freebsd-skq/sys/geom/part/g_part_bsd64.c
Pedro F. Giffuni e8d5712284 sys/geom: spelling fixes in comments.
No functional change.
2016-04-29 20:56:58 +00:00

665 lines
22 KiB
C

/*-
* Copyright (c) 2014 Andrey V. Elsukov <ae@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/disklabel.h>
#include <sys/endian.h>
#include <sys/gpt.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <geom/geom.h>
#include <geom/geom_int.h>
#include <geom/part/g_part.h>
#include "g_part_if.h"
FEATURE(geom_part_bsd64, "GEOM partitioning class for 64-bit BSD disklabels");
/* XXX: move this to sys/disklabel64.h */
#define DISKMAGIC64 ((uint32_t)0xc4464c59)
#define MAXPARTITIONS64 16
#define RESPARTITIONS64 32
struct disklabel64 {
char d_reserved0[512]; /* reserved or unused */
u_int32_t d_magic; /* the magic number */
u_int32_t d_crc; /* crc32() d_magic through last part */
u_int32_t d_align; /* partition alignment requirement */
u_int32_t d_npartitions; /* number of partitions */
struct uuid d_stor_uuid; /* unique uuid for label */
u_int64_t d_total_size; /* total size incl everything (bytes) */
u_int64_t d_bbase; /* boot area base offset (bytes) */
/* boot area is pbase - bbase */
u_int64_t d_pbase; /* first allocatable offset (bytes) */
u_int64_t d_pstop; /* last allocatable offset+1 (bytes) */
u_int64_t d_abase; /* location of backup copy if not 0 */
u_char d_packname[64];
u_char d_reserved[64];
/*
* Note: offsets are relative to the base of the slice, NOT to
* d_pbase. Unlike 32 bit disklabels the on-disk format for
* a 64 bit disklabel remains slice-relative.
*
* An uninitialized partition has a p_boffset and p_bsize of 0.
*
* If p_fstype is not supported for a live partition it is set
* to FS_OTHER. This is typically the case when the filesystem
* is identified by its uuid.
*/
struct partition64 { /* the partition table */
u_int64_t p_boffset; /* slice relative offset, in bytes */
u_int64_t p_bsize; /* size of partition, in bytes */
u_int8_t p_fstype;
u_int8_t p_unused01; /* reserved, must be 0 */
u_int8_t p_unused02; /* reserved, must be 0 */
u_int8_t p_unused03; /* reserved, must be 0 */
u_int32_t p_unused04; /* reserved, must be 0 */
u_int32_t p_unused05; /* reserved, must be 0 */
u_int32_t p_unused06; /* reserved, must be 0 */
struct uuid p_type_uuid;/* mount type as UUID */
struct uuid p_stor_uuid;/* unique uuid for storage */
} d_partitions[MAXPARTITIONS64];/* actually may be more */
};
struct g_part_bsd64_table {
struct g_part_table base;
uint32_t d_align;
uint64_t d_bbase;
uint64_t d_abase;
struct uuid d_stor_uuid;
char d_reserved0[512];
u_char d_packname[64];
u_char d_reserved[64];
};
struct g_part_bsd64_entry {
struct g_part_entry base;
uint8_t fstype;
struct uuid type_uuid;
struct uuid stor_uuid;
};
static int g_part_bsd64_add(struct g_part_table *, struct g_part_entry *,
struct g_part_parms *);
static int g_part_bsd64_bootcode(struct g_part_table *, struct g_part_parms *);
static int g_part_bsd64_create(struct g_part_table *, struct g_part_parms *);
static int g_part_bsd64_destroy(struct g_part_table *, struct g_part_parms *);
static void g_part_bsd64_dumpconf(struct g_part_table *, struct g_part_entry *,
struct sbuf *, const char *);
static int g_part_bsd64_dumpto(struct g_part_table *, struct g_part_entry *);
static int g_part_bsd64_modify(struct g_part_table *, struct g_part_entry *,
struct g_part_parms *);
static const char *g_part_bsd64_name(struct g_part_table *, struct g_part_entry *,
char *, size_t);
static int g_part_bsd64_probe(struct g_part_table *, struct g_consumer *);
static int g_part_bsd64_read(struct g_part_table *, struct g_consumer *);
static const char *g_part_bsd64_type(struct g_part_table *, struct g_part_entry *,
char *, size_t);
static int g_part_bsd64_write(struct g_part_table *, struct g_consumer *);
static int g_part_bsd64_resize(struct g_part_table *, struct g_part_entry *,
struct g_part_parms *);
static kobj_method_t g_part_bsd64_methods[] = {
KOBJMETHOD(g_part_add, g_part_bsd64_add),
KOBJMETHOD(g_part_bootcode, g_part_bsd64_bootcode),
KOBJMETHOD(g_part_create, g_part_bsd64_create),
KOBJMETHOD(g_part_destroy, g_part_bsd64_destroy),
KOBJMETHOD(g_part_dumpconf, g_part_bsd64_dumpconf),
KOBJMETHOD(g_part_dumpto, g_part_bsd64_dumpto),
KOBJMETHOD(g_part_modify, g_part_bsd64_modify),
KOBJMETHOD(g_part_resize, g_part_bsd64_resize),
KOBJMETHOD(g_part_name, g_part_bsd64_name),
KOBJMETHOD(g_part_probe, g_part_bsd64_probe),
KOBJMETHOD(g_part_read, g_part_bsd64_read),
KOBJMETHOD(g_part_type, g_part_bsd64_type),
KOBJMETHOD(g_part_write, g_part_bsd64_write),
{ 0, 0 }
};
static struct g_part_scheme g_part_bsd64_scheme = {
"BSD64",
g_part_bsd64_methods,
sizeof(struct g_part_bsd64_table),
.gps_entrysz = sizeof(struct g_part_bsd64_entry),
.gps_minent = MAXPARTITIONS64,
.gps_maxent = MAXPARTITIONS64
};
G_PART_SCHEME_DECLARE(g_part_bsd64);
#define EQUUID(a, b) (memcmp(a, b, sizeof(struct uuid)) == 0)
static struct uuid bsd64_uuid_unused = GPT_ENT_TYPE_UNUSED;
static struct uuid bsd64_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
static struct uuid bsd64_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
static struct uuid bsd64_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
static struct uuid bsd64_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
static struct uuid bsd64_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
static struct uuid bsd64_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
static struct uuid bsd64_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
static struct uuid bsd64_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
static struct uuid bsd64_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
static struct uuid bsd64_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
static struct uuid bsd64_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
static struct uuid bsd64_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
static struct uuid bsd64_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
struct bsd64_uuid_alias {
struct uuid *uuid;
uint8_t fstype;
int alias;
};
static struct bsd64_uuid_alias dfbsd_alias_match[] = {
{ &bsd64_uuid_dfbsd_swap, FS_SWAP, G_PART_ALIAS_DFBSD_SWAP },
{ &bsd64_uuid_dfbsd_ufs1, FS_BSDFFS, G_PART_ALIAS_DFBSD_UFS },
{ &bsd64_uuid_dfbsd_vinum, FS_VINUM, G_PART_ALIAS_DFBSD_VINUM },
{ &bsd64_uuid_dfbsd_ccd, FS_CCD, G_PART_ALIAS_DFBSD_CCD },
{ &bsd64_uuid_dfbsd_legacy, FS_OTHER, G_PART_ALIAS_DFBSD_LEGACY },
{ &bsd64_uuid_dfbsd_hammer, FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER },
{ &bsd64_uuid_dfbsd_hammer2, FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 },
{ NULL, 0, 0}
};
static struct bsd64_uuid_alias fbsd_alias_match[] = {
{ &bsd64_uuid_freebsd_boot, FS_OTHER, G_PART_ALIAS_FREEBSD_BOOT },
{ &bsd64_uuid_freebsd_swap, FS_OTHER, G_PART_ALIAS_FREEBSD_SWAP },
{ &bsd64_uuid_freebsd_ufs, FS_OTHER, G_PART_ALIAS_FREEBSD_UFS },
{ &bsd64_uuid_freebsd_zfs, FS_OTHER, G_PART_ALIAS_FREEBSD_ZFS },
{ &bsd64_uuid_freebsd_vinum, FS_OTHER, G_PART_ALIAS_FREEBSD_VINUM },
{ &bsd64_uuid_freebsd_nandfs, FS_OTHER, G_PART_ALIAS_FREEBSD_NANDFS },
{ NULL, 0, 0}
};
static int
bsd64_parse_type(const char *type, struct g_part_bsd64_entry *entry)
{
struct uuid tmp;
const struct bsd64_uuid_alias *uap;
const char *alias;
char *p;
long lt;
int error;
if (type[0] == '!') {
if (type[1] == '\0')
return (EINVAL);
lt = strtol(type + 1, &p, 0);
/* The type specified as number */
if (*p == '\0') {
if (lt <= 0 || lt > 255)
return (EINVAL);
entry->fstype = lt;
entry->type_uuid = bsd64_uuid_unused;
return (0);
}
/* The type specified as uuid */
error = parse_uuid(type + 1, &tmp);
if (error != 0)
return (error);
if (EQUUID(&tmp, &bsd64_uuid_unused))
return (EINVAL);
for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
if (EQUUID(&tmp, uap->uuid)) {
/* Prefer fstype for known uuids */
entry->type_uuid = bsd64_uuid_unused;
entry->fstype = uap->fstype;
return (0);
}
}
entry->type_uuid = tmp;
entry->fstype = FS_OTHER;
return (0);
}
/* The type specified as symbolic alias name */
for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) {
alias = g_part_alias_name(uap->alias);
if (!strcasecmp(type, alias)) {
entry->type_uuid = *uap->uuid;
entry->fstype = uap->fstype;
return (0);
}
}
for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
alias = g_part_alias_name(uap->alias);
if (!strcasecmp(type, alias)) {
entry->type_uuid = bsd64_uuid_unused;
entry->fstype = uap->fstype;
return (0);
}
}
return (EINVAL);
}
static int
g_part_bsd64_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
struct g_part_parms *gpp)
{
struct g_part_bsd64_entry *entry;
if (gpp->gpp_parms & G_PART_PARM_LABEL)
return (EINVAL);
entry = (struct g_part_bsd64_entry *)baseentry;
if (bsd64_parse_type(gpp->gpp_type, entry) != 0)
return (EINVAL);
kern_uuidgen(&entry->stor_uuid, 1);
return (0);
}
static int
g_part_bsd64_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
{
return (EOPNOTSUPP);
}
#define PALIGN_SIZE (1024 * 1024)
#define PALIGN_MASK (PALIGN_SIZE - 1)
#define BLKSIZE (4 * 1024)
#define BOOTSIZE (32 * 1024)
#define DALIGN_SIZE (32 * 1024)
static int
g_part_bsd64_create(struct g_part_table *basetable, struct g_part_parms *gpp)
{
struct g_part_bsd64_table *table;
struct g_part_entry *baseentry;
struct g_provider *pp;
uint64_t blkmask, pbase;
uint32_t blksize, ressize;
pp = gpp->gpp_provider;
if (pp->mediasize < 2* PALIGN_SIZE)
return (ENOSPC);
/*
* Use at least 4KB block size. Blksize is stored in the d_align.
* XXX: Actually it is used just for calculate d_bbase and used
* for better alignment in bsdlabel64(8).
*/
blksize = pp->sectorsize < BLKSIZE ? BLKSIZE: pp->sectorsize;
blkmask = blksize - 1;
/* Reserve enough space for RESPARTITIONS64 partitions. */
ressize = offsetof(struct disklabel64, d_partitions[RESPARTITIONS64]);
ressize = (ressize + blkmask) & ~blkmask;
/*
* Reserve enough space for bootcode and align first allocatable
* offset to PALIGN_SIZE.
* XXX: Currently DragonFlyBSD has 32KB bootcode, but the size could
* be bigger, because it is possible change it (it is equal pbase-bbase)
* in the bsdlabel64(8).
*/
pbase = ressize + ((BOOTSIZE + blkmask) & ~blkmask);
pbase = (pbase + PALIGN_MASK) & ~PALIGN_MASK;
/*
* Take physical offset into account and make first allocatable
* offset 32KB aligned to the start of the physical disk.
* XXX: Actually there are no such restrictions, this is how
* DragonFlyBSD behaves.
*/
pbase += DALIGN_SIZE - pp->stripeoffset % DALIGN_SIZE;
table = (struct g_part_bsd64_table *)basetable;
table->d_align = blksize;
table->d_bbase = ressize / pp->sectorsize;
table->d_abase = ((pp->mediasize - ressize) &
~blkmask) / pp->sectorsize;
kern_uuidgen(&table->d_stor_uuid, 1);
basetable->gpt_first = pbase / pp->sectorsize;
basetable->gpt_last = table->d_abase - 1; /* XXX */
/*
* Create 'c' partition and make it internal, so user will not be
* able use it.
*/
baseentry = g_part_new_entry(basetable, RAW_PART + 1, 0, 0);
baseentry->gpe_internal = 1;
return (0);
}
static int
g_part_bsd64_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
{
struct g_provider *pp;
pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
if (pp->sectorsize > offsetof(struct disklabel64, d_magic))
basetable->gpt_smhead |= 1;
else
basetable->gpt_smhead |= 3;
return (0);
}
static void
g_part_bsd64_dumpconf(struct g_part_table *basetable,
struct g_part_entry *baseentry, struct sbuf *sb, const char *indent)
{
struct g_part_bsd64_table *table;
struct g_part_bsd64_entry *entry;
char buf[sizeof(table->d_packname)];
entry = (struct g_part_bsd64_entry *)baseentry;
if (indent == NULL) {
/* conftxt: libdisk compatibility */
sbuf_printf(sb, " xs BSD64 xt %u", entry->fstype);
} else if (entry != NULL) {
/* confxml: partition entry information */
sbuf_printf(sb, "%s<rawtype>%u</rawtype>\n", indent,
entry->fstype);
if (!EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) {
sbuf_printf(sb, "%s<type_uuid>", indent);
sbuf_printf_uuid(sb, &entry->type_uuid);
sbuf_printf(sb, "</type_uuid>\n");
}
sbuf_printf(sb, "%s<stor_uuid>", indent);
sbuf_printf_uuid(sb, &entry->stor_uuid);
sbuf_printf(sb, "</stor_uuid>\n");
} else {
/* confxml: scheme information */
table = (struct g_part_bsd64_table *)basetable;
sbuf_printf(sb, "%s<bootbase>%ju</bootbase>\n", indent,
(uintmax_t)table->d_bbase);
if (table->d_abase)
sbuf_printf(sb, "%s<backupbase>%ju</backupbase>\n",
indent, (uintmax_t)table->d_abase);
sbuf_printf(sb, "%s<stor_uuid>", indent);
sbuf_printf_uuid(sb, &table->d_stor_uuid);
sbuf_printf(sb, "</stor_uuid>\n");
sbuf_printf(sb, "%s<label>", indent);
strncpy(buf, table->d_packname, sizeof(buf) - 1);
buf[sizeof(buf) - 1] = '\0';
g_conf_printf_escaped(sb, "%s", buf);
sbuf_printf(sb, "</label>\n");
}
}
static int
g_part_bsd64_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
{
struct g_part_bsd64_entry *entry;
/* Allow dumping to a swap partition. */
entry = (struct g_part_bsd64_entry *)baseentry;
if (entry->fstype == FS_SWAP ||
EQUUID(&entry->type_uuid, &bsd64_uuid_dfbsd_swap) ||
EQUUID(&entry->type_uuid, &bsd64_uuid_freebsd_swap))
return (1);
return (0);
}
static int
g_part_bsd64_modify(struct g_part_table *basetable,
struct g_part_entry *baseentry, struct g_part_parms *gpp)
{
struct g_part_bsd64_entry *entry;
if (gpp->gpp_parms & G_PART_PARM_LABEL)
return (EINVAL);
entry = (struct g_part_bsd64_entry *)baseentry;
if (gpp->gpp_parms & G_PART_PARM_TYPE)
return (bsd64_parse_type(gpp->gpp_type, entry));
return (0);
}
static int
g_part_bsd64_resize(struct g_part_table *basetable,
struct g_part_entry *baseentry, struct g_part_parms *gpp)
{
struct g_part_bsd64_table *table;
struct g_provider *pp;
if (baseentry == NULL) {
pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
table = (struct g_part_bsd64_table *)basetable;
table->d_abase =
rounddown2(pp->mediasize - table->d_bbase * pp->sectorsize,
table->d_align) / pp->sectorsize;
basetable->gpt_last = table->d_abase - 1;
return (0);
}
baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
return (0);
}
static const char *
g_part_bsd64_name(struct g_part_table *table, struct g_part_entry *baseentry,
char *buf, size_t bufsz)
{
snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1);
return (buf);
}
static int
g_part_bsd64_probe(struct g_part_table *table, struct g_consumer *cp)
{
struct g_provider *pp;
uint32_t v;
int error;
u_char *buf;
pp = cp->provider;
if (pp->mediasize < 2 * PALIGN_SIZE)
return (ENOSPC);
v = rounddown2(pp->sectorsize + offsetof(struct disklabel64, d_magic),
pp->sectorsize);
buf = g_read_data(cp, 0, v, &error);
if (buf == NULL)
return (error);
v = le32dec(buf + offsetof(struct disklabel64, d_magic));
g_free(buf);
return (v == DISKMAGIC64 ? G_PART_PROBE_PRI_HIGH: ENXIO);
}
static int
g_part_bsd64_read(struct g_part_table *basetable, struct g_consumer *cp)
{
struct g_part_bsd64_table *table;
struct g_part_bsd64_entry *entry;
struct g_part_entry *baseentry;
struct g_provider *pp;
struct disklabel64 *dlp;
uint64_t v64, sz;
uint32_t v32;
int error, index;
u_char *buf;
pp = cp->provider;
table = (struct g_part_bsd64_table *)basetable;
v32 = roundup2(sizeof(struct disklabel64), pp->sectorsize);
buf = g_read_data(cp, 0, v32, &error);
if (buf == NULL)
return (error);
dlp = (struct disklabel64 *)buf;
basetable->gpt_entries = le32toh(dlp->d_npartitions);
if (basetable->gpt_entries > MAXPARTITIONS64 ||
basetable->gpt_entries < 1)
goto invalid_label;
v32 = le32toh(dlp->d_crc);
dlp->d_crc = 0;
if (crc32(&dlp->d_magic, offsetof(struct disklabel64,
d_partitions[basetable->gpt_entries]) -
offsetof(struct disklabel64, d_magic)) != v32)
goto invalid_label;
table->d_align = le32toh(dlp->d_align);
if (table->d_align == 0 || (table->d_align & (pp->sectorsize - 1)))
goto invalid_label;
if (le64toh(dlp->d_total_size) > pp->mediasize)
goto invalid_label;
v64 = le64toh(dlp->d_pbase);
if (v64 % pp->sectorsize)
goto invalid_label;
basetable->gpt_first = v64 / pp->sectorsize;
v64 = le64toh(dlp->d_pstop);
if (v64 % pp->sectorsize)
goto invalid_label;
basetable->gpt_last = v64 / pp->sectorsize;
basetable->gpt_isleaf = 1;
v64 = le64toh(dlp->d_bbase);
if (v64 % pp->sectorsize)
goto invalid_label;
table->d_bbase = v64 / pp->sectorsize;
v64 = le64toh(dlp->d_abase);
if (v64 % pp->sectorsize)
goto invalid_label;
table->d_abase = v64 / pp->sectorsize;
le_uuid_dec(&dlp->d_stor_uuid, &table->d_stor_uuid);
for (index = basetable->gpt_entries - 1; index >= 0; index--) {
if (index == RAW_PART) {
/* Skip 'c' partition. */
baseentry = g_part_new_entry(basetable,
index + 1, 0, 0);
baseentry->gpe_internal = 1;
continue;
}
v64 = le64toh(dlp->d_partitions[index].p_boffset);
sz = le64toh(dlp->d_partitions[index].p_bsize);
if (sz == 0 && v64 == 0)
continue;
if (sz == 0 || (v64 % pp->sectorsize) || (sz % pp->sectorsize))
goto invalid_label;
baseentry = g_part_new_entry(basetable, index + 1,
v64 / pp->sectorsize, (v64 + sz) / pp->sectorsize - 1);
entry = (struct g_part_bsd64_entry *)baseentry;
le_uuid_dec(&dlp->d_partitions[index].p_type_uuid,
&entry->type_uuid);
le_uuid_dec(&dlp->d_partitions[index].p_stor_uuid,
&entry->stor_uuid);
entry->fstype = dlp->d_partitions[index].p_fstype;
}
bcopy(dlp->d_reserved0, table->d_reserved0,
sizeof(table->d_reserved0));
bcopy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
bcopy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
g_free(buf);
return (0);
invalid_label:
g_free(buf);
return (EINVAL);
}
static const char *
g_part_bsd64_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
char *buf, size_t bufsz)
{
struct g_part_bsd64_entry *entry;
struct bsd64_uuid_alias *uap;
entry = (struct g_part_bsd64_entry *)baseentry;
if (entry->fstype != FS_OTHER) {
for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
if (uap->fstype == entry->fstype)
return (g_part_alias_name(uap->alias));
} else {
for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++)
if (EQUUID(uap->uuid, &entry->type_uuid))
return (g_part_alias_name(uap->alias));
for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
if (EQUUID(uap->uuid, &entry->type_uuid))
return (g_part_alias_name(uap->alias));
}
if (EQUUID(&bsd64_uuid_unused, &entry->type_uuid))
snprintf(buf, bufsz, "!%d", entry->fstype);
else {
buf[0] = '!';
snprintf_uuid(buf + 1, bufsz - 1, &entry->type_uuid);
}
return (buf);
}
static int
g_part_bsd64_write(struct g_part_table *basetable, struct g_consumer *cp)
{
struct g_provider *pp;
struct g_part_entry *baseentry;
struct g_part_bsd64_entry *entry;
struct g_part_bsd64_table *table;
struct disklabel64 *dlp;
uint32_t v, sz;
int error, index;
pp = cp->provider;
table = (struct g_part_bsd64_table *)basetable;
sz = roundup2(sizeof(struct disklabel64), pp->sectorsize);
dlp = g_malloc(sz, M_WAITOK | M_ZERO);
memcpy(dlp->d_reserved0, table->d_reserved0,
sizeof(table->d_reserved0));
memcpy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
memcpy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
le32enc(&dlp->d_magic, DISKMAGIC64);
le32enc(&dlp->d_align, table->d_align);
le32enc(&dlp->d_npartitions, basetable->gpt_entries);
le_uuid_enc(&dlp->d_stor_uuid, &table->d_stor_uuid);
le64enc(&dlp->d_total_size, pp->mediasize);
le64enc(&dlp->d_bbase, table->d_bbase * pp->sectorsize);
le64enc(&dlp->d_pbase, basetable->gpt_first * pp->sectorsize);
le64enc(&dlp->d_pstop, basetable->gpt_last * pp->sectorsize);
le64enc(&dlp->d_abase, table->d_abase * pp->sectorsize);
LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
if (baseentry->gpe_deleted)
continue;
index = baseentry->gpe_index - 1;
entry = (struct g_part_bsd64_entry *)baseentry;
if (index == RAW_PART)
continue;
le64enc(&dlp->d_partitions[index].p_boffset,
baseentry->gpe_start * pp->sectorsize);
le64enc(&dlp->d_partitions[index].p_bsize, pp->sectorsize *
(baseentry->gpe_end - baseentry->gpe_start + 1));
dlp->d_partitions[index].p_fstype = entry->fstype;
le_uuid_enc(&dlp->d_partitions[index].p_type_uuid,
&entry->type_uuid);
le_uuid_enc(&dlp->d_partitions[index].p_stor_uuid,
&entry->stor_uuid);
}
/* Calculate checksum. */
v = offsetof(struct disklabel64,
d_partitions[basetable->gpt_entries]) -
offsetof(struct disklabel64, d_magic);
le32enc(&dlp->d_crc, crc32(&dlp->d_magic, v));
error = g_write_data(cp, 0, dlp, sz);
g_free(dlp);
return (error);
}