3))
continue;
if ((ciss_expose_hidden_physical == 0) &&
(cll->lun[i].physical.mode == CISS_HDR_ADDRESS_MODE_MASK_PERIPHERAL))
continue;
/*
* Note: CISS firmware numbers physical busses starting at '1', not
* '0'. This numbering is internal to the firmware and is only
* used as a hint here.
*/
bus = CISS_EXTRA_BUS2(ea) - 1;
target = CISS_EXTRA_TARGET2(ea);
sc->ciss_physical[bus][target].cp_address = cll->lun[i];
sc->ciss_physical[bus][target].cp_online = 1;
}
return (0);
}
static int
ciss_inquiry_logical(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct scsi_inquiry *inq;
int error;
int command_status;
cr = NULL;
bzero(&ld->cl_geometry, sizeof(ld->cl_geometry));
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
cc = cr->cr_cc;
cr->cr_data = &ld->cl_geometry;
cr->cr_length = sizeof(ld->cl_geometry);
cr->cr_flags = CISS_REQ_DATAIN;
cc->header.address = ld->cl_address;
cc->cdb.cdb_length = 6;
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 30;
inq = (struct scsi_inquiry *)&(cc->cdb.cdb[0]);
inq->opcode = INQUIRY;
inq->byte2 = SI_EVPD;
inq->page_code = CISS_VPD_LOGICAL_DRIVE_GEOMETRY;
scsi_ulto2b(sizeof(ld->cl_geometry), inq->length);
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error getting geometry (%d)\n", error);
goto out;
}
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
case CISS_CMD_STATUS_DATA_UNDERRUN:
break;
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "WARNING: Data overrun\n");
break;
default:
ciss_printf(sc, "Error detecting logical drive geometry (%s)\n",
ciss_name_command_status(command_status));
break;
}
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Identify a logical drive, initialise state related to it.
*/
static int
ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
int error, command_status;
debug_called(1);
cr = NULL;
/*
* Build a BMIC request to fetch the drive ID.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LDRIVE,
(void **)&ld->cl_ldrive,
sizeof(*ld->cl_ldrive))) != 0)
goto out;
cc = cr->cr_cc;
cc->header.address = *ld->cl_controller; /* target controller */
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC LDRIVE command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
break;
case CISS_CMD_STATUS_DATA_UNDERRUN:
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "data over/underrun reading logical drive ID\n");
default:
ciss_printf(sc, "error reading logical drive ID (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
ciss_release_request(cr);
cr = NULL;
/*
* Build a CISS BMIC command to get the logical drive status.
*/
if ((error = ciss_get_ldrive_status(sc, ld)) != 0)
goto out;
/*
* Get the logical drive geometry.
*/
if ((error = ciss_inquiry_logical(sc, ld)) != 0)
goto out;
/*
* Print the drive's basic characteristics.
*/
if (bootverbose) {
ciss_printf(sc, "logical drive (b%dt%d): %s, %dMB ",
CISS_LUN_TO_BUS(ld->cl_address.logical.lun),
CISS_LUN_TO_TARGET(ld->cl_address.logical.lun),
ciss_name_ldrive_org(ld->cl_ldrive->fault_tolerance),
((ld->cl_ldrive->blocks_available / (1024 * 1024)) *
ld->cl_ldrive->block_size));
ciss_print_ldrive(sc, ld);
}
out:
if (error != 0) {
/* make the drive not-exist */
ld->cl_status = CISS_LD_NONEXISTENT;
if (ld->cl_ldrive != NULL) {
free(ld->cl_ldrive, CISS_MALLOC_CLASS);
ld->cl_ldrive = NULL;
}
if (ld->cl_lstatus != NULL) {
free(ld->cl_lstatus, CISS_MALLOC_CLASS);
ld->cl_lstatus = NULL;
}
}
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Get status for a logical drive.
*
* XXX should we also do this in response to Test Unit Ready?
*/
static int
ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
int error, command_status;
/*
* Build a CISS BMIC command to get the logical drive status.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LSTATUS,
(void **)&ld->cl_lstatus,
sizeof(*ld->cl_lstatus))) != 0)
goto out;
cc = cr->cr_cc;
cc->header.address = *ld->cl_controller; /* target controller */
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC LSTATUS command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
break;
case CISS_CMD_STATUS_DATA_UNDERRUN:
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "data over/underrun reading logical drive status\n");
default:
ciss_printf(sc, "error reading logical drive status (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
/*
* Set the drive's summary status based on the returned status.
*
* XXX testing shows that a failed JBOD drive comes back at next
* boot in "queued for expansion" mode. WTF?
*/
ld->cl_status = ciss_decode_ldrive_status(ld->cl_lstatus->status);
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Notify the adapter of a config update.
*/
static int
ciss_update_config(struct ciss_softc *sc)
{
int i;
debug_called(1);
CISS_TL_SIMPLE_WRITE(sc, CISS_TL_SIMPLE_IDBR, CISS_TL_SIMPLE_IDBR_CFG_TABLE);
for (i = 0; i < 1000; i++) {
if (!(CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR) &
CISS_TL_SIMPLE_IDBR_CFG_TABLE)) {
return(0);
}
DELAY(1000);
}
return(1);
}
/************************************************************************
* Accept new media into a logical drive.
*
* XXX The drive has previously been offline; it would be good if we
* could make sure it's not open right now.
*/
static int
ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
int command_status;
int error = 0, ldrive;
ldrive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
debug(0, "bringing logical drive %d back online", ldrive);
/*
* Build a CISS BMIC command to bring the drive back online.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ACCEPT_MEDIA,
NULL, 0)) != 0)
goto out;
cc = cr->cr_cc;
cc->header.address = *ld->cl_controller; /* target controller */
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
cbc->log_drive = ldrive;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC ACCEPT MEDIA command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* all OK */
/* we should get a logical drive status changed event here */
break;
default:
ciss_printf(cr->cr_sc, "error accepting media into failed logical drive (%s)\n",
ciss_name_command_status(command_status));
break;
}
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Release adapter resources.
*/
static void
ciss_free(struct ciss_softc *sc)
{
struct ciss_request *cr;
int i, j;
debug_called(1);
/* we're going away */
sc->ciss_flags |= CISS_FLAG_ABORTING;
/* terminate the periodic heartbeat routine */
callout_stop(&sc->ciss_periodic);
/* cancel the Event Notify chain */
ciss_notify_abort(sc);
ciss_kill_notify_thread(sc);
/* disconnect from CAM */
if (sc->ciss_cam_sim) {
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
if (sc->ciss_cam_sim[i]) {
xpt_bus_deregister(cam_sim_path(sc->ciss_cam_sim[i]));
cam_sim_free(sc->ciss_cam_sim[i], 0);
}
}
for (i = CISS_PHYSICAL_BASE; i < sc->ciss_max_physical_bus +
CISS_PHYSICAL_BASE; i++) {
if (sc->ciss_cam_sim[i]) {
xpt_bus_deregister(cam_sim_path(sc->ciss_cam_sim[i]));
cam_sim_free(sc->ciss_cam_sim[i], 0);
}
}
free(sc->ciss_cam_sim, CISS_MALLOC_CLASS);
}
if (sc->ciss_cam_devq)
cam_simq_free(sc->ciss_cam_devq);
/* remove the control device */
mtx_unlock(&sc->ciss_mtx);
if (sc->ciss_dev_t != NULL)
destroy_dev(sc->ciss_dev_t);
/* Final cleanup of the callout. */
callout_drain(&sc->ciss_periodic);
mtx_destroy(&sc->ciss_mtx);
/* free the controller data */
if (sc->ciss_id != NULL)
free(sc->ciss_id, CISS_MALLOC_CLASS);
/* release I/O resources */
if (sc->ciss_regs_resource != NULL)
bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY,
sc->ciss_regs_rid, sc->ciss_regs_resource);
if (sc->ciss_cfg_resource != NULL)
bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY,
sc->ciss_cfg_rid, sc->ciss_cfg_resource);
if (sc->ciss_intr != NULL)
bus_teardown_intr(sc->ciss_dev, sc->ciss_irq_resource, sc->ciss_intr);
if (sc->ciss_irq_resource != NULL)
bus_release_resource(sc->ciss_dev, SYS_RES_IRQ,
sc->ciss_irq_rid[0], sc->ciss_irq_resource);
if (sc->ciss_msi)
pci_release_msi(sc->ciss_dev);
while ((cr = ciss_dequeue_free(sc)) != NULL)
bus_dmamap_destroy(sc->ciss_buffer_dmat, cr->cr_datamap);
if (sc->ciss_buffer_dmat)
bus_dma_tag_destroy(sc->ciss_buffer_dmat);
/* destroy command memory and DMA tag */
if (sc->ciss_command != NULL) {
bus_dmamap_unload(sc->ciss_command_dmat, sc->ciss_command_map);
bus_dmamem_free(sc->ciss_command_dmat, sc->ciss_command, sc->ciss_command_map);
}
if (sc->ciss_command_dmat)
bus_dma_tag_destroy(sc->ciss_command_dmat);
if (sc->ciss_reply) {
bus_dmamap_unload(sc->ciss_reply_dmat, sc->ciss_reply_map);
bus_dmamem_free(sc->ciss_reply_dmat, sc->ciss_reply, sc->ciss_reply_map);
}
if (sc->ciss_reply_dmat)
bus_dma_tag_destroy(sc->ciss_reply_dmat);
/* destroy DMA tags */
if (sc->ciss_parent_dmat)
bus_dma_tag_destroy(sc->ciss_parent_dmat);
if (sc->ciss_logical) {
for (i = 0; i <= sc->ciss_max_logical_bus; i++) {
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) {
if (sc->ciss_logical[i][j].cl_ldrive)
free(sc->ciss_logical[i][j].cl_ldrive, CISS_MALLOC_CLASS);
if (sc->ciss_logical[i][j].cl_lstatus)
free(sc->ciss_logical[i][j].cl_lstatus, CISS_MALLOC_CLASS);
}
free(sc->ciss_logical[i], CISS_MALLOC_CLASS);
}
free(sc->ciss_logical, CISS_MALLOC_CLASS);
}
if (sc->ciss_physical) {
for (i = 0; i < sc->ciss_max_physical_bus; i++)
free(sc->ciss_physical[i], CISS_MALLOC_CLASS);
free(sc->ciss_physical, CISS_MALLOC_CLASS);
}
if (sc->ciss_controllers)
free(sc->ciss_controllers, CISS_MALLOC_CLASS);
}
/************************************************************************
* Give a command to the adapter.
*
* Note that this uses the simple transport layer directly. If we
* want to add support for other layers, we'll need a switch of some
* sort.
*
* Note that the simple transport layer has no way of refusing a
* command; we only have as many request structures as the adapter
* supports commands, so we don't have to check (this presumes that
* the adapter can handle commands as fast as we throw them at it).
*/
static int
ciss_start(struct ciss_request *cr)
{
struct ciss_command *cc; /* XXX debugging only */
int error;
cc = cr->cr_cc;
debug(2, "post command %d tag %d ", cr->cr_tag, cc->header.host_tag);
/*
* Map the request's data.
*/
if ((error = ciss_map_request(cr)))
return(error);
#if 0
ciss_print_request(cr);
#endif
return(0);
}
/************************************************************************
* Fetch completed request(s) from the adapter, queue them for
* completion handling.
*
* Note that this uses the simple transport layer directly. If we
* want to add support for other layers, we'll need a switch of some
* sort.
*
* Note that the simple transport mechanism does not require any
* reentrancy protection; the OPQ read is atomic. If there is a
* chance of a race with something else that might move the request
* off the busy list, then we will have to lock against that
* (eg. timeouts, etc.)
*/
static void
ciss_done(struct ciss_softc *sc, cr_qhead_t *qh)
{
struct ciss_request *cr;
struct ciss_command *cc;
u_int32_t tag, index;
debug_called(3);
/*
* Loop quickly taking requests from the adapter and moving them
* to the completed queue.
*/
for (;;) {
tag = CISS_TL_SIMPLE_FETCH_CMD(sc);
if (tag == CISS_TL_SIMPLE_OPQ_EMPTY)
break;
index = tag >> 2;
debug(2, "completed command %d%s", index,
(tag & CISS_HDR_HOST_TAG_ERROR) ? " with error" : "");
if (index >= sc->ciss_max_requests) {
ciss_printf(sc, "completed invalid request %d (0x%x)\n", index, tag);
continue;
}
cr = &(sc->ciss_request[index]);
cc = cr->cr_cc;
cc->header.host_tag = tag; /* not updated by adapter */
ciss_enqueue_complete(cr, qh);
}
}
static void
ciss_perf_done(struct ciss_softc *sc, cr_qhead_t *qh)
{
struct ciss_request *cr;
struct ciss_command *cc;
u_int32_t tag, index;
debug_called(3);
/*
* Loop quickly taking requests from the adapter and moving them
* to the completed queue.
*/
for (;;) {
tag = sc->ciss_reply[sc->ciss_rqidx];
if ((tag & CISS_CYCLE_MASK) != sc->ciss_cycle)
break;
index = tag >> 2;
debug(2, "completed command %d%s\n", index,
(tag & CISS_HDR_HOST_TAG_ERROR) ? " with error" : "");
if (index < sc->ciss_max_requests) {
cr = &(sc->ciss_request[index]);
cc = cr->cr_cc;
cc->header.host_tag = tag; /* not updated by adapter */
ciss_enqueue_complete(cr, qh);
} else {
ciss_printf(sc, "completed invalid request %d (0x%x)\n", index, tag);
}
if (++sc->ciss_rqidx == sc->ciss_max_requests) {
sc->ciss_rqidx = 0;
sc->ciss_cycle ^= 1;
}
}
}
/************************************************************************
* Take an interrupt from the adapter.
*/
static void
ciss_intr(void *arg)
{
cr_qhead_t qh;
struct ciss_softc *sc = (struct ciss_softc *)arg;
/*
* The only interrupt we recognise indicates that there are
* entries in the outbound post queue.
*/
STAILQ_INIT(&qh);
ciss_done(sc, &qh);
mtx_lock(&sc->ciss_mtx);
ciss_complete(sc, &qh);
mtx_unlock(&sc->ciss_mtx);
}
static void
ciss_perf_intr(void *arg)
{
struct ciss_softc *sc = (struct ciss_softc *)arg;
/* Clear the interrupt and flush the bridges. Docs say that the flush
* needs to be done twice, which doesn't seem right.
*/
CISS_TL_PERF_CLEAR_INT(sc);
CISS_TL_PERF_FLUSH_INT(sc);
ciss_perf_msi_intr(sc);
}
static void
ciss_perf_msi_intr(void *arg)
{
cr_qhead_t qh;
struct ciss_softc *sc = (struct ciss_softc *)arg;
STAILQ_INIT(&qh);
ciss_perf_done(sc, &qh);
mtx_lock(&sc->ciss_mtx);
ciss_complete(sc, &qh);
mtx_unlock(&sc->ciss_mtx);
}
/************************************************************************
* Process completed requests.
*
* Requests can be completed in three fashions:
*
* - by invoking a callback function (cr_complete is non-null)
* - by waking up a sleeper (cr_flags has CISS_REQ_SLEEP set)
* - by clearing the CISS_REQ_POLL flag in interrupt/timeout context
*/
static void
ciss_complete(struct ciss_softc *sc, cr_qhead_t *qh)
{
struct ciss_request *cr;
debug_called(2);
/*
* Loop taking requests off the completed queue and performing
* completion processing on them.
*/
for (;;) {
if ((cr = ciss_dequeue_complete(sc, qh)) == NULL)
break;
ciss_unmap_request(cr);
if ((cr->cr_flags & CISS_REQ_BUSY) == 0)
ciss_printf(sc, "WARNING: completing non-busy request\n");
cr->cr_flags &= ~CISS_REQ_BUSY;
/*
* If the request has a callback, invoke it.
*/
if (cr->cr_complete != NULL) {
cr->cr_complete(cr);
continue;
}
/*
* If someone is sleeping on this request, wake them up.
*/
if (cr->cr_flags & CISS_REQ_SLEEP) {
cr->cr_flags &= ~CISS_REQ_SLEEP;
wakeup(cr);
continue;
}
/*
* If someone is polling this request for completion, signal.
*/
if (cr->cr_flags & CISS_REQ_POLL) {
cr->cr_flags &= ~CISS_REQ_POLL;
continue;
}
/*
* Give up and throw the request back on the free queue. This
* should never happen; resources will probably be lost.
*/
ciss_printf(sc, "WARNING: completed command with no submitter\n");
ciss_enqueue_free(cr);
}
}
/************************************************************************
* Report on the completion status of a request, and pass back SCSI
* and command status values.
*/
static int
_ciss_report_request(struct ciss_request *cr, int *command_status, int *scsi_status, const char *func)
{
struct ciss_command *cc;
struct ciss_error_info *ce;
debug_called(2);
cc = cr->cr_cc;
ce = (struct ciss_error_info *)&(cc->sg[0]);
/*
* We don't consider data under/overrun an error for the Report
* Logical/Physical LUNs commands.
*/
if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) &&
((ce->command_status == CISS_CMD_STATUS_DATA_OVERRUN) ||
(ce->command_status == CISS_CMD_STATUS_DATA_UNDERRUN)) &&
((cc->cdb.cdb[0] == CISS_OPCODE_REPORT_LOGICAL_LUNS) ||
(cc->cdb.cdb[0] == CISS_OPCODE_REPORT_PHYSICAL_LUNS) ||
(cc->cdb.cdb[0] == INQUIRY))) {
cc->header.host_tag &= ~CISS_HDR_HOST_TAG_ERROR;
debug(2, "ignoring irrelevant under/overrun error");
}
/*
* Check the command's error bit, if clear, there's no status and
* everything is OK.
*/
if (!(cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR)) {
if (scsi_status != NULL)
*scsi_status = SCSI_STATUS_OK;
if (command_status != NULL)
*command_status = CISS_CMD_STATUS_SUCCESS;
return(0);
} else {
if (command_status != NULL)
*command_status = ce->command_status;
if (scsi_status != NULL) {
if (ce->command_status == CISS_CMD_STATUS_TARGET_STATUS) {
*scsi_status = ce->scsi_status;
} else {
*scsi_status = -1;
}
}
if (bootverbose)
ciss_printf(cr->cr_sc, "command status 0x%x (%s) scsi status 0x%x\n",
ce->command_status, ciss_name_command_status(ce->command_status),
ce->scsi_status);
if (ce->command_status == CISS_CMD_STATUS_INVALID_COMMAND) {
ciss_printf(cr->cr_sc, "invalid command, offense size %d at %d, value 0x%x, function %s\n",
ce->additional_error_info.invalid_command.offense_size,
ce->additional_error_info.invalid_command.offense_offset,
ce->additional_error_info.invalid_command.offense_value,
func);
}
}
#if 0
ciss_print_request(cr);
#endif
return(1);
}
/************************************************************************
* Issue a request and don't return until it's completed.
*
* Depending on adapter status, we may poll or sleep waiting for
* completion.
*/
static int
ciss_synch_request(struct ciss_request *cr, int timeout)
{
if (cr->cr_sc->ciss_flags & CISS_FLAG_RUNNING) {
return(ciss_wait_request(cr, timeout));
} else {
return(ciss_poll_request(cr, timeout));
}
}
/************************************************************************
* Issue a request and poll for completion.
*
* Timeout in milliseconds.
*/
static int
ciss_poll_request(struct ciss_request *cr, int timeout)
{
cr_qhead_t qh;
struct ciss_softc *sc;
int error;
debug_called(2);
STAILQ_INIT(&qh);
sc = cr->cr_sc;
cr->cr_flags |= CISS_REQ_POLL;
if ((error = ciss_start(cr)) != 0)
return(error);
do {
if (sc->ciss_perf)
ciss_perf_done(sc, &qh);
else
ciss_done(sc, &qh);
ciss_complete(sc, &qh);
if (!(cr->cr_flags & CISS_REQ_POLL))
return(0);
DELAY(1000);
} while (timeout-- >= 0);
return(EWOULDBLOCK);
}
/************************************************************************
* Issue a request and sleep waiting for completion.
*
* Timeout in milliseconds. Note that a spurious wakeup will reset
* the timeout.
*/
static int
ciss_wait_request(struct ciss_request *cr, int timeout)
{
int error;
debug_called(2);
cr->cr_flags |= CISS_REQ_SLEEP;
if ((error = ciss_start(cr)) != 0)
return(error);
while ((cr->cr_flags & CISS_REQ_SLEEP) && (error != EWOULDBLOCK)) {
error = msleep_sbt(cr, &cr->cr_sc->ciss_mtx, PRIBIO, "cissREQ",
SBT_1MS * timeout, 0, 0);
}
return(error);
}
#if 0
/************************************************************************
* Abort a request. Note that a potential exists here to race the
* request being completed; the caller must deal with this.
*/
static int
ciss_abort_request(struct ciss_request *ar)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_message_cdb *cmc;
int error;
debug_called(1);
/* get a request */
if ((error = ciss_get_request(ar->cr_sc, &cr)) != 0)
return(error);
/* build the abort command */
cc = cr->cr_cc;
cc->header.address.mode.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL; /* addressing? */
cc->header.address.physical.target = 0;
cc->header.address.physical.bus = 0;
cc->cdb.cdb_length = sizeof(*cmc);
cc->cdb.type = CISS_CDB_TYPE_MESSAGE;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_NONE;
cc->cdb.timeout = 30;
cmc = (struct ciss_message_cdb *)&(cc->cdb.cdb[0]);
cmc->opcode = CISS_OPCODE_MESSAGE_ABORT;
cmc->type = CISS_MESSAGE_ABORT_TASK;
cmc->abort_tag = ar->cr_tag; /* endianness?? */
/*
* Send the request and wait for a response. If we believe we
* aborted the request OK, clear the flag that indicates it's
* running.
*/
error = ciss_synch_request(cr, 35 * 1000);
if (!error)
error = ciss_report_request(cr, NULL, NULL);
ciss_release_request(cr);
return(error);
}
#endif
/************************************************************************
* Fetch and initialise a request
*/
static int
ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp)
{
struct ciss_request *cr;
debug_called(2);
/*
* Get a request and clean it up.
*/
if ((cr = ciss_dequeue_free(sc)) == NULL)
return(ENOMEM);
cr->cr_data = NULL;
cr->cr_flags = 0;
cr->cr_complete = NULL;
cr->cr_private = NULL;
cr->cr_sg_tag = CISS_SG_MAX; /* Backstop to prevent accidents */
ciss_preen_command(cr);
*crp = cr;
return(0);
}
static void
ciss_preen_command(struct ciss_request *cr)
{
struct ciss_command *cc;
u_int32_t cmdphys;
/*
* Clean up the command structure.
*
* Note that we set up the error_info structure here, since the
* length can be overwritten by any command.
*/
cc = cr->cr_cc;
cc->header.sg_in_list = 0; /* kinda inefficient this way */
cc->header.sg_total = 0;
cc->header.host_tag = cr->cr_tag << 2;
cc->header.host_tag_zeroes = 0;
bzero(&(cc->sg[0]), CISS_COMMAND_ALLOC_SIZE - sizeof(struct ciss_command));
cmdphys = cr->cr_ccphys;
cc->error_info.error_info_address = cmdphys + sizeof(struct ciss_command);
cc->error_info.error_info_length = CISS_COMMAND_ALLOC_SIZE - sizeof(struct ciss_command);
}
/************************************************************************
* Release a request to the free list.
*/
static void
ciss_release_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
debug_called(2);
sc = cr->cr_sc;
/* release the request to the free queue */
ciss_requeue_free(cr);
}
/************************************************************************
* Allocate a request that will be used to send a BMIC command. Do some
* of the common setup here to avoid duplicating it everywhere else.
*/
static int
ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp,
int opcode, void **bufp, size_t bufsize)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
void *buf;
int error;
int dataout;
debug_called(2);
cr = NULL;
buf = NULL;
/*
* Get a request.
*/
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
/*
* Allocate data storage if requested, determine the data direction.
*/
dataout = 0;
if ((bufsize > 0) && (bufp != NULL)) {
if (*bufp == NULL) {
if ((buf = malloc(bufsize, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
error = ENOMEM;
goto out;
}
} else {
buf = *bufp;
dataout = 1; /* we are given a buffer, so we are writing */
}
}
/*
* Build a CISS BMIC command to get the logical drive ID.
*/
cr->cr_data = buf;
cr->cr_length = bufsize;
if (!dataout)
cr->cr_flags = CISS_REQ_DATAIN;
cc = cr->cr_cc;
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*cbc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = dataout ? CISS_CDB_DIRECTION_WRITE : CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 0;
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
bzero(cbc, sizeof(*cbc));
cbc->opcode = dataout ? CISS_ARRAY_CONTROLLER_WRITE : CISS_ARRAY_CONTROLLER_READ;
cbc->bmic_opcode = opcode;
cbc->size = htons((u_int16_t)bufsize);
out:
if (error) {
if (cr != NULL)
ciss_release_request(cr);
} else {
*crp = cr;
if ((bufp != NULL) && (*bufp == NULL) && (buf != NULL))
*bufp = buf;
}
return(error);
}
/************************************************************************
* Handle a command passed in from userspace.
*/
static int
ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_error_info *ce;
int error = 0;
debug_called(1);
cr = NULL;
/*
* Get a request.
*/
while (ciss_get_request(sc, &cr) != 0)
msleep(sc, &sc->ciss_mtx, PPAUSE, "cissREQ", hz);
cc = cr->cr_cc;
/*
* Allocate an in-kernel databuffer if required, copy in user data.
*/
mtx_unlock(&sc->ciss_mtx);
cr->cr_length = ioc->buf_size;
if (ioc->buf_size > 0) {
if ((cr->cr_data = malloc(ioc->buf_size, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
error = ENOMEM;
goto out_unlocked;
}
if ((error = copyin(ioc->buf, cr->cr_data, ioc->buf_size))) {
debug(0, "copyin: bad data buffer %p/%d", ioc->buf, ioc->buf_size);
goto out_unlocked;
}
}
/*
* Build the request based on the user command.
*/
bcopy(&ioc->LUN_info, &cc->header.address, sizeof(cc->header.address));
bcopy(&ioc->Request, &cc->cdb, sizeof(cc->cdb));
/* XXX anything else to populate here? */
mtx_lock(&sc->ciss_mtx);
/*
* Run the command.
*/
if ((error = ciss_synch_request(cr, 60 * 1000))) {
debug(0, "request failed - %d", error);
goto out;
}
/*
* Check to see if the command succeeded.
*/
ce = (struct ciss_error_info *)&(cc->sg[0]);
if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) == 0)
bzero(ce, sizeof(*ce));
/*
* Copy the results back to the user.
*/
bcopy(ce, &ioc->error_info, sizeof(*ce));
mtx_unlock(&sc->ciss_mtx);
if ((ioc->buf_size > 0) &&
(error = copyout(cr->cr_data, ioc->buf, ioc->buf_size))) {
debug(0, "copyout: bad data buffer %p/%d", ioc->buf, ioc->buf_size);
goto out_unlocked;
}
/* done OK */
error = 0;
out_unlocked:
mtx_lock(&sc->ciss_mtx);
out:
if ((cr != NULL) && (cr->cr_data != NULL))
free(cr->cr_data, CISS_MALLOC_CLASS);
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Map a request into bus-visible space, initialise the scatter/gather
* list.
*/
static int
ciss_map_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
int error = 0;
debug_called(2);
sc = cr->cr_sc;
/* check that mapping is necessary */
if (cr->cr_flags & CISS_REQ_MAPPED)
return(0);
cr->cr_flags |= CISS_REQ_MAPPED;
bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map,
BUS_DMASYNC_PREWRITE);
if (cr->cr_data != NULL) {
if (cr->cr_flags & CISS_REQ_CCB)
error = bus_dmamap_load_ccb(sc->ciss_buffer_dmat,
cr->cr_datamap, cr->cr_data,
ciss_request_map_helper, cr, 0);
else
error = bus_dmamap_load(sc->ciss_buffer_dmat, cr->cr_datamap,
cr->cr_data, cr->cr_length,
ciss_request_map_helper, cr, 0);
if (error != 0)
return (error);
} else {
/*
* Post the command to the adapter.
*/
cr->cr_sg_tag = CISS_SG_NONE;
cr->cr_flags |= CISS_REQ_BUSY;
if (sc->ciss_perf)
CISS_TL_PERF_POST_CMD(sc, cr);
else
CISS_TL_SIMPLE_POST_CMD(sc, cr->cr_ccphys);
}
return(0);
}
static void
ciss_request_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct ciss_command *cc;
struct ciss_request *cr;
struct ciss_softc *sc;
int i;
debug_called(2);
cr = (struct ciss_request *)arg;
sc = cr->cr_sc;
cc = cr->cr_cc;
for (i = 0; i < nseg; i++) {
cc->sg[i].address = segs[i].ds_addr;
cc->sg[i].length = segs[i].ds_len;
cc->sg[i].extension = 0;
}
/* we leave the s/g table entirely within the command */
cc->header.sg_in_list = nseg;
cc->header.sg_total = nseg;
if (cr->cr_flags & CISS_REQ_DATAIN)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREREAD);
if (cr->cr_flags & CISS_REQ_DATAOUT)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREWRITE);
if (nseg == 0)
cr->cr_sg_tag = CISS_SG_NONE;
else if (nseg == 1)
cr->cr_sg_tag = CISS_SG_1;
else if (nseg == 2)
cr->cr_sg_tag = CISS_SG_2;
else if (nseg <= 4)
cr->cr_sg_tag = CISS_SG_4;
else if (nseg <= 8)
cr->cr_sg_tag = CISS_SG_8;
else if (nseg <= 16)
cr->cr_sg_tag = CISS_SG_16;
else if (nseg <= 32)
cr->cr_sg_tag = CISS_SG_32;
else
cr->cr_sg_tag = CISS_SG_MAX;
/*
* Post the command to the adapter.
*/
cr->cr_flags |= CISS_REQ_BUSY;
if (sc->ciss_perf)
CISS_TL_PERF_POST_CMD(sc, cr);
else
CISS_TL_SIMPLE_POST_CMD(sc, cr->cr_ccphys);
}
/************************************************************************
* Unmap a request from bus-visible space.
*/
static void
ciss_unmap_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
debug_called(2);
sc = cr->cr_sc;
/* check that unmapping is necessary */
if ((cr->cr_flags & CISS_REQ_MAPPED) == 0)
return;
bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map,
BUS_DMASYNC_POSTWRITE);
if (cr->cr_data == NULL)
goto out;
if (cr->cr_flags & CISS_REQ_DATAIN)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTREAD);
if (cr->cr_flags & CISS_REQ_DATAOUT)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ciss_buffer_dmat, cr->cr_datamap);
out:
cr->cr_flags &= ~CISS_REQ_MAPPED;
}
/************************************************************************
* Attach the driver to CAM.
*
* We put all the logical drives on a single SCSI bus.
*/
static int
ciss_cam_init(struct ciss_softc *sc)
{
int i, maxbus;
debug_called(1);
/*
* Allocate a devq. We can reuse this for the masked physical
* devices if we decide to export these as well.
*/
if ((sc->ciss_cam_devq = cam_simq_alloc(sc->ciss_max_requests - 2)) == NULL) {
ciss_printf(sc, "can't allocate CAM SIM queue\n");
return(ENOMEM);
}
/*
* Create a SIM.
*
* This naturally wastes a bit of memory. The alternative is to allocate
* and register each bus as it is found, and then track them on a linked
* list. Unfortunately, the driver has a few places where it needs to
* look up the SIM based solely on bus number, and it's unclear whether
* a list traversal would work for these situations.
*/
maxbus = max(sc->ciss_max_logical_bus, sc->ciss_max_physical_bus +
CISS_PHYSICAL_BASE);
sc->ciss_cam_sim = malloc(maxbus * sizeof(struct cam_sim*),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_cam_sim == NULL) {
ciss_printf(sc, "can't allocate memory for controller SIM\n");
return(ENOMEM);
}
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
if ((sc->ciss_cam_sim[i] = cam_sim_alloc(ciss_cam_action, ciss_cam_poll,
"ciss", sc,
device_get_unit(sc->ciss_dev),
&sc->ciss_mtx,
2,
sc->ciss_max_requests - 2,
sc->ciss_cam_devq)) == NULL) {
ciss_printf(sc, "can't allocate CAM SIM for controller %d\n", i);
return(ENOMEM);
}
/*
* Register bus with this SIM.
*/
mtx_lock(&sc->ciss_mtx);
if (i == 0 || sc->ciss_controllers[i].physical.bus != 0) {
if (xpt_bus_register(sc->ciss_cam_sim[i], sc->ciss_dev, i) != 0) {
ciss_printf(sc, "can't register SCSI bus %d\n", i);
mtx_unlock(&sc->ciss_mtx);
return (ENXIO);
}
}
mtx_unlock(&sc->ciss_mtx);
}
for (i = CISS_PHYSICAL_BASE; i < sc->ciss_max_physical_bus +
CISS_PHYSICAL_BASE; i++) {
if ((sc->ciss_cam_sim[i] = cam_sim_alloc(ciss_cam_action, ciss_cam_poll,
"ciss", sc,
device_get_unit(sc->ciss_dev),
&sc->ciss_mtx, 1,
sc->ciss_max_requests - 2,
sc->ciss_cam_devq)) == NULL) {
ciss_printf(sc, "can't allocate CAM SIM for controller %d\n", i);
return (ENOMEM);
}
mtx_lock(&sc->ciss_mtx);
if (xpt_bus_register(sc->ciss_cam_sim[i], sc->ciss_dev, i) != 0) {
ciss_printf(sc, "can't register SCSI bus %d\n", i);
mtx_unlock(&sc->ciss_mtx);
return (ENXIO);
}
mtx_unlock(&sc->ciss_mtx);
}
return(0);
}
/************************************************************************
* Initiate a rescan of the 'logical devices' SIM
*/
static void
ciss_cam_rescan_target(struct ciss_softc *sc, int bus, int target)
{
union ccb *ccb;
debug_called(1);
if ((ccb = xpt_alloc_ccb_nowait()) == NULL) {
ciss_printf(sc, "rescan failed (can't allocate CCB)\n");
return;
}
if (xpt_create_path(&ccb->ccb_h.path, NULL,
cam_sim_path(sc->ciss_cam_sim[bus]),
target, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
ciss_printf(sc, "rescan failed (can't create path)\n");
xpt_free_ccb(ccb);
return;
}
xpt_rescan(ccb);
/* scan is now in progress */
}
/************************************************************************
* Handle requests coming from CAM
*/
static void
ciss_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct ciss_softc *sc;
struct ccb_scsiio *csio;
int bus, target;
int physical;
sc = cam_sim_softc(sim);
bus = cam_sim_bus(sim);
csio = (struct ccb_scsiio *)&ccb->csio;
target = csio->ccb_h.target_id;
physical = CISS_IS_PHYSICAL(bus);
switch (ccb->ccb_h.func_code) {
/* perform SCSI I/O */
case XPT_SCSI_IO:
if (!ciss_cam_action_io(sim, csio))
return;
break;
/* perform geometry calculations */
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg = &ccb->ccg;
struct ciss_ldrive *ld;
debug(1, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
ld = NULL;
if (!physical)
ld = &sc->ciss_logical[bus][target];
/*
* Use the cached geometry settings unless the fault tolerance
* is invalid.
*/
if (physical || ld->cl_geometry.fault_tolerance == 0xFF) {
u_int32_t secs_per_cylinder;
ccg->heads = 255;
ccg->secs_per_track = 32;
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
} else {
ccg->heads = ld->cl_geometry.heads;
ccg->secs_per_track = ld->cl_geometry.sectors;
ccg->cylinders = ntohs(ld->cl_geometry.cylinders);
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
/* handle path attribute inquiry */
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
int sg_length;
debug(1, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE; /* XXX is this correct? */
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->max_target = sc->ciss_cfg->max_logical_supported;
cpi->max_lun = 0; /* 'logical drive' channel only */
cpi->initiator_id = sc->ciss_cfg->max_logical_supported;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "msmith@freebsd.org", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
if (sc->ciss_cfg->max_sg_length == 0) {
sg_length = 17;
} else {
/* XXX Fix for ZMR cards that advertise max_sg_length == 32
* Confusing bit here. max_sg_length is usually a power of 2. We always
* need to subtract 1 to account for partial pages. Then we need to
* align on a valid PAGE_SIZE so we round down to the nearest power of 2.
* Add 1 so we can then subtract it out in the assignment to maxio.
* The reason for all these shenanigans is to create a maxio value that
* creates IO operations to volumes that yield consistent operations
* with good performance.
*/
sg_length = sc->ciss_cfg->max_sg_length - 1;
sg_length = (1 << (fls(sg_length) - 1)) + 1;
}
cpi->maxio = (min(CISS_MAX_SG_ELEMENTS, sg_length) - 1) * PAGE_SIZE;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
int bus, target;
struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
bus = cam_sim_bus(sim);
target = cts->ccb_h.target_id;
debug(1, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
/* disconnect always OK */
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_SPI;
cts->transport_version = 2;
spi->valid = CTS_SPI_VALID_DISC;
spi->flags = CTS_SPI_FLAGS_DISC_ENB;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
cts->ccb_h.status = CAM_REQ_CMP;
break;
}
default: /* we can't do this */
debug(1, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
/************************************************************************
* Handle a CAM SCSI I/O request.
*/
static int
ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
{
struct ciss_softc *sc;
int bus, target;
struct ciss_request *cr;
struct ciss_command *cc;
int error;
sc = cam_sim_softc(sim);
bus = cam_sim_bus(sim);
target = csio->ccb_h.target_id;
debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
/* check that the CDB pointer is not to a physical address */
if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
debug(3, " CDB pointer is to physical address");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* abandon aborted ccbs or those that have failed validation */
if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
debug(3, "abandoning CCB due to abort/validation failure");
return(EINVAL);
}
/* handle emulation of some SCSI commands ourself */
if (ciss_cam_emulate(sc, csio))
return(0);
/*
* Get a request to manage this command. If we can't, return the
* ccb, freeze the queue and flag so that we unfreeze it when a
* request completes.
*/
if ((error = ciss_get_request(sc, &cr)) != 0) {
xpt_freeze_simq(sim, 1);
sc->ciss_flags |= CISS_FLAG_BUSY;
csio->ccb_h.status |= CAM_REQUEUE_REQ;
return(error);
}
/*
* Build the command.
*/
cc = cr->cr_cc;
cr->cr_data = csio;
cr->cr_length = csio->dxfer_len;
cr->cr_complete = ciss_cam_complete;
cr->cr_private = csio;
/*
* Target the right logical volume.
*/
if (CISS_IS_PHYSICAL(bus))
cc->header.address =
sc->ciss_physical[CISS_CAM_TO_PBUS(bus)][target].cp_address;
else
cc->header.address =
sc->ciss_logical[bus][target].cl_address;
cc->cdb.cdb_length = csio->cdb_len;
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; /* XXX ordered tags? */
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
cr->cr_flags = CISS_REQ_DATAOUT | CISS_REQ_CCB;
cc->cdb.direction = CISS_CDB_DIRECTION_WRITE;
} else if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
cr->cr_flags = CISS_REQ_DATAIN | CISS_REQ_CCB;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
} else {
cr->cr_data = NULL;
cr->cr_flags = 0;
cc->cdb.direction = CISS_CDB_DIRECTION_NONE;
}
cc->cdb.timeout = (csio->ccb_h.timeout / 1000) + 1;
if (csio->ccb_h.flags & CAM_CDB_POINTER) {
bcopy(csio->cdb_io.cdb_ptr, &cc->cdb.cdb[0], csio->cdb_len);
} else {
bcopy(csio->cdb_io.cdb_bytes, &cc->cdb.cdb[0], csio->cdb_len);
}
/*
* Submit the request to the adapter.
*
* Note that this may fail if we're unable to map the request (and
* if we ever learn a transport layer other than simple, may fail
* if the adapter rejects the command).
*/
if ((error = ciss_start(cr)) != 0) {
xpt_freeze_simq(sim, 1);
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
if (error == EINPROGRESS) {
error = 0;
} else {
csio->ccb_h.status |= CAM_REQUEUE_REQ;
ciss_release_request(cr);
}
return(error);
}
return(0);
}
/************************************************************************
* Emulate SCSI commands the adapter doesn't handle as we might like.
*/
static int
ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio)
{
int bus, target;
u_int8_t opcode;
target = csio->ccb_h.target_id;
bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path));
opcode = (csio->ccb_h.flags & CAM_CDB_POINTER) ?
*(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0];
if (CISS_IS_PHYSICAL(bus)) {
if (sc->ciss_physical[CISS_CAM_TO_PBUS(bus)][target].cp_online != 1) {
csio->ccb_h.status |= CAM_SEL_TIMEOUT;
xpt_done((union ccb *)csio);
return(1);
} else
return(0);
}
/*
* Handle requests for volumes that don't exist or are not online.
* A selection timeout is slightly better than an illegal request.
* Other errors might be better.
*/
if (sc->ciss_logical[bus][target].cl_status != CISS_LD_ONLINE) {
csio->ccb_h.status |= CAM_SEL_TIMEOUT;
xpt_done((union ccb *)csio);
return(1);
}
/* if we have to fake Synchronise Cache */
if (sc->ciss_flags & CISS_FLAG_FAKE_SYNCH) {
/*
* If this is a Synchronise Cache command, typically issued when
* a device is closed, flush the adapter and complete now.
*/
if (((csio->ccb_h.flags & CAM_CDB_POINTER) ?
*(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0]) == SYNCHRONIZE_CACHE) {
ciss_flush_adapter(sc);
csio->ccb_h.status |= CAM_REQ_CMP;
xpt_done((union ccb *)csio);
return(1);
}
}
/*
* A CISS target can only ever have one lun per target. REPORT_LUNS requires
* at least one LUN field to be pre created for us, so snag it and fill in
* the least significant byte indicating 1 LUN here. Emulate the command
* return to shut up warning on console of a CDB error. swb
*/
if (opcode == REPORT_LUNS && csio->dxfer_len > 0) {
csio->data_ptr[3] = 8;
csio->ccb_h.status |= CAM_REQ_CMP;
xpt_done((union ccb *)csio);
return(1);
}
return(0);
}
/************************************************************************
* Check for possibly-completed commands.
*/
static void
ciss_cam_poll(struct cam_sim *sim)
{
cr_qhead_t qh;
struct ciss_softc *sc = cam_sim_softc(sim);
debug_called(2);
STAILQ_INIT(&qh);
if (sc->ciss_perf)
ciss_perf_done(sc, &qh);
else
ciss_done(sc, &qh);
ciss_complete(sc, &qh);
}
/************************************************************************
* Handle completion of a command - pass results back through the CCB
*/
static void
ciss_cam_complete(struct ciss_request *cr)
{
struct ciss_softc *sc;
struct ciss_command *cc;
struct ciss_error_info *ce;
struct ccb_scsiio *csio;
int scsi_status;
int command_status;
debug_called(2);
sc = cr->cr_sc;
cc = cr->cr_cc;
ce = (struct ciss_error_info *)&(cc->sg[0]);
csio = (struct ccb_scsiio *)cr->cr_private;
/*
* Extract status values from request.
*/
ciss_report_request(cr, &command_status, &scsi_status);
csio->scsi_status = scsi_status;
/*
* Handle specific SCSI status values.
*/
switch(scsi_status) {
/* no status due to adapter error */
case -1:
debug(0, "adapter error");
csio->ccb_h.status |= CAM_REQ_CMP_ERR;
break;
/* no status due to command completed OK */
case SCSI_STATUS_OK: /* CISS_SCSI_STATUS_GOOD */
debug(2, "SCSI_STATUS_OK");
csio->ccb_h.status |= CAM_REQ_CMP;
break;
/* check condition, sense data included */
case SCSI_STATUS_CHECK_COND: /* CISS_SCSI_STATUS_CHECK_CONDITION */
debug(0, "SCSI_STATUS_CHECK_COND sense size %d resid %d\n",
ce->sense_length, ce->residual_count);
bzero(&csio->sense_data, SSD_FULL_SIZE);
bcopy(&ce->sense_info[0], &csio->sense_data, ce->sense_length);
if (csio->sense_len > ce->sense_length)
csio->sense_resid = csio->sense_len - ce->sense_length;
else
csio->sense_resid = 0;
csio->resid = ce->residual_count;
csio->ccb_h.status |= CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
#ifdef CISS_DEBUG
{
struct scsi_sense_data *sns = (struct scsi_sense_data *)&ce->sense_info[0];
debug(0, "sense key %x", scsi_get_sense_key(sns, csio->sense_len -
csio->sense_resid, /*show_errors*/ 1));
}
#endif
break;
case SCSI_STATUS_BUSY: /* CISS_SCSI_STATUS_BUSY */
debug(0, "SCSI_STATUS_BUSY");
csio->ccb_h.status |= CAM_SCSI_BUSY;
break;
default:
debug(0, "unknown status 0x%x", csio->scsi_status);
csio->ccb_h.status |= CAM_REQ_CMP_ERR;
break;
}
/* handle post-command fixup */
ciss_cam_complete_fixup(sc, csio);
ciss_release_request(cr);
if (sc->ciss_flags & CISS_FLAG_BUSY) {
sc->ciss_flags &= ~CISS_FLAG_BUSY;
if (csio->ccb_h.status & CAM_RELEASE_SIMQ)
xpt_release_simq(xpt_path_sim(csio->ccb_h.path), 0);
else
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
}
xpt_done((union ccb *)csio);
}
/********************************************************************************
* Fix up the result of some commands here.
*/
static void
ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio)
{
struct scsi_inquiry_data *inq;
struct ciss_ldrive *cl;
uint8_t *cdb;
int bus, target;
cdb = (csio->ccb_h.flags & CAM_CDB_POINTER) ?
(uint8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes;
if (cdb[0] == INQUIRY &&
(cdb[1] & SI_EVPD) == 0 &&
(csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN &&
csio->dxfer_len >= SHORT_INQUIRY_LENGTH) {
inq = (struct scsi_inquiry_data *)csio->data_ptr;
target = csio->ccb_h.target_id;
bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path));
/*
* If the controller is in JBOD mode, there are no logical volumes.
* Let the disks be probed and dealt with via CAM. Else, mask off
* the physical disks and setup the parts of the inq structure for
* the logical volume. swb
*/
if( !(sc->ciss_id->PowerUPNvramFlags & PWR_UP_FLAG_JBOD_ENABLED)){
if (CISS_IS_PHYSICAL(bus)) {
if (SID_TYPE(inq) == T_DIRECT)
inq->device = (inq->device & 0xe0) | T_NODEVICE;
return;
}
cl = &sc->ciss_logical[bus][target];
padstr(inq->vendor, "HP",
SID_VENDOR_SIZE);
padstr(inq->product,
ciss_name_ldrive_org(cl->cl_ldrive->fault_tolerance),
SID_PRODUCT_SIZE);
padstr(inq->revision,
ciss_name_ldrive_status(cl->cl_lstatus->status),
SID_REVISION_SIZE);
}
}
}
/********************************************************************************
* Name the device at (target)
*
* XXX is this strictly correct?
*/
static int
ciss_name_device(struct ciss_softc *sc, int bus, int target)
{
struct cam_periph *periph;
struct cam_path *path;
int status;
if (CISS_IS_PHYSICAL(bus))
return (0);
status = xpt_create_path(&path, NULL, cam_sim_path(sc->ciss_cam_sim[bus]),
target, 0);
if (status == CAM_REQ_CMP) {
xpt_path_lock(path);
periph = cam_periph_find(path, NULL);
xpt_path_unlock(path);
xpt_free_path(path);
if (periph != NULL) {
sprintf(sc->ciss_logical[bus][target].cl_name, "%s%d",
periph->periph_name, periph->unit_number);
return(0);
}
}
sc->ciss_logical[bus][target].cl_name[0] = 0;
return(ENOENT);
}
/************************************************************************
* Periodic status monitoring.
*/
static void
ciss_periodic(void *arg)
{
struct ciss_softc *sc;
struct ciss_request *cr = NULL;
struct ciss_command *cc = NULL;
int error = 0;
debug_called(1);
sc = (struct ciss_softc *)arg;
/*
* Check the adapter heartbeat.
*/
if (sc->ciss_cfg->heartbeat == sc->ciss_heartbeat) {
sc->ciss_heart_attack++;
debug(0, "adapter heart attack in progress 0x%x/%d",
sc->ciss_heartbeat, sc->ciss_heart_attack);
if (sc->ciss_heart_attack == 3) {
ciss_printf(sc, "ADAPTER HEARTBEAT FAILED\n");
ciss_disable_adapter(sc);
return;
}
} else {
sc->ciss_heartbeat = sc->ciss_cfg->heartbeat;
sc->ciss_heart_attack = 0;
debug(3, "new heartbeat 0x%x", sc->ciss_heartbeat);
}
/*
* Send the NOP message and wait for a response.
*/
if (ciss_nop_message_heartbeat != 0 && (error = ciss_get_request(sc, &cr)) == 0) {
cc = cr->cr_cc;
cr->cr_complete = ciss_nop_complete;
cc->cdb.cdb_length = 1;
cc->cdb.type = CISS_CDB_TYPE_MESSAGE;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_WRITE;
cc->cdb.timeout = 0;
cc->cdb.cdb[0] = CISS_OPCODE_MESSAGE_NOP;
if ((error = ciss_start(cr)) != 0) {
ciss_printf(sc, "SENDING NOP MESSAGE FAILED\n");
}
}
/*
* If the notify event request has died for some reason, or has
* not started yet, restart it.
*/
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK)) {
debug(0, "(re)starting Event Notify chain");
ciss_notify_event(sc);
}
/*
* Reschedule.
*/
callout_reset(&sc->ciss_periodic, CISS_HEARTBEAT_RATE * hz, ciss_periodic, sc);
}
static void
ciss_nop_complete(struct ciss_request *cr)
{
struct ciss_softc *sc;
static int first_time = 1;
sc = cr->cr_sc;
if (ciss_report_request(cr, NULL, NULL) != 0) {
if (first_time == 1) {
first_time = 0;
ciss_printf(sc, "SENDING NOP MESSAGE FAILED (not logging anymore)\n");
}
}
ciss_release_request(cr);
}
/************************************************************************
* Disable the adapter.
*
* The all requests in completed queue is failed with hardware error.
* This will cause failover in a multipath configuration.
*/
static void
ciss_disable_adapter(struct ciss_softc *sc)
{
cr_qhead_t qh;
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_error_info *ce;
int i;
CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc);
pci_disable_busmaster(sc->ciss_dev);
sc->ciss_flags &= ~CISS_FLAG_RUNNING;
for (i = 1; i < sc->ciss_max_requests; i++) {
cr = &sc->ciss_request[i];
if ((cr->cr_flags & CISS_REQ_BUSY) == 0)
continue;
cc = cr->cr_cc;
ce = (struct ciss_error_info *)&(cc->sg[0]);
ce->command_status = CISS_CMD_STATUS_HARDWARE_ERROR;
ciss_enqueue_complete(cr, &qh);
}
for (;;) {
if ((cr = ciss_dequeue_complete(sc, &qh)) == NULL)
break;
/*
* If the request has a callback, invoke it.
*/
if (cr->cr_complete != NULL) {
cr->cr_complete(cr);
continue;
}
/*
* If someone is sleeping on this request, wake them up.
*/
if (cr->cr_flags & CISS_REQ_SLEEP) {
cr->cr_flags &= ~CISS_REQ_SLEEP;
wakeup(cr);
continue;
}
}
}
/************************************************************************
* Request a notification response from the adapter.
*
* If (cr) is NULL, this is the first request of the adapter, so
* reset the adapter's message pointer and start with the oldest
* message available.
*/
static void
ciss_notify_event(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_notify_cdb *cnc;
int error;
debug_called(1);
cr = sc->ciss_periodic_notify;
/* get a request if we don't already have one */
if (cr == NULL) {
if ((error = ciss_get_request(sc, &cr)) != 0) {
debug(0, "can't get notify event request");
goto out;
}
sc->ciss_periodic_notify = cr;
cr->cr_complete = ciss_notify_complete;
debug(1, "acquired request %d", cr->cr_tag);
}
/*
* Get a databuffer if we don't already have one, note that the
* adapter command wants a larger buffer than the actual
* structure.
*/
if (cr->cr_data == NULL) {
if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
debug(0, "can't get notify event request buffer");
error = ENOMEM;
goto out;
}
cr->cr_length = CISS_NOTIFY_DATA_SIZE;
}
/* re-setup the request's command (since we never release it) XXX overkill*/
ciss_preen_command(cr);
/* (re)build the notify event command */
cc = cr->cr_cc;
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*cnc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 0; /* no timeout, we hope */
cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]);
bzero(cr->cr_data, CISS_NOTIFY_DATA_SIZE);
cnc->opcode = CISS_OPCODE_READ;
cnc->command = CISS_COMMAND_NOTIFY_ON_EVENT;
cnc->timeout = 0; /* no timeout, we hope */
cnc->synchronous = 0;
cnc->ordered = 0;
cnc->seek_to_oldest = 0;
if ((sc->ciss_flags & CISS_FLAG_RUNNING) == 0)
cnc->new_only = 1;
else
cnc->new_only = 0;
cnc->length = htonl(CISS_NOTIFY_DATA_SIZE);
/* submit the request */
error = ciss_start(cr);
out:
if (error) {
if (cr != NULL) {
if (cr->cr_data != NULL)
free(cr->cr_data, CISS_MALLOC_CLASS);
ciss_release_request(cr);
}
sc->ciss_periodic_notify = NULL;
debug(0, "can't submit notify event request");
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
} else {
debug(1, "notify event submitted");
sc->ciss_flags |= CISS_FLAG_NOTIFY_OK;
}
}
static void
ciss_notify_complete(struct ciss_request *cr)
{
struct ciss_command *cc;
struct ciss_notify *cn;
struct ciss_softc *sc;
int scsi_status;
int command_status;
debug_called(1);
cc = cr->cr_cc;
cn = (struct ciss_notify *)cr->cr_data;
sc = cr->cr_sc;
/*
* Report request results, decode status.
*/
ciss_report_request(cr, &command_status, &scsi_status);
/*
* Abort the chain on a fatal error.
*
* XXX which of these are actually errors?
*/
if ((command_status != CISS_CMD_STATUS_SUCCESS) &&
(command_status != CISS_CMD_STATUS_TARGET_STATUS) &&
(command_status != CISS_CMD_STATUS_TIMEOUT)) { /* XXX timeout? */
ciss_printf(sc, "fatal error in Notify Event request (%s)\n",
ciss_name_command_status(command_status));
ciss_release_request(cr);
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
return;
}
/*
* If the adapter gave us a text message, print it.
*/
if (cn->message[0] != 0)
ciss_printf(sc, "*** %.80s\n", cn->message);
debug(0, "notify event class %d subclass %d detail %d",
cn->class, cn->subclass, cn->detail);
/*
* If the response indicates that the notifier has been aborted,
* release the notifier command.
*/
if ((cn->class == CISS_NOTIFY_NOTIFIER) &&
(cn->subclass == CISS_NOTIFY_NOTIFIER_STATUS) &&
(cn->detail == 1)) {
debug(0, "notifier exiting");
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
ciss_release_request(cr);
sc->ciss_periodic_notify = NULL;
wakeup(&sc->ciss_periodic_notify);
} else {
/* Handle notify events in a kernel thread */
ciss_enqueue_notify(cr);
sc->ciss_periodic_notify = NULL;
wakeup(&sc->ciss_periodic_notify);
wakeup(&sc->ciss_notify);
}
/*
* Send a new notify event command, if we're not aborting.
*/
if (!(sc->ciss_flags & CISS_FLAG_ABORTING)) {
ciss_notify_event(sc);
}
}
/************************************************************************
* Abort the Notify Event chain.
*
* Note that we can't just abort the command in progress; we have to
* explicitly issue an Abort Notify Event command in order for the
* adapter to clean up correctly.
*
* If we are called with CISS_FLAG_ABORTING set in the adapter softc,
* the chain will not restart itself.
*/
static int
ciss_notify_abort(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_notify_cdb *cnc;
int error, command_status, scsi_status;
debug_called(1);
cr = NULL;
error = 0;
/* verify that there's an outstanding command */
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK))
goto out;
/* get a command to issue the abort with */
if ((error = ciss_get_request(sc, &cr)))
goto out;
/* get a buffer for the result */
if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
debug(0, "can't get notify event request buffer");
error = ENOMEM;
goto out;
}
cr->cr_length = CISS_NOTIFY_DATA_SIZE;
/* build the CDB */
cc = cr->cr_cc;
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*cnc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 0; /* no timeout, we hope */
cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]);
bzero(cnc, sizeof(*cnc));
cnc->opcode = CISS_OPCODE_WRITE;
cnc->command = CISS_COMMAND_ABORT_NOTIFY;
cnc->length = htonl(CISS_NOTIFY_DATA_SIZE);
ciss_print_request(cr);
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "Abort Notify Event command failed (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, &scsi_status);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
break;
case CISS_CMD_STATUS_INVALID_COMMAND:
/*
* Some older adapters don't support the CISS version of this
* command. Fall back to using the BMIC version.
*/
error = ciss_notify_abort_bmic(sc);
if (error != 0)
goto out;
break;
case CISS_CMD_STATUS_TARGET_STATUS:
/*
* This can happen if the adapter thinks there wasn't an outstanding
* Notify Event command but we did. We clean up here.
*/
if (scsi_status == CISS_SCSI_STATUS_CHECK_CONDITION) {
if (sc->ciss_periodic_notify != NULL)
ciss_release_request(sc->ciss_periodic_notify);
error = 0;
goto out;
}
/* FALLTHROUGH */
default:
ciss_printf(sc, "Abort Notify Event command failed (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
/*
* Sleep waiting for the notifier command to complete. Note
* that if it doesn't, we may end up in a bad situation, since
* the adapter may deliver it later. Also note that the adapter
* requires the Notify Event command to be cancelled in order to
* maintain internal bookkeeping.
*/
while (sc->ciss_periodic_notify != NULL) {
error = msleep(&sc->ciss_periodic_notify, &sc->ciss_mtx, PRIBIO, "cissNEA", hz * 5);
if (error == EWOULDBLOCK) {
ciss_printf(sc, "Notify Event command failed to abort, adapter may wedge.\n");
break;
}
}
out:
/* release the cancel request */
if (cr != NULL) {
if (cr->cr_data != NULL)
free(cr->cr_data, CISS_MALLOC_CLASS);
ciss_release_request(cr);
}
if (error == 0)
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
return(error);
}
/************************************************************************
* Abort the Notify Event chain using a BMIC command.
*/
static int
ciss_notify_abort_bmic(struct ciss_softc *sc)
{
struct ciss_request *cr;
int error, command_status;
debug_called(1);
cr = NULL;
error = 0;
/* verify that there's an outstanding command */
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK))
goto out;
/*
* Build a BMIC command to cancel the Notify on Event command.
*
* Note that we are sending a CISS opcode here. Odd.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_COMMAND_ABORT_NOTIFY,
NULL, 0)) != 0)
goto out;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC Cancel Notify on Event command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
break;
default:
ciss_printf(sc, "error cancelling Notify on Event (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Handle rescanning all the logical volumes when a notify event
* causes the drives to come online or offline.
*/
static void
ciss_notify_rescan_logical(struct ciss_softc *sc)
{
struct ciss_lun_report *cll;
struct ciss_ldrive *ld;
int i, j, ndrives;
/*
* We must rescan all logical volumes to get the right logical
* drive address.
*/
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS,
sc->ciss_cfg->max_logical_supported);
if (cll == NULL)
return;
ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
/*
* Delete any of the drives which were destroyed by the
* firmware.
*/
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) {
ld = &sc->ciss_logical[i][j];
if (ld->cl_update == 0)
continue;
if (ld->cl_status != CISS_LD_ONLINE) {
ciss_cam_rescan_target(sc, i, j);
ld->cl_update = 0;
if (ld->cl_ldrive)
free(ld->cl_ldrive, CISS_MALLOC_CLASS);
if (ld->cl_lstatus)
free(ld->cl_lstatus, CISS_MALLOC_CLASS);
ld->cl_ldrive = NULL;
ld->cl_lstatus = NULL;
}
}
}
/*
* Scan for new drives.
*/
for (i = 0; i < ndrives; i++) {
int bus, target;
bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun);
target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun);
ld = &sc->ciss_logical[bus][target];
if (ld->cl_update == 0)
continue;
ld->cl_update = 0;
ld->cl_address = cll->lun[i];
ld->cl_controller = &sc->ciss_controllers[bus];
if (ciss_identify_logical(sc, ld) == 0) {
ciss_cam_rescan_target(sc, bus, target);
}
}
free(cll, CISS_MALLOC_CLASS);
}
/************************************************************************
* Handle a notify event relating to the status of a logical drive.
*
* XXX need to be able to defer some of these to properly handle
* calling the "ID Physical drive" command, unless the 'extended'
* drive IDs are always in BIG_MAP format.
*/
static void
ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn)
{
struct ciss_ldrive *ld;
int bus, target;
int rescan_ld;
debug_called(2);
bus = cn->device.physical.bus;
target = cn->data.logical_status.logical_drive;
ld = &sc->ciss_logical[bus][target];
switch (cn->subclass) {
case CISS_NOTIFY_LOGICAL_STATUS:
switch (cn->detail) {
case 0:
ciss_name_device(sc, bus, target);
ciss_printf(sc, "logical drive %d (%s) changed status %s->%s, spare status 0x%b\n",
cn->data.logical_status.logical_drive, ld->cl_name,
ciss_name_ldrive_status(cn->data.logical_status.previous_state),
ciss_name_ldrive_status(cn->data.logical_status.new_state),
cn->data.logical_status.spare_state,
"\20\1configured\2rebuilding\3failed\4in use\5available\n");
/*
* Update our idea of the drive's status.
*/
ld->cl_status = ciss_decode_ldrive_status(cn->data.logical_status.new_state);
if (ld->cl_lstatus != NULL)
ld->cl_lstatus->status = cn->data.logical_status.new_state;
/*
* Have CAM rescan the drive if its status has changed.
*/
rescan_ld = (cn->data.logical_status.previous_state !=
cn->data.logical_status.new_state) ? 1 : 0;
if (rescan_ld) {
ld->cl_update = 1;
ciss_notify_rescan_logical(sc);
}
break;
case 1: /* logical drive has recognised new media, needs Accept Media Exchange */
ciss_name_device(sc, bus, target);
ciss_printf(sc, "logical drive %d (%s) media exchanged, ready to go online\n",
cn->data.logical_status.logical_drive, ld->cl_name);
ciss_accept_media(sc, ld);
ld->cl_update = 1;
ld->cl_status = ciss_decode_ldrive_status(cn->data.logical_status.new_state);
ciss_notify_rescan_logical(sc);
break;
case 2:
case 3:
ciss_printf(sc, "rebuild of logical drive %d (%s) failed due to %s error\n",
cn->data.rebuild_aborted.logical_drive,
ld->cl_name,
(cn->detail == 2) ? "read" : "write");
break;
}
break;
case CISS_NOTIFY_LOGICAL_ERROR:
if (cn->detail == 0) {
ciss_printf(sc, "FATAL I/O ERROR on logical drive %d (%s), SCSI port %d ID %d\n",
cn->data.io_error.logical_drive,
ld->cl_name,
cn->data.io_error.failure_bus,
cn->data.io_error.failure_drive);
/* XXX should we take the drive down at this point, or will we be told? */
}
break;
case CISS_NOTIFY_LOGICAL_SURFACE:
if (cn->detail == 0)
ciss_printf(sc, "logical drive %d (%s) completed consistency initialisation\n",
cn->data.consistency_completed.logical_drive,
ld->cl_name);
break;
}
}
/************************************************************************
* Handle a notify event relating to the status of a physical drive.
*/
static void
ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn)
{
}
/************************************************************************
* Handle a notify event relating to the status of a physical drive.
*/
static void
ciss_notify_hotplug(struct ciss_softc *sc, struct ciss_notify *cn)
{
struct ciss_lun_report *cll = NULL;
int bus, target;
switch (cn->subclass) {
case CISS_NOTIFY_HOTPLUG_PHYSICAL:
case CISS_NOTIFY_HOTPLUG_NONDISK:
bus = CISS_BIG_MAP_BUS(sc, cn->data.drive.big_physical_drive_number);
target =
CISS_BIG_MAP_TARGET(sc, cn->data.drive.big_physical_drive_number);
if (cn->detail == 0) {
/*
* Mark the device offline so that it'll start producing selection
* timeouts to the upper layer.
*/
if ((bus >= 0) && (target >= 0))
sc->ciss_physical[bus][target].cp_online = 0;
} else {
/*
* Rescan the physical lun list for new items
*/
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_PHYSICAL_LUNS,
sc->ciss_cfg->max_physical_supported);
if (cll == NULL) {
ciss_printf(sc, "Warning, cannot get physical lun list\n");
break;
}
ciss_filter_physical(sc, cll);
}
break;
default:
ciss_printf(sc, "Unknown hotplug event %d\n", cn->subclass);
return;
}
if (cll != NULL)
free(cll, CISS_MALLOC_CLASS);
}
/************************************************************************
* Handle deferred processing of notify events. Notify events may need
* sleep which is unsafe during an interrupt.
*/
static void
ciss_notify_thread(void *arg)
{
struct ciss_softc *sc;
struct ciss_request *cr;
struct ciss_notify *cn;
sc = (struct ciss_softc *)arg;
mtx_lock(&sc->ciss_mtx);
for (;;) {
if (STAILQ_EMPTY(&sc->ciss_notify) != 0 &&
(sc->ciss_flags & CISS_FLAG_THREAD_SHUT) == 0) {
msleep(&sc->ciss_notify, &sc->ciss_mtx, PUSER, "idle", 0);
}
if (sc->ciss_flags & CISS_FLAG_THREAD_SHUT)
break;
cr = ciss_dequeue_notify(sc);
if (cr == NULL)
panic("cr null");
cn = (struct ciss_notify *)cr->cr_data;
switch (cn->class) {
case CISS_NOTIFY_HOTPLUG:
ciss_notify_hotplug(sc, cn);
break;
case CISS_NOTIFY_LOGICAL:
ciss_notify_logical(sc, cn);
break;
case CISS_NOTIFY_PHYSICAL:
ciss_notify_physical(sc, cn);
break;
}
ciss_release_request(cr);
}
sc->ciss_notify_thread = NULL;
wakeup(&sc->ciss_notify_thread);
mtx_unlock(&sc->ciss_mtx);
kproc_exit(0);
}
/************************************************************************
* Start the notification kernel thread.
*/
static void
ciss_spawn_notify_thread(struct ciss_softc *sc)
{
if (kproc_create((void(*)(void *))ciss_notify_thread, sc,
&sc->ciss_notify_thread, 0, 0, "ciss_notify%d",
device_get_unit(sc->ciss_dev)))
panic("Could not create notify thread\n");
}
/************************************************************************
* Kill the notification kernel thread.
*/
static void
ciss_kill_notify_thread(struct ciss_softc *sc)
{
if (sc->ciss_notify_thread == NULL)
return;
sc->ciss_flags |= CISS_FLAG_THREAD_SHUT;
wakeup(&sc->ciss_notify);
msleep(&sc->ciss_notify_thread, &sc->ciss_mtx, PUSER, "thtrm", 0);
}
/************************************************************************
* Print a request.
*/
static void
ciss_print_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
struct ciss_command *cc;
int i;
sc = cr->cr_sc;
cc = cr->cr_cc;
ciss_printf(sc, "REQUEST @ %p\n", cr);
ciss_printf(sc, " data %p/%d tag %d flags %b\n",
cr->cr_data, cr->cr_length, cr->cr_tag, cr->cr_flags,
"\20\1mapped\2sleep\3poll\4dataout\5datain\n");
ciss_printf(sc, " sg list/total %d/%d host tag 0x%x\n",
cc->header.sg_in_list, cc->header.sg_total, cc->header.host_tag);
switch(cc->header.address.mode.mode) {
case CISS_HDR_ADDRESS_MODE_PERIPHERAL:
case CISS_HDR_ADDRESS_MODE_MASK_PERIPHERAL:
ciss_printf(sc, " physical bus %d target %d\n",
cc->header.address.physical.bus, cc->header.address.physical.target);
break;
case CISS_HDR_ADDRESS_MODE_LOGICAL:
ciss_printf(sc, " logical unit %d\n", cc->header.address.logical.lun);
break;
}
ciss_printf(sc, " %s cdb length %d type %s attribute %s\n",
(cc->cdb.direction == CISS_CDB_DIRECTION_NONE) ? "no-I/O" :
(cc->cdb.direction == CISS_CDB_DIRECTION_READ) ? "READ" :
(cc->cdb.direction == CISS_CDB_DIRECTION_WRITE) ? "WRITE" : "??",
cc->cdb.cdb_length,
(cc->cdb.type == CISS_CDB_TYPE_COMMAND) ? "command" :
(cc->cdb.type == CISS_CDB_TYPE_MESSAGE) ? "message" : "??",
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_UNTAGGED) ? "untagged" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_SIMPLE) ? "simple" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_HEAD_OF_QUEUE) ? "head-of-queue" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_ORDERED) ? "ordered" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_AUTO_CONTINGENT) ? "auto-contingent" : "??");
ciss_printf(sc, " %*D\n", cc->cdb.cdb_length, &cc->cdb.cdb[0], " ");
if (cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) {
/* XXX print error info */
} else {
/* since we don't use chained s/g, don't support it here */
for (i = 0; i < cc->header.sg_in_list; i++) {
if ((i % 4) == 0)
ciss_printf(sc, " ");
printf("0x%08x/%d ", (u_int32_t)cc->sg[i].address, cc->sg[i].length);
if ((((i + 1) % 4) == 0) || (i == (cc->header.sg_in_list - 1)))
printf("\n");
}
}
}
/************************************************************************
* Print information about the status of a logical drive.
*/
static void
ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
int bus, target, i;
if (ld->cl_lstatus == NULL) {
printf("does not exist\n");
return;
}
/* print drive status */
switch(ld->cl_lstatus->status) {
case CISS_LSTATUS_OK:
printf("online\n");
break;
case CISS_LSTATUS_INTERIM_RECOVERY:
printf("in interim recovery mode\n");
break;
case CISS_LSTATUS_READY_RECOVERY:
printf("ready to begin recovery\n");
break;
case CISS_LSTATUS_RECOVERING:
bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding);
target = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding);
printf("being recovered, working on physical drive %d.%d, %u blocks remaining\n",
bus, target, ld->cl_lstatus->blocks_to_recover);
break;
case CISS_LSTATUS_EXPANDING:
printf("being expanded, %u blocks remaining\n",
ld->cl_lstatus->blocks_to_recover);
break;
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
printf("queued for expansion\n");
break;
case CISS_LSTATUS_FAILED:
printf("queued for expansion\n");
break;
case CISS_LSTATUS_WRONG_PDRIVE:
printf("wrong physical drive inserted\n");
break;
case CISS_LSTATUS_MISSING_PDRIVE:
printf("missing a needed physical drive\n");
break;
case CISS_LSTATUS_BECOMING_READY:
printf("becoming ready\n");
break;
}
/* print failed physical drives */
for (i = 0; i < CISS_BIG_MAP_ENTRIES / 8; i++) {
bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_failure_map[i]);
target = CISS_BIG_MAP_TARGET(sc, ld->cl_lstatus->drive_failure_map[i]);
if (bus == -1)
continue;
ciss_printf(sc, "physical drive %d:%d (%x) failed\n", bus, target,
ld->cl_lstatus->drive_failure_map[i]);
}
}
#ifdef CISS_DEBUG
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
/************************************************************************
* Print information about the controller/driver.
*/
static void
ciss_print_adapter(struct ciss_softc *sc)
{
int i, j;
ciss_printf(sc, "ADAPTER:\n");
for (i = 0; i < CISSQ_COUNT; i++) {
ciss_printf(sc, "%s %d/%d\n",
i == 0 ? "free" :
i == 1 ? "busy" : "complete",
sc->ciss_qstat[i].q_length,
sc->ciss_qstat[i].q_max);
}
ciss_printf(sc, "max_requests %d\n", sc->ciss_max_requests);
ciss_printf(sc, "flags %b\n", sc->ciss_flags,
"\20\1notify_ok\2control_open\3aborting\4running\21fake_synch\22bmic_abort\n");
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) {
ciss_printf(sc, "LOGICAL DRIVE %d: ", i);
ciss_print_ldrive(sc, &sc->ciss_logical[i][j]);
}
}
/* XXX Should physical drives be printed out here? */
for (i = 1; i < sc->ciss_max_requests; i++)
ciss_print_request(sc->ciss_request + i);
}
/* DDB hook */
DB_COMMAND(ciss_prt, db_ciss_prt)
{
struct ciss_softc *sc;
devclass_t dc;
int maxciss, i;
dc = devclass_find("ciss");
if ( dc == NULL ) {
printf("%s: can't find devclass!\n", __func__);
return;
}
maxciss = devclass_get_maxunit(dc);
for (i = 0; i < maxciss; i++) {
sc = devclass_get_softc(dc, i);
ciss_print_adapter(sc);
}
}
#endif
#endif
/************************************************************************
* Return a name for a logical drive status value.
*/
static const char *
ciss_name_ldrive_status(int status)
{
switch (status) {
case CISS_LSTATUS_OK:
return("OK");
case CISS_LSTATUS_FAILED:
return("failed");
case CISS_LSTATUS_NOT_CONFIGURED:
return("not configured");
case CISS_LSTATUS_INTERIM_RECOVERY:
return("interim recovery");
case CISS_LSTATUS_READY_RECOVERY:
return("ready for recovery");
case CISS_LSTATUS_RECOVERING:
return("recovering");
case CISS_LSTATUS_WRONG_PDRIVE:
return("wrong physical drive inserted");
case CISS_LSTATUS_MISSING_PDRIVE:
return("missing physical drive");
case CISS_LSTATUS_EXPANDING:
return("expanding");
case CISS_LSTATUS_BECOMING_READY:
return("becoming ready");
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
return("queued for expansion");
}
return("unknown status");
}
/************************************************************************
* Return an online/offline/nonexistent value for a logical drive
* status value.
*/
static int
ciss_decode_ldrive_status(int status)
{
switch(status) {
case CISS_LSTATUS_NOT_CONFIGURED:
return(CISS_LD_NONEXISTENT);
case CISS_LSTATUS_OK:
case CISS_LSTATUS_INTERIM_RECOVERY:
case CISS_LSTATUS_READY_RECOVERY:
case CISS_LSTATUS_RECOVERING:
case CISS_LSTATUS_EXPANDING:
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
return(CISS_LD_ONLINE);
case CISS_LSTATUS_FAILED:
case CISS_LSTATUS_WRONG_PDRIVE:
case CISS_LSTATUS_MISSING_PDRIVE:
case CISS_LSTATUS_BECOMING_READY:
default:
return(CISS_LD_OFFLINE);
}
}
/************************************************************************
* Return a name for a logical drive's organisation.
*/
static const char *
ciss_name_ldrive_org(int org)
{
switch(org) {
case CISS_LDRIVE_RAID0:
return("RAID 0");
case CISS_LDRIVE_RAID1:
return("RAID 1(1+0)");
case CISS_LDRIVE_RAID4:
return("RAID 4");
case CISS_LDRIVE_RAID5:
return("RAID 5");
case CISS_LDRIVE_RAID51:
return("RAID 5+1");
case CISS_LDRIVE_RAIDADG:
return("RAID ADG");
}
return("unkown");
}
/************************************************************************
* Return a name for a command status value.
*/
static const char *
ciss_name_command_status(int status)
{
switch(status) {
case CISS_CMD_STATUS_SUCCESS:
return("success");
case CISS_CMD_STATUS_TARGET_STATUS:
return("target status");
case CISS_CMD_STATUS_DATA_UNDERRUN:
return("data underrun");
case CISS_CMD_STATUS_DATA_OVERRUN:
return("data overrun");
case CISS_CMD_STATUS_INVALID_COMMAND:
return("invalid command");
case CISS_CMD_STATUS_PROTOCOL_ERROR:
return("protocol error");
case CISS_CMD_STATUS_HARDWARE_ERROR:
return("hardware error");
case CISS_CMD_STATUS_CONNECTION_LOST:
return("connection lost");
case CISS_CMD_STATUS_ABORTED:
return("aborted");
case CISS_CMD_STATUS_ABORT_FAILED:
return("abort failed");
case CISS_CMD_STATUS_UNSOLICITED_ABORT:
return("unsolicited abort");
case CISS_CMD_STATUS_TIMEOUT:
return("timeout");
case CISS_CMD_STATUS_UNABORTABLE:
return("unabortable");
}
return("unknown status");
}
/************************************************************************
* Handle an open on the control device.
*/
static int
ciss_open(struct cdev *dev, int flags, int fmt, struct thread *p)
{
struct ciss_softc *sc;
debug_called(1);
sc = (struct ciss_softc *)dev->si_drv1;
/* we might want to veto if someone already has us open */
mtx_lock(&sc->ciss_mtx);
sc->ciss_flags |= CISS_FLAG_CONTROL_OPEN;
mtx_unlock(&sc->ciss_mtx);
return(0);
}
/************************************************************************
* Handle the last close on the control device.
*/
static int
ciss_close(struct cdev *dev, int flags, int fmt, struct thread *p)
{
struct ciss_softc *sc;
debug_called(1);
sc = (struct ciss_softc *)dev->si_drv1;
mtx_lock(&sc->ciss_mtx);
sc->ciss_flags &= ~CISS_FLAG_CONTROL_OPEN;
mtx_unlock(&sc->ciss_mtx);
return (0);
}
/********************************************************************************
* Handle adapter-specific control operations.
*
* Note that the API here is compatible with the Linux driver, in order to
* simplify the porting of Compaq's userland tools.
*/
static int
ciss_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int32_t flag, struct thread *p)
{
struct ciss_softc *sc;
IOCTL_Command_struct *ioc = (IOCTL_Command_struct *)addr;
#ifdef __amd64__
IOCTL_Command_struct32 *ioc32 = (IOCTL_Command_struct32 *)addr;
IOCTL_Command_struct ioc_swab;
#endif
int error;
debug_called(1);
sc = (struct ciss_softc *)dev->si_drv1;
error = 0;
mtx_lock(&sc->ciss_mtx);
switch(cmd) {
case CCISS_GETQSTATS:
{
union ciss_statrequest *cr = (union ciss_statrequest *)addr;
switch (cr->cs_item) {
case CISSQ_FREE:
case CISSQ_NOTIFY:
bcopy(&sc->ciss_qstat[cr->cs_item], &cr->cs_qstat,
sizeof(struct ciss_qstat));
break;
default:
error = ENOIOCTL;
break;
}
break;
}
case CCISS_GETPCIINFO:
{
cciss_pci_info_struct *pis = (cciss_pci_info_struct *)addr;
pis->bus = pci_get_bus(sc->ciss_dev);
pis->dev_fn = pci_get_slot(sc->ciss_dev);
pis->board_id = (pci_get_subvendor(sc->ciss_dev) << 16) |
pci_get_subdevice(sc->ciss_dev);
break;
}
case CCISS_GETINTINFO:
{
cciss_coalint_struct *cis = (cciss_coalint_struct *)addr;
cis->delay = sc->ciss_cfg->interrupt_coalesce_delay;
cis->count = sc->ciss_cfg->interrupt_coalesce_count;
break;
}
case CCISS_SETINTINFO:
{
cciss_coalint_struct *cis = (cciss_coalint_struct *)addr;
if ((cis->delay == 0) && (cis->count == 0)) {
error = EINVAL;
break;
}
/*
* XXX apparently this is only safe if the controller is idle,
* we should suspend it before doing this.
*/
sc->ciss_cfg->interrupt_coalesce_delay = cis->delay;
sc->ciss_cfg->interrupt_coalesce_count = cis->count;
if (ciss_update_config(sc))
error = EIO;
/* XXX resume the controller here */
break;
}
case CCISS_GETNODENAME:
bcopy(sc->ciss_cfg->server_name, (NodeName_type *)addr,
sizeof(NodeName_type));
break;
case CCISS_SETNODENAME:
bcopy((NodeName_type *)addr, sc->ciss_cfg->server_name,
sizeof(NodeName_type));
if (ciss_update_config(sc))
error = EIO;
break;
case CCISS_GETHEARTBEAT:
*(Heartbeat_type *)addr = sc->ciss_cfg->heartbeat;
break;
case CCISS_GETBUSTYPES:
*(BusTypes_type *)addr = sc->ciss_cfg->bus_types;
break;
case CCISS_GETFIRMVER:
bcopy(sc->ciss_id->running_firmware_revision, (FirmwareVer_type *)addr,
sizeof(FirmwareVer_type));
break;
case CCISS_GETDRIVERVER:
*(DriverVer_type *)addr = CISS_DRIVER_VERSION;
break;
case CCISS_REVALIDVOLS:
/*
* This is a bit ugly; to do it "right" we really need
* to find any disks that have changed, kick CAM off them,
* then rescan only these disks. It'd be nice if they
* a) told us which disk(s) they were going to play with,
* and b) which ones had arrived. 8(
*/
break;
#ifdef __amd64__
case CCISS_PASSTHRU32:
ioc_swab.LUN_info = ioc32->LUN_info;
ioc_swab.Request = ioc32->Request;
ioc_swab.error_info = ioc32->error_info;
ioc_swab.buf_size = ioc32->buf_size;
ioc_swab.buf = (u_int8_t *)(uintptr_t)ioc32->buf;
ioc = &ioc_swab;
/* FALLTHROUGH */
#endif
case CCISS_PASSTHRU:
error = ciss_user_command(sc, ioc);
break;
default:
debug(0, "unknown ioctl 0x%lx", cmd);
debug(1, "CCISS_GETPCIINFO: 0x%lx", CCISS_GETPCIINFO);
debug(1, "CCISS_GETINTINFO: 0x%lx", CCISS_GETINTINFO);
debug(1, "CCISS_SETINTINFO: 0x%lx", CCISS_SETINTINFO);
debug(1, "CCISS_GETNODENAME: 0x%lx", CCISS_GETNODENAME);
debug(1, "CCISS_SETNODENAME: 0x%lx", CCISS_SETNODENAME);
debug(1, "CCISS_GETHEARTBEAT: 0x%lx", CCISS_GETHEARTBEAT);
debug(1, "CCISS_GETBUSTYPES: 0x%lx", CCISS_GETBUSTYPES);
debug(1, "CCISS_GETFIRMVER: 0x%lx", CCISS_GETFIRMVER);
debug(1, "CCISS_GETDRIVERVER: 0x%lx", CCISS_GETDRIVERVER);
debug(1, "CCISS_REVALIDVOLS: 0x%lx", CCISS_REVALIDVOLS);
debug(1, "CCISS_PASSTHRU: 0x%lx", CCISS_PASSTHRU);
error = ENOIOCTL;
break;
}
mtx_unlock(&sc->ciss_mtx);
return(error);
}