freebsd-skq/contrib/libstdc++/stl/stl_rope.h
1999-10-04 08:12:38 +00:00

2113 lines
61 KiB
C++

/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_ROPE_H
# define __SGI_STL_INTERNAL_ROPE_H
# ifdef __GC
# define __GC_CONST const
# else
# define __GC_CONST // constant except for deallocation
# endif
# ifdef __STL_SGI_THREADS
# include <mutex.h>
# endif
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif
// The end-of-C-string character.
// This is what the draft standard says it should be.
template <class charT>
inline charT __eos(charT*) { return charT(); }
// Test for basic character types.
// For basic character types leaves having a trailing eos.
template <class charT>
inline bool __is_basic_char_type(charT *) { return false; }
template <class charT>
inline bool __is_one_byte_char_type(charT *) { return false; }
inline bool __is_basic_char_type(char *) { return true; }
inline bool __is_one_byte_char_type(char *) { return true; }
inline bool __is_basic_char_type(wchar_t *) { return true; }
// Store an eos iff charT is a basic character type.
// Do not reference __eos if it isn't.
template <class charT>
inline void __cond_store_eos(charT&) {}
inline void __cond_store_eos(char& c) { c = 0; }
inline void __cond_store_eos(wchar_t& c) { c = 0; }
// rope<charT,Alloc> is a sequence of charT.
// Ropes appear to be mutable, but update operations
// really copy enough of the data structure to leave the original
// valid. Thus ropes can be logically copied by just copying
// a pointer value.
// The __eos function is used for those functions that
// convert to/from C-like strings to detect the end of the string.
// __compare is used as the character comparison function.
template <class charT>
class char_producer {
public:
virtual ~char_producer() {};
virtual void operator()(size_t start_pos, size_t len, charT* buffer)
= 0;
// Buffer should really be an arbitrary output iterator.
// That way we could flatten directly into an ostream, etc.
// This is thoroughly impossible, since iterator types don't
// have runtime descriptions.
};
// Sequence buffers:
//
// Sequence must provide an append operation that appends an
// array to the sequence. Sequence buffers are useful only if
// appending an entire array is cheaper than appending element by element.
// This is true for many string representations.
// This should perhaps inherit from ostream<sequence::value_type>
// and be implemented correspondingly, so that they can be used
// for formatted. For the sake of portability, we don't do this yet.
//
// For now, sequence buffers behave as output iterators. But they also
// behave a little like basic_ostringstream<sequence::value_type> and a
// little like containers.
template<class sequence, size_t buf_sz = 100
# if defined(__sgi) && !defined(__GNUC__)
# define __TYPEDEF_WORKAROUND
,class v = typename sequence::value_type
# endif
>
// The 3rd parameter works around a common compiler bug.
class sequence_buffer : public output_iterator {
public:
# ifndef __TYPEDEF_WORKAROUND
typedef typename sequence::value_type value_type;
# else
typedef v value_type;
# endif
protected:
sequence *prefix;
value_type buffer[buf_sz];
size_t buf_count;
public:
void flush() {
prefix->append(buffer, buffer + buf_count);
buf_count = 0;
}
~sequence_buffer() { flush(); }
sequence_buffer() : prefix(0), buf_count(0) {}
sequence_buffer(const sequence_buffer & x) {
prefix = x.prefix;
buf_count = x.buf_count;
copy(x.buffer, x.buffer + x.buf_count, buffer);
}
sequence_buffer(sequence_buffer & x) {
x.flush();
prefix = x.prefix;
buf_count = 0;
}
sequence_buffer(sequence& s) : prefix(&s), buf_count(0) {}
sequence_buffer& operator= (sequence_buffer& x) {
x.flush();
prefix = x.prefix;
buf_count = 0;
return *this;
}
sequence_buffer& operator= (const sequence_buffer& x) {
prefix = x.prefix;
buf_count = x.buf_count;
copy(x.buffer, x.buffer + x.buf_count, buffer);
return *this;
}
void push_back(value_type x)
{
if (buf_count < buf_sz) {
buffer[buf_count] = x;
++buf_count;
} else {
flush();
buffer[0] = x;
buf_count = 1;
}
}
void append(value_type *s, size_t len)
{
if (len + buf_count <= buf_sz) {
size_t i, j;
for (i = buf_count, j = 0; j < len; i++, j++) {
buffer[i] = s[j];
}
buf_count += len;
} else if (0 == buf_count) {
prefix->append(s, s + len);
} else {
flush();
append(s, len);
}
}
sequence_buffer& write(value_type *s, size_t len)
{
append(s, len);
return *this;
}
sequence_buffer& put(value_type x)
{
push_back(x);
return *this;
}
sequence_buffer& operator=(const value_type& rhs)
{
push_back(rhs);
return *this;
}
sequence_buffer& operator*() { return *this; }
sequence_buffer& operator++() { return *this; }
sequence_buffer& operator++(int) { return *this; }
};
// The following should be treated as private, at least for now.
template<class charT>
class __rope_char_consumer {
public:
// If we had member templates, these should not be virtual.
// For now we need to use run-time parametrization where
// compile-time would do. Hence this should all be private
// for now.
// The symmetry with char_producer is accidental and temporary.
virtual ~__rope_char_consumer() {};
virtual bool operator()(const charT* buffer, size_t len) = 0;
};
//
// What follows should really be local to rope. Unfortunately,
// that doesn't work, since it makes it impossible to define generic
// equality on rope iterators. According to the draft standard, the
// template parameters for such an equality operator cannot be inferred
// from the occurence of a member class as a parameter.
// (SGI compilers in fact allow this, but the result wouldn't be
// portable.)
// Similarly, some of the static member functions are member functions
// only to avoid polluting the global namespace, and to circumvent
// restrictions on type inference for template functions.
//
template<class CharT, class Alloc=__ALLOC> class rope;
template<class CharT, class Alloc> struct __rope_RopeConcatenation;
template<class CharT, class Alloc> struct __rope_RopeLeaf;
template<class CharT, class Alloc> struct __rope_RopeFunction;
template<class CharT, class Alloc> struct __rope_RopeSubstring;
template<class CharT, class Alloc> class __rope_iterator;
template<class CharT, class Alloc> class __rope_const_iterator;
template<class CharT, class Alloc> class __rope_charT_ref_proxy;
template<class CharT, class Alloc> class __rope_charT_ptr_proxy;
//
// The internal data structure for representing a rope. This is
// private to the implementation. A rope is really just a pointer
// to one of these.
//
// A few basic functions for manipulating this data structure
// are members of RopeBase. Most of the more complex algorithms
// are implemented as rope members.
//
// Some of the static member functions of RopeBase have identically
// named functions in rope that simply invoke the RopeBase versions.
//
template<class charT, class Alloc>
struct __rope_RopeBase {
typedef rope<charT,Alloc> my_rope;
typedef simple_alloc<charT, Alloc> DataAlloc;
typedef simple_alloc<__rope_RopeConcatenation<charT,Alloc>, Alloc> CAlloc;
typedef simple_alloc<__rope_RopeLeaf<charT,Alloc>, Alloc> LAlloc;
typedef simple_alloc<__rope_RopeFunction<charT,Alloc>, Alloc> FAlloc;
typedef simple_alloc<__rope_RopeSubstring<charT,Alloc>, Alloc> SAlloc;
public:
enum { max_rope_depth = 45 };
enum {leaf, concat, substringfn, function} tag:8;
bool is_balanced:8;
unsigned char depth;
size_t size;
__GC_CONST charT * c_string;
/* Flattened version of string, if needed. */
/* typically 0. */
/* If it's not 0, then the memory is owned */
/* by this node. */
/* In the case of a leaf, this may point to */
/* the same memory as the data field. */
# ifndef __GC
# if defined(__STL_WIN32THREADS)
long refcount; // InterlockedIncrement wants a long *
# else
size_t refcount;
# endif
// We count references from rope instances
// and references from other rope nodes. We
// do not count const_iterator references.
// Iterator references are counted so that rope modifications
// can be detected after the fact.
// Generally function results are counted, i.e.
// a pointer returned by a function is included at the
// point at which the pointer is returned.
// The recipient should decrement the count if the
// result is not needed.
// Generally function arguments are not reflected
// in the reference count. The callee should increment
// the count before saving the argument someplace that
// will outlive the call.
# endif
# ifndef __GC
# ifdef __STL_SGI_THREADS
// Reference counting with multiple threads and no
// hardware or thread package support is pretty awful.
// Mutexes are normally too expensive.
// We'll assume a COMPARE_AND_SWAP(destp, old, new)
// operation, which might be cheaper.
# if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64))
# define __add_and_fetch(l,v) add_then_test((unsigned long *)l,v)
# endif
void init_refcount_lock() {}
void incr_refcount ()
{
__add_and_fetch(&refcount, 1);
}
size_t decr_refcount ()
{
return __add_and_fetch(&refcount, (size_t)(-1));
}
# elif defined(__STL_WIN32THREADS)
void init_refcount_lock() {}
void incr_refcount ()
{
InterlockedIncrement(&refcount);
}
size_t decr_refcount ()
{
return InterlockedDecrement(&refcount);
}
# elif defined(__STL_PTHREADS)
// This should be portable, but performance is expected
// to be quite awful. This really needs platform specific
// code.
pthread_mutex_t refcount_lock;
void init_refcount_lock() {
pthread_mutex_init(&refcount_lock, 0);
}
void incr_refcount ()
{
pthread_mutex_lock(&refcount_lock);
++refcount;
pthread_mutex_unlock(&refcount_lock);
}
size_t decr_refcount ()
{
size_t result;
pthread_mutex_lock(&refcount_lock);
result = --refcount;
pthread_mutex_unlock(&refcount_lock);
return result;
}
# else
void init_refcount_lock() {}
void incr_refcount ()
{
++refcount;
}
size_t decr_refcount ()
{
--refcount;
return refcount;
}
# endif
# else
void incr_refcount () {}
# endif
static void free_string(charT *, size_t len);
// Deallocate data section of a leaf.
// This shouldn't be a member function.
// But its hard to do anything else at the
// moment, because it's templatized w.r.t.
// an allocator.
// Does nothing if __GC is defined.
# ifndef __GC
void free_c_string();
void free_tree();
// Deallocate t. Assumes t is not 0.
void unref_nonnil()
{
if (0 == decr_refcount()) free_tree();
}
void ref_nonnil()
{
incr_refcount();
}
static void unref(__rope_RopeBase* t)
{
if (0 != t) {
t -> unref_nonnil();
}
}
static void ref(__rope_RopeBase* t)
{
if (0 != t) t -> incr_refcount();
}
static void free_if_unref(__rope_RopeBase* t)
{
if (0 != t && 0 == t -> refcount) t -> free_tree();
}
# else /* __GC */
void unref_nonnil() {}
void ref_nonnil() {}
static void unref(__rope_RopeBase* t) {}
static void ref(__rope_RopeBase* t) {}
static void fn_finalization_proc(void * tree, void *);
static void free_if_unref(__rope_RopeBase* t) {}
# endif
// The data fields of leaves are allocated with some
// extra space, to accomodate future growth and for basic
// character types, to hold a trailing eos character.
enum { alloc_granularity = 8 };
static size_t rounded_up_size(size_t n) {
size_t size_with_eos;
if (__is_basic_char_type((charT *)0)) {
size_with_eos = n + 1;
} else {
size_with_eos = n;
}
# ifdef __GC
return size_with_eos;
# else
// Allow slop for in-place expansion.
return (size_with_eos + alloc_granularity-1)
&~ (alloc_granularity-1);
# endif
}
};
template<class charT, class Alloc>
struct __rope_RopeLeaf : public __rope_RopeBase<charT,Alloc> {
public: // Apparently needed by VC++
__GC_CONST charT* data; /* Not necessarily 0 terminated. */
/* The allocated size is */
/* rounded_up_size(size), except */
/* in the GC case, in which it */
/* doesn't matter. */
};
template<class charT, class Alloc>
struct __rope_RopeConcatenation : public __rope_RopeBase<charT,Alloc> {
public:
__rope_RopeBase<charT,Alloc>* left;
__rope_RopeBase<charT,Alloc>* right;
};
template<class charT, class Alloc>
struct __rope_RopeFunction : public __rope_RopeBase<charT,Alloc> {
public:
char_producer<charT>* fn;
# ifndef __GC
bool delete_when_done; // Char_producer is owned by the
// rope and should be explicitly
// deleted when the rope becomes
// inaccessible.
# else
// In the GC case, we either register the rope for
// finalization, or not. Thus the field is unnecessary;
// the information is stored in the collector data structures.
# endif
};
// Substring results are usually represented using just
// concatenation nodes. But in the case of very long flat ropes
// or ropes with a functional representation that isn't practical.
// In that case, we represent the result as a special case of
// RopeFunction, whose char_producer points back to the rope itself.
// In all cases except repeated substring operations and
// deallocation, we treat the result as a RopeFunction.
template<class charT, class Alloc>
struct __rope_RopeSubstring: public __rope_RopeFunction<charT,Alloc>,
public char_producer<charT> {
public:
__rope_RopeBase<charT,Alloc> * base; // not 0
size_t start;
virtual ~__rope_RopeSubstring() {}
virtual void operator()(size_t start_pos, size_t req_len,
charT *buffer) {
switch(base -> tag) {
case function:
case substringfn:
{
char_producer<charT> *fn =
((__rope_RopeFunction<charT,Alloc> *)base) -> fn;
__stl_assert(start_pos + req_len <= size);
__stl_assert(start + size <= base -> size);
(*fn)(start_pos + start, req_len, buffer);
}
break;
case leaf:
{
__GC_CONST charT * s =
((__rope_RopeLeaf<charT,Alloc> *)base) -> data;
uninitialized_copy_n(s + start_pos + start, req_len,
buffer);
}
break;
default:
__stl_assert(false);
}
}
__rope_RopeSubstring(__rope_RopeBase<charT,Alloc> * b, size_t s, size_t l) :
base(b), start(s) {
# ifndef __GC
refcount = 1;
init_refcount_lock();
base -> ref_nonnil();
# endif
size = l;
tag = substringfn;
depth = 0;
c_string = 0;
fn = this;
}
};
// Self-destructing pointers to RopeBase.
// These are not conventional smart pointers. Their
// only purpose in life is to ensure that unref is called
// on the pointer either at normal exit or if an exception
// is raised. It is the caller's responsibility to
// adjust reference counts when these pointers are initialized
// or assigned to. (This convention significantly reduces
// the number of potentially expensive reference count
// updates.)
#ifndef __GC
template<class charT, class Alloc>
struct __rope_self_destruct_ptr {
__rope_RopeBase<charT,Alloc> * ptr;
~__rope_self_destruct_ptr() { __rope_RopeBase<charT,Alloc>::unref(ptr); }
# ifdef __STL_USE_EXCEPTIONS
__rope_self_destruct_ptr() : ptr(0) {};
# else
__rope_self_destruct_ptr() {};
# endif
__rope_self_destruct_ptr(__rope_RopeBase<charT,Alloc> * p) : ptr(p) {}
__rope_RopeBase<charT,Alloc> & operator*() { return *ptr; }
__rope_RopeBase<charT,Alloc> * operator->() { return ptr; }
operator __rope_RopeBase<charT,Alloc> *() { return ptr; }
__rope_self_destruct_ptr & operator= (__rope_RopeBase<charT,Alloc> * x)
{ ptr = x; return *this; }
};
#endif
// Dereferencing a nonconst iterator has to return something
// that behaves almost like a reference. It's not possible to
// return an actual reference since assignment requires extra
// work. And we would get into the same problems as with the
// CD2 version of basic_string.
template<class charT, class Alloc>
class __rope_charT_ref_proxy {
friend class rope<charT,Alloc>;
friend class __rope_iterator<charT,Alloc>;
friend class __rope_charT_ptr_proxy<charT,Alloc>;
# ifdef __GC
typedef __rope_RopeBase<charT,Alloc> * self_destruct_ptr;
# else
typedef __rope_self_destruct_ptr<charT,Alloc> self_destruct_ptr;
# endif
typedef __rope_RopeBase<charT,Alloc> RopeBase;
typedef rope<charT,Alloc> my_rope;
size_t pos;
charT current;
bool current_valid;
my_rope * root; // The whole rope.
public:
__rope_charT_ref_proxy(my_rope * r, size_t p) :
pos(p), root(r), current_valid(false) {}
__rope_charT_ref_proxy(my_rope * r, size_t p,
charT c) :
pos(p), root(r), current(c), current_valid(true) {}
operator charT () const;
__rope_charT_ref_proxy& operator= (charT c);
__rope_charT_ptr_proxy<charT,Alloc> operator& () const;
__rope_charT_ref_proxy& operator= (const __rope_charT_ref_proxy& c) {
return operator=((charT)c);
}
};
template<class charT, class Alloc>
class __rope_charT_ptr_proxy {
friend class __rope_charT_ref_proxy<charT,Alloc>;
size_t pos;
charT current;
bool current_valid;
rope<charT,Alloc> * root; // The whole rope.
public:
__rope_charT_ptr_proxy(const __rope_charT_ref_proxy<charT,Alloc> & x) :
pos(x.pos), root(x.root), current_valid(x.current_valid),
current(x.current) {}
__rope_charT_ptr_proxy(const __rope_charT_ptr_proxy & x) :
pos(x.pos), root(x.root), current_valid(x.current_valid),
current(x.current) {}
__rope_charT_ptr_proxy() {}
__rope_charT_ptr_proxy(charT * x) : root(0), pos(0) {
__stl_assert(0 == x);
}
__rope_charT_ptr_proxy& operator= (const __rope_charT_ptr_proxy& x) {
pos = x.pos;
current = x.current;
current_valid = x.current_valid;
root = x.root;
return *this;
}
friend bool operator== __STL_NULL_TMPL_ARGS
(const __rope_charT_ptr_proxy<charT,Alloc> & x,
const __rope_charT_ptr_proxy<charT,Alloc> & y);
__rope_charT_ref_proxy<charT,Alloc> operator *() const {
if (current_valid) {
return __rope_charT_ref_proxy<charT,Alloc>(root, pos, current);
} else {
return __rope_charT_ref_proxy<charT,Alloc>(root, pos);
}
}
};
// Rope iterators:
// Unlike in the C version, we cache only part of the stack
// for rope iterators, since they must be efficiently copyable.
// When we run out of cache, we have to reconstruct the iterator
// value.
// Pointers from iterators are not included in reference counts.
// Iterators are assumed to be thread private. Ropes can
// be shared.
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1375
#endif
template<class charT, class Alloc>
class __rope_iterator_base:
public random_access_iterator<charT, ptrdiff_t> {
friend class rope<charT, Alloc>;
public:
typedef __rope_RopeBase<charT,Alloc> RopeBase;
// Borland doesnt want this to be protected.
protected:
enum { path_cache_len = 4 }; // Must be <= 9.
enum { iterator_buf_len = 15 };
size_t current_pos;
RopeBase * root; // The whole rope.
size_t leaf_pos; // Starting position for current leaf
__GC_CONST charT * buf_start;
// Buffer possibly
// containing current char.
__GC_CONST charT * buf_ptr;
// Pointer to current char in buffer.
// != 0 ==> buffer valid.
__GC_CONST charT * buf_end;
// One past last valid char in buffer.
// What follows is the path cache. We go out of our
// way to make this compact.
// Path_end contains the bottom section of the path from
// the root to the current leaf.
const RopeBase * path_end[path_cache_len];
int leaf_index; // Last valid pos in path_end;
// path_end[0] ... path_end[leaf_index-1]
// point to concatenation nodes.
unsigned char path_directions;
// (path_directions >> i) & 1 is 1
// iff we got from path_end[leaf_index - i - 1]
// to path_end[leaf_index - i] by going to the
// right. Assumes path_cache_len <= 9.
charT tmp_buf[iterator_buf_len];
// Short buffer for surrounding chars.
// This is useful primarily for
// RopeFunctions. We put the buffer
// here to avoid locking in the
// multithreaded case.
// The cached path is generally assumed to be valid
// only if the buffer is valid.
static void setbuf(__rope_iterator_base &x);
// Set buffer contents given
// path cache.
static void setcache(__rope_iterator_base &x);
// Set buffer contents and
// path cache.
static void setcache_for_incr(__rope_iterator_base &x);
// As above, but assumes path
// cache is valid for previous posn.
__rope_iterator_base() {}
__rope_iterator_base(RopeBase * root, size_t pos):
root(root), current_pos(pos), buf_ptr(0) {}
__rope_iterator_base(const __rope_iterator_base& x) {
if (0 != x.buf_ptr) {
*this = x;
} else {
current_pos = x.current_pos;
root = x.root;
buf_ptr = 0;
}
}
void incr(size_t n);
void decr(size_t n);
public:
size_t index() const { return current_pos; }
};
template<class charT, class Alloc> class __rope_iterator;
template<class charT, class Alloc>
class __rope_const_iterator : public __rope_iterator_base<charT,Alloc> {
friend class rope<charT,Alloc>;
protected:
__rope_const_iterator(const RopeBase * root, size_t pos):
__rope_iterator_base<charT,Alloc>(
const_cast<RopeBase *>(root), pos)
// Only nonconst iterators modify root ref count
{}
public:
typedef charT reference; // Really a value. Returning a reference
// Would be a mess, since it would have
// to be included in refcount.
typedef const charT* pointer;
public:
__rope_const_iterator() {};
__rope_const_iterator(const __rope_const_iterator & x) :
__rope_iterator_base<charT,Alloc>(x) { }
__rope_const_iterator(const __rope_iterator<charT,Alloc> & x);
__rope_const_iterator(const rope<charT,Alloc> &r, size_t pos) :
__rope_iterator_base<charT,Alloc>(r.tree_ptr, pos) {}
__rope_const_iterator& operator= (const __rope_const_iterator & x) {
if (0 != x.buf_ptr) {
*this = x;
} else {
current_pos = x.current_pos;
root = x.root;
buf_ptr = 0;
}
return(*this);
}
reference operator*() {
if (0 == buf_ptr) setcache(*this);
return *buf_ptr;
}
__rope_const_iterator& operator++() {
__GC_CONST charT * next;
if (0 != buf_ptr && (next = buf_ptr + 1) < buf_end) {
buf_ptr = next;
++current_pos;
} else {
incr(1);
}
return *this;
}
__rope_const_iterator& operator+=(ptrdiff_t n) {
if (n >= 0) {
incr(n);
} else {
decr(-n);
}
return *this;
}
__rope_const_iterator& operator--() {
decr(1);
return *this;
}
__rope_const_iterator& operator-=(ptrdiff_t n) {
if (n >= 0) {
decr(n);
} else {
incr(-n);
}
return *this;
}
__rope_const_iterator operator++(int) {
size_t old_pos = current_pos;
incr(1);
return __rope_const_iterator<charT,Alloc>(root, old_pos);
// This makes a subsequent dereference expensive.
// Perhaps we should instead copy the iterator
// if it has a valid cache?
}
__rope_const_iterator operator--(int) {
size_t old_pos = current_pos;
decr(1);
return __rope_const_iterator<charT,Alloc>(root, old_pos);
}
friend __rope_const_iterator<charT,Alloc> operator- __STL_NULL_TMPL_ARGS
(const __rope_const_iterator<charT,Alloc> & x,
ptrdiff_t n);
friend __rope_const_iterator<charT,Alloc> operator+ __STL_NULL_TMPL_ARGS
(const __rope_const_iterator<charT,Alloc> & x,
ptrdiff_t n);
friend __rope_const_iterator<charT,Alloc> operator+ __STL_NULL_TMPL_ARGS
(ptrdiff_t n,
const __rope_const_iterator<charT,Alloc> & x);
reference operator[](size_t n) {
return rope<charT,Alloc>::fetch(root, current_pos + n);
}
friend bool operator== __STL_NULL_TMPL_ARGS
(const __rope_const_iterator<charT,Alloc> & x,
const __rope_const_iterator<charT,Alloc> & y);
friend bool operator< __STL_NULL_TMPL_ARGS
(const __rope_const_iterator<charT,Alloc> & x,
const __rope_const_iterator<charT,Alloc> & y);
friend ptrdiff_t operator- __STL_NULL_TMPL_ARGS
(const __rope_const_iterator<charT,Alloc> & x,
const __rope_const_iterator<charT,Alloc> & y);
};
template<class charT, class Alloc>
class __rope_iterator : public __rope_iterator_base<charT,Alloc> {
friend class rope<charT,Alloc>;
protected:
rope<charT,Alloc> * root_rope;
// root is treated as a cached version of this,
// and is used to detect changes to the underlying
// rope.
// Root is included in the reference count.
// This is necessary so that we can detect changes reliably.
// Unfortunately, it requires careful bookkeeping for the
// nonGC case.
__rope_iterator(rope<charT,Alloc> * r, size_t pos):
__rope_iterator_base<charT,Alloc>(r -> tree_ptr, pos),
root_rope(r) {
RopeBase::ref(root);
}
void check();
public:
typedef __rope_charT_ref_proxy<charT,Alloc> reference;
typedef __rope_charT_ref_proxy<charT,Alloc>* pointer;
public:
rope<charT,Alloc>& container() { return *root_rope; }
__rope_iterator() {
root = 0; // Needed for reference counting.
};
__rope_iterator(const __rope_iterator & x) :
__rope_iterator_base<charT,Alloc>(x) {
root_rope = x.root_rope;
RopeBase::ref(root);
}
__rope_iterator(rope<charT,Alloc>& r, size_t pos);
~__rope_iterator() {
RopeBase::unref(root);
}
__rope_iterator& operator= (const __rope_iterator & x) {
RopeBase *old = root;
RopeBase::ref(x.root);
if (0 != x.buf_ptr) {
*this = x;
} else {
current_pos = x.current_pos;
root = x.root;
root_rope = x.root_rope;
buf_ptr = 0;
}
RopeBase::unref(old);
return(*this);
}
reference operator*() {
check();
if (0 == buf_ptr) {
return __rope_charT_ref_proxy<charT,Alloc>(root_rope, current_pos);
} else {
return __rope_charT_ref_proxy<charT,Alloc>(root_rope,
current_pos, *buf_ptr);
}
}
__rope_iterator& operator++() {
incr(1);
return *this;
}
__rope_iterator& operator+=(difference_type n) {
if (n >= 0) {
incr(n);
} else {
decr(-n);
}
return *this;
}
__rope_iterator& operator--() {
decr(1);
return *this;
}
__rope_iterator& operator-=(difference_type n) {
if (n >= 0) {
decr(n);
} else {
incr(-n);
}
return *this;
}
__rope_iterator operator++(int) {
size_t old_pos = current_pos;
incr(1);
return __rope_iterator<charT,Alloc>(root_rope, old_pos);
}
__rope_iterator operator--(int) {
size_t old_pos = current_pos;
decr(1);
return __rope_iterator<charT,Alloc>(root_rope, old_pos);
}
reference operator[](ptrdiff_t n) {
return __rope_charT_ref_proxy<charT,Alloc>(root_rope, current_pos + n);
}
friend bool operator== __STL_NULL_TMPL_ARGS
(const __rope_iterator<charT,Alloc> & x,
const __rope_iterator<charT,Alloc> & y);
friend bool operator< __STL_NULL_TMPL_ARGS
(const __rope_iterator<charT,Alloc> & x,
const __rope_iterator<charT,Alloc> & y);
friend ptrdiff_t operator- __STL_NULL_TMPL_ARGS
(const __rope_iterator<charT,Alloc> & x,
const __rope_iterator<charT,Alloc> & y);
friend __rope_iterator<charT,Alloc> operator- __STL_NULL_TMPL_ARGS
(const __rope_iterator<charT,Alloc> & x,
ptrdiff_t n);
friend __rope_iterator<charT,Alloc> operator+ __STL_NULL_TMPL_ARGS
(const __rope_iterator<charT,Alloc> & x,
ptrdiff_t n);
friend __rope_iterator<charT,Alloc> operator+ __STL_NULL_TMPL_ARGS
(ptrdiff_t n,
const __rope_iterator<charT,Alloc> & x);
};
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1375
#endif
template <class charT, class Alloc>
class rope {
public:
typedef charT value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef charT const_reference;
typedef const charT* const_pointer;
typedef __rope_iterator<charT,Alloc> iterator;
typedef __rope_const_iterator<charT,Alloc> const_iterator;
typedef __rope_charT_ref_proxy<charT,Alloc> reference;
typedef __rope_charT_ptr_proxy<charT,Alloc> pointer;
friend class __rope_iterator<charT,Alloc>;
friend class __rope_const_iterator<charT,Alloc>;
friend struct __rope_RopeBase<charT,Alloc>;
friend class __rope_iterator_base<charT,Alloc>;
friend class __rope_charT_ptr_proxy<charT,Alloc>;
friend class __rope_charT_ref_proxy<charT,Alloc>;
friend struct __rope_RopeSubstring<charT,Alloc>;
protected:
typedef __GC_CONST charT * cstrptr;
# ifdef __STL_SGI_THREADS
static cstrptr atomic_swap(cstrptr *p, cstrptr q) {
# if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64))
return (cstrptr) test_and_set((unsigned long *)p,
(unsigned long)q);
# else
return (cstrptr) __test_and_set((unsigned long *)p,
(unsigned long)q);
# endif
}
# elif defined(__STL_WIN32THREADS)
static cstrptr atomic_swap(cstrptr *p, cstrptr q) {
return (cstrptr) InterlockedExchange((LPLONG)p, (LONG)q);
}
# elif defined(__STL_PTHREADS)
// This should be portable, but performance is expected
// to be quite awful. This really needs platform specific
// code.
static pthread_mutex_t swap_lock;
static cstrptr atomic_swap(cstrptr *p, cstrptr q) {
pthread_mutex_lock(&swap_lock);
cstrptr result = *p;
*p = q;
pthread_mutex_unlock(&swap_lock);
return result;
}
# else
static cstrptr atomic_swap(cstrptr *p, cstrptr q) {
cstrptr result = *p;
*p = q;
return result;
}
# endif
static charT empty_c_str[1];
typedef simple_alloc<charT, Alloc> DataAlloc;
typedef simple_alloc<__rope_RopeConcatenation<charT,Alloc>, Alloc> CAlloc;
typedef simple_alloc<__rope_RopeLeaf<charT,Alloc>, Alloc> LAlloc;
typedef simple_alloc<__rope_RopeFunction<charT,Alloc>, Alloc> FAlloc;
typedef simple_alloc<__rope_RopeSubstring<charT,Alloc>, Alloc> SAlloc;
static bool is0(charT c) { return c == __eos((charT *)0); }
enum { copy_max = 23 };
// For strings shorter than copy_max, we copy to
// concatenate.
typedef __rope_RopeBase<charT,Alloc> RopeBase;
typedef __rope_RopeConcatenation<charT,Alloc> RopeConcatenation;
typedef __rope_RopeLeaf<charT,Alloc> RopeLeaf;
typedef __rope_RopeFunction<charT,Alloc> RopeFunction;
typedef __rope_RopeSubstring<charT,Alloc> RopeSubstring;
// The only data member of a rope:
RopeBase *tree_ptr;
// Retrieve a character at the indicated position.
static charT fetch(RopeBase * r, size_type pos);
# ifndef __GC
// Obtain a pointer to the character at the indicated position.
// The pointer can be used to change the character.
// If such a pointer cannot be produced, as is frequently the
// case, 0 is returned instead.
// (Returns nonzero only if all nodes in the path have a refcount
// of 1.)
static charT * fetch_ptr(RopeBase * r, size_type pos);
# endif
static bool apply_to_pieces(
// should be template parameter
__rope_char_consumer<charT>& c,
const RopeBase * r,
size_t begin, size_t end);
// begin and end are assumed to be in range.
# ifndef __GC
static void unref(RopeBase* t)
{
RopeBase::unref(t);
}
static void ref(RopeBase* t)
{
RopeBase::ref(t);
}
# else /* __GC */
static void unref(RopeBase* t) {}
static void ref(RopeBase* t) {}
# endif
# ifdef __GC
typedef __rope_RopeBase<charT,Alloc> * self_destruct_ptr;
# else
typedef __rope_self_destruct_ptr<charT,Alloc> self_destruct_ptr;
# endif
// Result is counted in refcount.
static RopeBase * substring(RopeBase * base,
size_t start, size_t endp1);
static RopeBase * concat_char_iter(RopeBase * r,
const charT *iter, size_t slen);
// Concatenate rope and char ptr, copying s.
// Should really take an arbitrary iterator.
// Result is counted in refcount.
static RopeBase * destr_concat_char_iter(RopeBase * r,
const charT *iter, size_t slen)
// As above, but one reference to r is about to be
// destroyed. Thus the pieces may be recycled if all
// relevent reference counts are 1.
# ifdef __GC
// We can't really do anything since refcounts are unavailable.
{ return concat_char_iter(r, iter, slen); }
# else
;
# endif
static RopeBase * concat(RopeBase *left, RopeBase *right);
// General concatenation on RopeBase. Result
// has refcount of 1. Adjusts argument refcounts.
public:
void apply_to_pieces( size_t begin, size_t end,
__rope_char_consumer<charT>& c) const {
apply_to_pieces(c, tree_ptr, begin, end);
}
protected:
static size_t rounded_up_size(size_t n) {
return RopeBase::rounded_up_size(n);
}
static size_t allocated_capacity(size_t n) {
if (__is_basic_char_type((charT *)0)) {
return rounded_up_size(n) - 1;
} else {
return rounded_up_size(n);
}
}
// s should really be an arbitrary input iterator.
// Adds a trailing NULL for basic char types.
static charT * alloc_copy(const charT *s, size_t size)
{
charT * result = DataAlloc::allocate(rounded_up_size(size));
uninitialized_copy_n(s, size, result);
__cond_store_eos(result[size]);
return(result);
}
// Basic constructors for rope tree nodes.
// These return tree nodes with a 0 reference count.
static RopeLeaf * RopeLeaf_from_char_ptr(__GC_CONST charT *s,
size_t size);
// Takes ownership of its argument.
// Result has refcount 1.
// In the nonGC, basic_char_type case it assumes that s
// is eos-terminated.
// In the nonGC case, it was allocated from Alloc with
// rounded_up_size(size).
static RopeLeaf * RopeLeaf_from_unowned_char_ptr(const charT *s,
size_t size) {
charT * buf = alloc_copy(s, size);
__STL_TRY {
return RopeLeaf_from_char_ptr(buf, size);
}
__STL_UNWIND(RopeBase::free_string(buf, size))
}
// Concatenation of nonempty strings.
// Always builds a concatenation node.
// Rebalances if the result is too deep.
// Result has refcount 1.
// Does not increment left and right ref counts even though
// they are referenced.
static RopeBase * tree_concat(RopeBase * left, RopeBase * right);
// Result has refcount 1.
// If delete_fn is true, then fn is deleted when the rope
// becomes inaccessible.
static RopeFunction * RopeFunction_from_fn
(char_producer<charT> *fn, size_t size,
bool delete_fn);
// Concatenation helper functions
static RopeLeaf * leaf_concat_char_iter
(RopeLeaf * r, const charT * iter, size_t slen);
// Concatenate by copying leaf.
// should take an arbitrary iterator
// result has refcount 1.
# ifndef __GC
static RopeLeaf * destr_leaf_concat_char_iter
(RopeLeaf * r, const charT * iter, size_t slen);
// A version that potentially clobbers r if r -> refcount == 1.
# endif
// A helper function for exponentiating strings.
// This uses a nonstandard refcount convention.
// The result has refcount 0.
struct concat_fn;
friend struct rope<charT,Alloc>::concat_fn;
struct concat_fn
: public binary_function<rope<charT,Alloc>, rope<charT,Alloc>,
rope<charT,Alloc> > {
rope operator() (const rope& x, const rope& y) {
return x + y;
}
};
friend rope identity_element(concat_fn) { return rope<charT,Alloc>(); }
static size_t char_ptr_len(const charT * s);
// slightly generalized strlen
rope(RopeBase *t) : tree_ptr(t) { }
// Copy r to the CharT buffer.
// Returns buffer + r -> size.
// Assumes that buffer is uninitialized.
static charT * flatten(RopeBase * r, charT * buffer);
// Again, with explicit starting position and length.
// Assumes that buffer is uninitialized.
static charT * flatten(RopeBase * r,
size_t start, size_t len,
charT * buffer);
static const unsigned long min_len[RopeBase::max_rope_depth + 1];
static bool is_balanced(RopeBase *r)
{ return (r -> size >= min_len[r -> depth]); }
static bool is_almost_balanced(RopeBase *r)
{ return (r -> depth == 0 ||
r -> size >= min_len[r -> depth - 1]); }
static bool is_roughly_balanced(RopeBase *r)
{ return (r -> depth <= 1 ||
r -> size >= min_len[r -> depth - 2]); }
// Assumes the result is not empty.
static RopeBase * concat_and_set_balanced(RopeBase *left,
RopeBase *right)
{
RopeBase * result = concat(left, right);
if (is_balanced(result)) result -> is_balanced = true;
return result;
}
// The basic rebalancing operation. Logically copies the
// rope. The result has refcount of 1. The client will
// usually decrement the reference count of r.
// The result isd within height 2 of balanced by the above
// definition.
static RopeBase * balance(RopeBase * r);
// Add all unbalanced subtrees to the forest of balanceed trees.
// Used only by balance.
static void add_to_forest(RopeBase *r, RopeBase **forest);
// Add r to forest, assuming r is already balanced.
static void add_leaf_to_forest(RopeBase *r, RopeBase **forest);
// Print to stdout, exposing structure
static void dump(RopeBase * r, int indent = 0);
// Return -1, 0, or 1 if x < y, x == y, or x > y resp.
static int compare(const RopeBase *x, const RopeBase *y);
public:
bool empty() const { return 0 == tree_ptr; }
// Comparison member function. This is public only for those
// clients that need a ternary comparison. Others
// should use the comparison operators below.
int compare(const rope &y) const {
return compare(tree_ptr, y.tree_ptr);
}
rope(const charT *s)
{
size_t len = char_ptr_len(s);
if (0 == len) {
tree_ptr = 0;
} else {
tree_ptr = RopeLeaf_from_unowned_char_ptr(s, len);
# ifndef __GC
__stl_assert(1 == tree_ptr -> refcount);
# endif
}
}
rope(const charT *s, size_t len)
{
if (0 == len) {
tree_ptr = 0;
} else {
tree_ptr = RopeLeaf_from_unowned_char_ptr(s, len);
}
}
rope(const charT *s, charT *e)
{
size_t len = e - s;
if (0 == len) {
tree_ptr = 0;
} else {
tree_ptr = RopeLeaf_from_unowned_char_ptr(s, len);
}
}
rope(const const_iterator& s, const const_iterator& e)
{
tree_ptr = substring(s.root, s.current_pos, e.current_pos);
}
rope(const iterator& s, const iterator& e)
{
tree_ptr = substring(s.root, s.current_pos, e.current_pos);
}
rope(charT c)
{
charT * buf = DataAlloc::allocate(rounded_up_size(1));
construct(buf, c);
__STL_TRY {
tree_ptr = RopeLeaf_from_char_ptr(buf, 1);
}
__STL_UNWIND(RopeBase::free_string(buf, 1))
}
rope(size_t n, charT c);
// Should really be templatized with respect to the iterator type
// and use sequence_buffer. (It should perhaps use sequence_buffer
// even now.)
rope(const charT *i, const charT *j)
{
if (i == j) {
tree_ptr = 0;
} else {
size_t len = j - i;
tree_ptr = RopeLeaf_from_unowned_char_ptr(i, len);
}
}
rope()
{
tree_ptr = 0;
}
// Construct a rope from a function that can compute its members
rope(char_producer<charT> *fn, size_t len, bool delete_fn)
{
tree_ptr = RopeFunction_from_fn(fn, len, delete_fn);
}
rope(const rope &x)
{
tree_ptr = x.tree_ptr;
ref(tree_ptr);
}
~rope()
{
unref(tree_ptr);
}
rope& operator=(const rope& x)
{
RopeBase *old = tree_ptr;
tree_ptr = x.tree_ptr;
ref(tree_ptr);
unref(old);
return(*this);
}
void push_back(charT x)
{
RopeBase *old = tree_ptr;
tree_ptr = concat_char_iter(tree_ptr, &x, 1);
unref(old);
}
void pop_back()
{
RopeBase *old = tree_ptr;
tree_ptr = substring(tree_ptr, 0, tree_ptr -> size - 1);
unref(old);
}
charT back() const
{
return fetch(tree_ptr, tree_ptr -> size - 1);
}
void push_front(charT x)
{
RopeBase *old = tree_ptr;
RopeBase *left;
left = RopeLeaf_from_unowned_char_ptr(&x, 1);
__STL_TRY {
tree_ptr = concat(left, tree_ptr);
unref(old);
unref(left);
}
__STL_UNWIND(unref(left))
}
void pop_front()
{
RopeBase *old = tree_ptr;
tree_ptr = substring(tree_ptr, 1, tree_ptr -> size);
unref(old);
}
charT front() const
{
return fetch(tree_ptr, 0);
}
void balance()
{
RopeBase *old = tree_ptr;
tree_ptr = balance(tree_ptr);
unref(old);
}
void copy(charT * buffer) const {
destroy(buffer, buffer + size());
flatten(tree_ptr, buffer);
}
// This is the copy function from the standard, but
// with the arguments reordered to make it consistent with the
// rest of the interface.
// Note that this guaranteed not to compile if the draft standard
// order is assumed.
size_type copy(size_type pos, size_type n, charT *buffer) const {
size_t sz = size();
size_t len = (pos + n > sz? sz - pos : n);
destroy(buffer, buffer + len);
flatten(tree_ptr, pos, len, buffer);
return len;
}
// Print to stdout, exposing structure. May be useful for
// performance debugging.
void dump() {
dump(tree_ptr);
}
// Convert to 0 terminated string in new allocated memory.
// Embedded 0s in the input do not terminate the copy.
const charT * c_str() const;
// As above, but lso use the flattened representation as the
// the new rope representation.
const charT * replace_with_c_str();
// Reclaim memory for the c_str generated flattened string.
// Intentionally undocumented, since it's hard to say when this
// is safe for multiple threads.
void delete_c_str () {
if (0 == tree_ptr) return;
if (RopeBase::leaf == tree_ptr -> tag
&& ((RopeLeaf *)tree_ptr) -> data == tree_ptr -> c_string) {
// Representation shared
return;
}
# ifndef __GC
tree_ptr -> free_c_string();
# endif
tree_ptr -> c_string = 0;
}
charT operator[] (size_type pos) const {
return fetch(tree_ptr, pos);
}
charT at(size_type pos) const {
// if (pos >= size()) throw out_of_range;
return (*this)[pos];
}
const_iterator begin() const {
return(const_iterator(tree_ptr, 0));
}
// An easy way to get a const iterator from a non-const container.
const_iterator const_begin() const {
return(const_iterator(tree_ptr, 0));
}
const_iterator end() const {
return(const_iterator(tree_ptr, size()));
}
const_iterator const_end() const {
return(const_iterator(tree_ptr, size()));
}
size_type size() const {
return(0 == tree_ptr? 0 : tree_ptr -> size);
}
size_type length() const {
return size();
}
size_type max_size() const {
return min_len[RopeBase::max_rope_depth-1] - 1;
// Guarantees that the result can be sufficirntly
// balanced. Longer ropes will probably still work,
// but it's harder to make guarantees.
}
# ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
# else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_iterator<const_iterator, value_type, const_reference,
difference_type> const_reverse_iterator;
# endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator const_rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
const_reverse_iterator const_rend() const {
return const_reverse_iterator(begin());
}
friend rope<charT,Alloc>
operator+ __STL_NULL_TMPL_ARGS (const rope<charT,Alloc> &left,
const rope<charT,Alloc> &right);
friend rope<charT,Alloc>
operator+ __STL_NULL_TMPL_ARGS (const rope<charT,Alloc> &left,
const charT* right);
friend rope<charT,Alloc>
operator+ __STL_NULL_TMPL_ARGS (const rope<charT,Alloc> &left,
charT right);
// The symmetric cases are intentionally omitted, since they're presumed
// to be less common, and we don't handle them as well.
// The following should really be templatized.
// The first argument should be an input iterator or
// forward iterator with value_type charT.
rope& append(const charT* iter, size_t n) {
RopeBase* result = destr_concat_char_iter(tree_ptr, iter, n);
unref(tree_ptr);
tree_ptr = result;
return *this;
}
rope& append(const charT* c_string) {
size_t len = char_ptr_len(c_string);
append(c_string, len);
return(*this);
}
rope& append(const charT* s, const charT* e) {
RopeBase* result =
destr_concat_char_iter(tree_ptr, s, e - s);
unref(tree_ptr);
tree_ptr = result;
return *this;
}
rope& append(const_iterator s, const_iterator e) {
__stl_assert(s.root == e.root);
self_destruct_ptr appendee(substring(s.root, s.current_pos,
e.current_pos));
RopeBase* result = concat(tree_ptr, (RopeBase *)appendee);
unref(tree_ptr);
tree_ptr = result;
return *this;
}
rope& append(charT c) {
RopeBase* result = destr_concat_char_iter(tree_ptr, &c, 1);
unref(tree_ptr);
tree_ptr = result;
return *this;
}
rope& append() { return append(charT()); }
rope& append(const rope& y) {
RopeBase* result = concat(tree_ptr, y.tree_ptr);
unref(tree_ptr);
tree_ptr = result;
return *this;
}
rope& append(size_t n, charT c) {
rope<charT,Alloc> last(n, c);
return append(last);
}
void swap(rope& b) {
RopeBase * tmp = tree_ptr;
tree_ptr = b.tree_ptr;
b.tree_ptr = tmp;
}
protected:
// Result is included in refcount.
static RopeBase * replace(RopeBase *old, size_t pos1,
size_t pos2, RopeBase *r) {
if (0 == old) { ref(r); return r; }
self_destruct_ptr left(substring(old, 0, pos1));
self_destruct_ptr right(substring(old, pos2, old -> size));
RopeBase * result;
if (0 == r) {
result = concat(left, right);
} else {
self_destruct_ptr left_result(concat(left, r));
result = concat(left_result, right);
}
return result;
}
public:
void insert(size_t p, const rope& r) {
RopeBase * result = replace(tree_ptr, p, p,
r.tree_ptr);
unref(tree_ptr);
tree_ptr = result;
}
void insert(size_t p, size_t n, charT c) {
rope<charT,Alloc> r(n,c);
insert(p, r);
}
void insert(size_t p, const charT * i, size_t n) {
self_destruct_ptr left(substring(tree_ptr, 0, p));
self_destruct_ptr right(substring(tree_ptr, p, size()));
self_destruct_ptr left_result(concat_char_iter(left, i, n));
RopeBase * result =
concat(left_result, right);
unref(tree_ptr);
tree_ptr = result;
}
void insert(size_t p, const charT * c_string) {
insert(p, c_string, char_ptr_len(c_string));
}
void insert(size_t p, charT c) {
insert(p, &c, 1);
}
void insert(size_t p) {
charT c = charT();
insert(p, &c, 1);
}
void insert(size_t p, const charT *i, const charT *j) {
rope r(i, j);
insert(p, r);
}
void insert(size_t p, const const_iterator& i,
const const_iterator& j) {
rope r(i, j);
insert(p, r);
}
void insert(size_t p, const iterator& i,
const iterator& j) {
rope r(i, j);
insert(p, r);
}
// (position, length) versions of replace operations:
void replace(size_t p, size_t n, const rope& r) {
RopeBase * result = replace(tree_ptr, p, p + n,
r.tree_ptr);
unref(tree_ptr);
tree_ptr = result;
}
void replace(size_t p, size_t n, const charT *i, size_t i_len) {
rope r(i, i_len);
replace(p, n, r);
}
void replace(size_t p, size_t n, charT c) {
rope r(c);
replace(p, n, r);
}
void replace(size_t p, size_t n, const charT *c_string) {
rope r(c_string);
replace(p, n, r);
}
void replace(size_t p, size_t n, const charT *i, const charT *j) {
rope r(i, j);
replace(p, n, r);
}
void replace(size_t p, size_t n,
const const_iterator& i, const const_iterator& j) {
rope r(i, j);
replace(p, n, r);
}
void replace(size_t p, size_t n,
const iterator& i, const iterator& j) {
rope r(i, j);
replace(p, n, r);
}
// Single character variants:
void replace(size_t p, charT c) {
iterator i(this, p);
*i = c;
}
void replace(size_t p, const rope& r) {
replace(p, 1, r);
}
void replace(size_t p, const charT *i, size_t i_len) {
replace(p, 1, i, i_len);
}
void replace(size_t p, const charT *c_string) {
replace(p, 1, c_string);
}
void replace(size_t p, const charT *i, const charT *j) {
replace(p, 1, i, j);
}
void replace(size_t p, const const_iterator& i,
const const_iterator& j) {
replace(p, 1, i, j);
}
void replace(size_t p, const iterator& i,
const iterator& j) {
replace(p, 1, i, j);
}
// Erase, (position, size) variant.
void erase(size_t p, size_t n) {
RopeBase * result = replace(tree_ptr, p, p + n, 0);
unref(tree_ptr);
tree_ptr = result;
}
// Erase, single character
void erase(size_t p) {
erase(p, p + 1);
}
// Insert, iterator variants.
iterator insert(const iterator& p, const rope& r)
{ insert(p.index(), r); return p; }
iterator insert(const iterator& p, size_t n, charT c)
{ insert(p.index(), n, c); return p; }
iterator insert(const iterator& p, charT c)
{ insert(p.index(), c); return p; }
iterator insert(const iterator& p )
{ insert(p.index()); return p; }
iterator insert(const iterator& p, const charT *c_string)
{ insert(p.index(), c_string); return p; }
iterator insert(const iterator& p, const charT *i, size_t n)
{ insert(p.index(), i, n); return p; }
iterator insert(const iterator& p, const charT *i, const charT *j)
{ insert(p.index(), i, j); return p; }
iterator insert(const iterator& p,
const const_iterator& i, const const_iterator& j)
{ insert(p.index(), i, j); return p; }
iterator insert(const iterator& p,
const iterator& i, const iterator& j)
{ insert(p.index(), i, j); return p; }
// Replace, range variants.
void replace(const iterator& p, const iterator& q,
const rope& r)
{ replace(p.index(), q.index() - p.index(), r); }
void replace(const iterator& p, const iterator& q, charT c)
{ replace(p.index(), q.index() - p.index(), c); }
void replace(const iterator& p, const iterator& q,
const charT * c_string)
{ replace(p.index(), q.index() - p.index(), c_string); }
void replace(const iterator& p, const iterator& q,
const charT *i, size_t n)
{ replace(p.index(), q.index() - p.index(), i, n); }
void replace(const iterator& p, const iterator& q,
const charT *i, const charT *j)
{ replace(p.index(), q.index() - p.index(), i, j); }
void replace(const iterator& p, const iterator& q,
const const_iterator& i, const const_iterator& j)
{ replace(p.index(), q.index() - p.index(), i, j); }
void replace(const iterator& p, const iterator& q,
const iterator& i, const iterator& j)
{ replace(p.index(), q.index() - p.index(), i, j); }
// Replace, iterator variants.
void replace(const iterator& p, const rope& r)
{ replace(p.index(), r); }
void replace(const iterator& p, charT c)
{ replace(p.index(), c); }
void replace(const iterator& p, const charT * c_string)
{ replace(p.index(), c_string); }
void replace(const iterator& p, const charT *i, size_t n)
{ replace(p.index(), i, n); }
void replace(const iterator& p, const charT *i, const charT *j)
{ replace(p.index(), i, j); }
void replace(const iterator& p, const_iterator i, const_iterator j)
{ replace(p.index(), i, j); }
void replace(const iterator& p, iterator i, iterator j)
{ replace(p.index(), i, j); }
// Iterator and range variants of erase
iterator erase(const iterator &p, const iterator &q) {
size_t p_index = p.index();
erase(p_index, q.index() - p_index);
return iterator(this, p_index);
}
iterator erase(const iterator &p) {
size_t p_index = p.index();
erase(p_index, 1);
return iterator(this, p_index);
}
rope substr(size_t start, size_t len = 1) const {
return rope<charT,Alloc>(
substring(tree_ptr, start, start + len));
}
rope substr(iterator start, iterator end) const {
return rope<charT,Alloc>(
substring(tree_ptr, start.index(), end.index()));
}
rope substr(iterator start) const {
size_t pos = start.index();
return rope<charT,Alloc>(
substring(tree_ptr, pos, pos + 1));
}
rope substr(const_iterator start, const_iterator end) const {
// This might eventually take advantage of the cache in the
// iterator.
return rope<charT,Alloc>
(substring(tree_ptr, start.index(), end.index()));
}
rope<charT,Alloc> substr(const_iterator start) {
size_t pos = start.index();
return rope<charT,Alloc>(substring(tree_ptr, pos, pos + 1));
}
size_type find(charT c, size_type pos = 0) const;
size_type find(charT *s, size_type pos = 0) const {
const_iterator result = search(const_begin() + pos, const_end(),
s, s + char_ptr_len(s));
return result.index();
}
iterator mutable_begin() {
return(iterator(this, 0));
}
iterator mutable_end() {
return(iterator(this, size()));
}
# ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<iterator> reverse_iterator;
# else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_iterator<iterator, value_type, reference,
difference_type> reverse_iterator;
# endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
reverse_iterator mutable_rbegin() {
return reverse_iterator(mutable_end());
}
reverse_iterator mutable_rend() {
return reverse_iterator(mutable_begin());
}
reference mutable_reference_at(size_type pos) {
return reference(this, pos);
}
# ifdef __STD_STUFF
reference operator[] (size_type pos) {
return charT_ref_proxy(this, pos);
}
reference at(size_type pos) {
// if (pos >= size()) throw out_of_range;
return (*this)[pos];
}
void resize(size_type n, charT c) {}
void resize(size_type n) {}
void reserve(size_type res_arg = 0) {}
size_type capacity() const {
return max_size();
}
// Stuff below this line is dangerous because it's error prone.
// I would really like to get rid of it.
// copy function with funny arg ordering.
size_type copy(charT *buffer, size_type n, size_type pos = 0)
const {
return copy(pos, n, buffer);
}
iterator end() { return mutable_end(); }
iterator begin() { return mutable_begin(); }
reverse_iterator rend() { return mutable_rend(); }
reverse_iterator rbegin() { return mutable_rbegin(); }
# else
const_iterator end() { return const_end(); }
const_iterator begin() { return const_begin(); }
const_reverse_iterator rend() { return const_rend(); }
const_reverse_iterator rbegin() { return const_rbegin(); }
# endif
};
template <class charT, class Alloc>
inline bool operator== (const __rope_const_iterator<charT,Alloc> & x,
const __rope_const_iterator<charT,Alloc> & y) {
return (x.current_pos == y.current_pos && x.root == y.root);
}
template <class charT, class Alloc>
inline bool operator< (const __rope_const_iterator<charT,Alloc> & x,
const __rope_const_iterator<charT,Alloc> & y) {
return (x.current_pos < y.current_pos);
}
template <class charT, class Alloc>
inline ptrdiff_t operator-(const __rope_const_iterator<charT,Alloc> & x,
const __rope_const_iterator<charT,Alloc> & y) {
return x.current_pos - y.current_pos;
}
template <class charT, class Alloc>
inline __rope_const_iterator<charT,Alloc>
operator-(const __rope_const_iterator<charT,Alloc> & x,
ptrdiff_t n) {
return __rope_const_iterator<charT,Alloc>(x.root, x.current_pos - n);
}
template <class charT, class Alloc>
inline __rope_const_iterator<charT,Alloc>
operator+(const __rope_const_iterator<charT,Alloc> & x,
ptrdiff_t n) {
return __rope_const_iterator<charT,Alloc>(x.root, x.current_pos + n);
}
template <class charT, class Alloc>
inline __rope_const_iterator<charT,Alloc>
operator+(ptrdiff_t n,
const __rope_const_iterator<charT,Alloc> & x) {
return __rope_const_iterator<charT,Alloc>(x.root, x.current_pos + n);
}
template <class charT, class Alloc>
inline bool operator== (const __rope_iterator<charT,Alloc> & x,
const __rope_iterator<charT,Alloc> & y) {
return (x.current_pos == y.current_pos && x.root_rope == y.root_rope);
}
template <class charT, class Alloc>
inline bool operator< (const __rope_iterator<charT,Alloc> & x,
const __rope_iterator<charT,Alloc> & y) {
return (x.current_pos < y.current_pos);
}
template <class charT, class Alloc>
inline ptrdiff_t operator-(const __rope_iterator<charT,Alloc> & x,
const __rope_iterator<charT,Alloc> & y) {
return x.current_pos - y.current_pos;
}
template <class charT, class Alloc>
inline __rope_iterator<charT,Alloc>
operator-(const __rope_iterator<charT,Alloc> & x,
ptrdiff_t n) {
return __rope_iterator<charT,Alloc>(x.root_rope, x.current_pos - n);
}
template <class charT, class Alloc>
inline __rope_iterator<charT,Alloc>
operator+(const __rope_iterator<charT,Alloc> & x,
ptrdiff_t n) {
return __rope_iterator<charT,Alloc>(x.root_rope, x.current_pos + n);
}
template <class charT, class Alloc>
inline __rope_iterator<charT,Alloc>
operator+(ptrdiff_t n,
const __rope_iterator<charT,Alloc> & x) {
return __rope_iterator<charT,Alloc>(x.root_rope, x.current_pos + n);
}
template <class charT, class Alloc>
inline
rope<charT,Alloc>
operator+ (const rope<charT,Alloc> &left,
const rope<charT,Alloc> &right)
{
return rope<charT,Alloc>
(rope<charT,Alloc>::concat(left.tree_ptr, right.tree_ptr));
// Inlining this should make it possible to keep left and
// right in registers.
}
template <class charT, class Alloc>
inline
rope<charT,Alloc>&
operator+= (rope<charT,Alloc> &left,
const rope<charT,Alloc> &right)
{
left.append(right);
return left;
}
template <class charT, class Alloc>
inline
rope<charT,Alloc>
operator+ (const rope<charT,Alloc> &left,
const charT* right) {
size_t rlen = rope<charT,Alloc>::char_ptr_len(right);
return rope<charT,Alloc>
(rope<charT,Alloc>::concat_char_iter(left.tree_ptr, right, rlen));
}
template <class charT, class Alloc>
inline
rope<charT,Alloc>&
operator+= (rope<charT,Alloc> &left,
const charT* right) {
left.append(right);
return left;
}
template <class charT, class Alloc>
inline
rope<charT,Alloc>
operator+ (const rope<charT,Alloc> &left, charT right) {
return rope<charT,Alloc>
(rope<charT,Alloc>::concat_char_iter(left.tree_ptr, &right, 1));
}
template <class charT, class Alloc>
inline
rope<charT,Alloc>&
operator+= (rope<charT,Alloc> &left, charT right) {
left.append(right);
return left;
}
template <class charT, class Alloc>
bool
operator< (const rope<charT,Alloc> &left, const rope<charT,Alloc> &right) {
return left.compare(right) < 0;
}
template <class charT, class Alloc>
bool
operator== (const rope<charT,Alloc> &left, const rope<charT,Alloc> &right) {
return left.compare(right) == 0;
}
template <class charT, class Alloc>
inline bool operator== (const __rope_charT_ptr_proxy<charT,Alloc> & x,
const __rope_charT_ptr_proxy<charT,Alloc> & y) {
return (x.pos == y.pos && x.root == y.root);
}
template<class charT, class Alloc>
ostream& operator<< (ostream& o, const rope<charT, Alloc>& r);
typedef rope<char, __ALLOC> crope;
typedef rope<wchar_t, __ALLOC> wrope;
inline crope::reference __mutable_reference_at(crope& c, size_t i)
{
return c.mutable_reference_at(i);
}
inline wrope::reference __mutable_reference_at(wrope& c, size_t i)
{
return c.mutable_reference_at(i);
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class charT, class Alloc>
inline void swap(rope<charT, Alloc>& x, rope<charT, Alloc>& y) {
x.swap(y);
}
#else
inline void swap(crope x, crope y) { x.swap(y); }
inline void swap(wrope x, wrope y) { x.swap(y); }
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
// Hash functions should probably be revisited later:
__STL_TEMPLATE_NULL struct hash<crope>
{
size_t operator()(const crope& str) const
{
size_t sz = str.size();
if (0 == sz) return 0;
return 13*str[0] + 5*str[sz - 1] + sz;
}
};
__STL_TEMPLATE_NULL struct hash<wrope>
{
size_t operator()(const wrope& str) const
{
size_t sz = str.size();
if (0 == sz) return 0;
return 13*str[0] + 5*str[sz - 1] + sz;
}
};
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif
__STL_END_NAMESPACE
# include <ropeimpl.h>
# endif /* __SGI_STL_INTERNAL_ROPE_H */
// Local Variables:
// mode:C++
// End: