freebsd-skq/sys/arm/arm/mpcore_timer.c
ian 9e1bd3c87d Attach arm generic interrupt and timer drivers in the middle of
BUS_PASS_INTERRUPT and BUS_PASS_TIMER, respectively.
2014-08-05 18:51:51 +00:00

471 lines
14 KiB
C

/*-
* Copyright (c) 2011 The FreeBSD Foundation
* All rights reserved.
*
* Developed by Ben Gray <ben.r.gray@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/**
* The ARM Cortex-A9 core can support a global timer plus a private and
* watchdog timer per core. This driver reserves memory and interrupt
* resources for accessing both timer register sets, these resources are
* stored globally and used to setup the timecount and eventtimer.
*
* The timecount timer uses the global 64-bit counter, whereas the
* per-CPU eventtimer uses the private 32-bit counters.
*
*
* REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/timeet.h>
#include <sys/timetc.h>
#include <sys/watchdog.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <machine/fdt.h>
#include <arm/arm/mpcore_timervar.h>
/* Private (per-CPU) timer register map */
#define PRV_TIMER_LOAD 0x0000
#define PRV_TIMER_COUNT 0x0004
#define PRV_TIMER_CTRL 0x0008
#define PRV_TIMER_INTR 0x000C
#define PRV_TIMER_CTR_PRESCALER_SHIFT 8
#define PRV_TIMER_CTRL_IRQ_ENABLE (1UL << 2)
#define PRV_TIMER_CTRL_AUTO_RELOAD (1UL << 1)
#define PRV_TIMER_CTRL_TIMER_ENABLE (1UL << 0)
#define PRV_TIMER_INTR_EVENT (1UL << 0)
/* Global timer register map */
#define GBL_TIMER_COUNT_LOW 0x0000
#define GBL_TIMER_COUNT_HIGH 0x0004
#define GBL_TIMER_CTRL 0x0008
#define GBL_TIMER_INTR 0x000C
#define GBL_TIMER_CTR_PRESCALER_SHIFT 8
#define GBL_TIMER_CTRL_AUTO_INC (1UL << 3)
#define GBL_TIMER_CTRL_IRQ_ENABLE (1UL << 2)
#define GBL_TIMER_CTRL_COMP_ENABLE (1UL << 1)
#define GBL_TIMER_CTRL_TIMER_ENABLE (1UL << 0)
#define GBL_TIMER_INTR_EVENT (1UL << 0)
struct arm_tmr_softc {
struct resource * tmr_res[4];
bus_space_tag_t prv_bst;
bus_space_tag_t gbl_bst;
bus_space_handle_t prv_bsh;
bus_space_handle_t gbl_bsh;
uint64_t clkfreq;
struct eventtimer et;
};
static struct resource_spec arm_tmr_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE }, /* Global registers */
{ SYS_RES_IRQ, 0, RF_ACTIVE }, /* Global timer interrupt (unused) */
{ SYS_RES_MEMORY, 1, RF_ACTIVE }, /* Private (per-CPU) registers */
{ SYS_RES_IRQ, 1, RF_ACTIVE }, /* Private timer interrupt */
{ -1, 0 }
};
static struct arm_tmr_softc *arm_tmr_sc = NULL;
static uint64_t platform_arm_tmr_freq = 0;
#define tmr_prv_read_4(reg) \
bus_space_read_4(arm_tmr_sc->prv_bst, arm_tmr_sc->prv_bsh, reg)
#define tmr_prv_write_4(reg, val) \
bus_space_write_4(arm_tmr_sc->prv_bst, arm_tmr_sc->prv_bsh, reg, val)
#define tmr_gbl_read_4(reg) \
bus_space_read_4(arm_tmr_sc->gbl_bst, arm_tmr_sc->gbl_bsh, reg)
#define tmr_gbl_write_4(reg, val) \
bus_space_write_4(arm_tmr_sc->gbl_bst, arm_tmr_sc->gbl_bsh, reg, val)
static timecounter_get_t arm_tmr_get_timecount;
static struct timecounter arm_tmr_timecount = {
.tc_name = "MPCore",
.tc_get_timecount = arm_tmr_get_timecount,
.tc_poll_pps = NULL,
.tc_counter_mask = ~0u,
.tc_frequency = 0,
.tc_quality = 800,
};
/**
* arm_tmr_get_timecount - reads the timecount (global) timer
* @tc: pointer to arm_tmr_timecount struct
*
* We only read the lower 32-bits, the timecount stuff only uses 32-bits
* so (for now?) ignore the upper 32-bits.
*
* RETURNS
* The lower 32-bits of the counter.
*/
static unsigned
arm_tmr_get_timecount(struct timecounter *tc)
{
return (tmr_gbl_read_4(GBL_TIMER_COUNT_LOW));
}
/**
* arm_tmr_start - starts the eventtimer (private) timer
* @et: pointer to eventtimer struct
* @first: the number of seconds and fractional sections to trigger in
* @period: the period (in seconds and fractional sections) to set
*
* If the eventtimer is required to be in oneshot mode, period will be
* NULL and first will point to the time to trigger. If in periodic mode
* period will contain the time period and first may optionally contain
* the time for the first period.
*
* RETURNS
* Always returns 0
*/
static int
arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
{
uint32_t load, count;
uint32_t ctrl;
tmr_prv_write_4(PRV_TIMER_CTRL, 0);
tmr_prv_write_4(PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
if (period != 0) {
load = ((uint32_t)et->et_frequency * period) >> 32;
ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
} else
load = 0;
if (first != 0)
count = (uint32_t)((et->et_frequency * first) >> 32);
else
count = load;
tmr_prv_write_4(PRV_TIMER_LOAD, load);
tmr_prv_write_4(PRV_TIMER_COUNT, count);
tmr_prv_write_4(PRV_TIMER_CTRL, ctrl);
return (0);
}
/**
* arm_tmr_stop - stops the eventtimer (private) timer
* @et: pointer to eventtimer struct
*
* Simply stops the private timer by clearing all bits in the ctrl register.
*
* RETURNS
* Always returns 0
*/
static int
arm_tmr_stop(struct eventtimer *et)
{
tmr_prv_write_4(PRV_TIMER_CTRL, 0);
tmr_prv_write_4(PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
return (0);
}
/**
* arm_tmr_intr - ISR for the eventtimer (private) timer
* @arg: pointer to arm_tmr_softc struct
*
* Clears the event register and then calls the eventtimer callback.
*
* RETURNS
* Always returns FILTER_HANDLED
*/
static int
arm_tmr_intr(void *arg)
{
struct arm_tmr_softc *sc = (struct arm_tmr_softc *)arg;
tmr_prv_write_4(PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
if (sc->et.et_active)
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
return (FILTER_HANDLED);
}
/**
* arm_tmr_probe - timer probe routine
* @dev: new device
*
* The probe function returns success when probed with the fdt compatible
* string set to "arm,mpcore-timers".
*
* RETURNS
* BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
*/
static int
arm_tmr_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "arm,mpcore-timers"))
return (ENXIO);
device_set_desc(dev, "ARM MPCore Timers");
return (BUS_PROBE_DEFAULT);
}
/**
* arm_tmr_attach - attaches the timer to the simplebus
* @dev: new device
*
* Reserves memory and interrupt resources, stores the softc structure
* globally and registers both the timecount and eventtimer objects.
*
* RETURNS
* Zero on sucess or ENXIO if an error occuried.
*/
static int
arm_tmr_attach(device_t dev)
{
struct arm_tmr_softc *sc = device_get_softc(dev);
phandle_t node;
pcell_t clock;
void *ihl;
boolean_t fixed_freq;
if (arm_tmr_sc)
return (ENXIO);
if (platform_arm_tmr_freq == ARM_TMR_FREQUENCY_VARIES) {
fixed_freq = false;
} else {
fixed_freq = true;
if (platform_arm_tmr_freq != 0) {
sc->clkfreq = platform_arm_tmr_freq;
} else {
/* Get the base clock frequency */
node = ofw_bus_get_node(dev);
if ((OF_getencprop(node, "clock-frequency", &clock,
sizeof(clock))) <= 0) {
device_printf(dev, "missing clock-frequency "
"attribute in FDT\n");
return (ENXIO);
}
sc->clkfreq = clock;
}
}
if (bus_alloc_resources(dev, arm_tmr_spec, sc->tmr_res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Global timer interface */
sc->gbl_bst = rman_get_bustag(sc->tmr_res[0]);
sc->gbl_bsh = rman_get_bushandle(sc->tmr_res[0]);
/* Private per-CPU timer interface */
sc->prv_bst = rman_get_bustag(sc->tmr_res[2]);
sc->prv_bsh = rman_get_bushandle(sc->tmr_res[2]);
arm_tmr_sc = sc;
/* Disable both timers to start off */
tmr_prv_write_4(PRV_TIMER_CTRL, 0x00000000);
tmr_gbl_write_4(GBL_TIMER_CTRL, 0x00000000);
if (bus_setup_intr(dev, sc->tmr_res[3], INTR_TYPE_CLK, arm_tmr_intr,
NULL, sc, &ihl) != 0) {
bus_release_resources(dev, arm_tmr_spec, sc->tmr_res);
device_printf(dev, "Unable to setup the clock irq handler.\n");
return (ENXIO);
}
/*
* If the clock is fixed-frequency, setup and enable the global timer to
* use as the timecounter. If it's variable frequency it won't work as
* a timecounter. We also can't use it for DELAY(), so hopefully the
* platform provides its own implementation. If it doesn't, ours will
* get used, but since the frequency isn't set, it will only use the
* bogus loop counter.
*/
if (fixed_freq) {
tmr_gbl_write_4(GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
arm_tmr_timecount.tc_frequency = sc->clkfreq;
tc_init(&arm_tmr_timecount);
}
/*
* Setup and register the eventtimer. Most event timers set their min
* and max period values to some value calculated from the clock
* frequency. We might not know yet what our runtime clock frequency
* will be, so we just use some safe values. A max of 2 seconds ensures
* that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
* we won't overflow our 32-bit timer count register. A min of 20
* nanoseconds is pretty much completely arbitrary.
*/
sc->et.et_name = "MPCore";
sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
sc->et.et_quality = 1000;
sc->et.et_frequency = sc->clkfreq;
sc->et.et_min_period = 20 * SBT_1NS;
sc->et.et_max_period = 2 * SBT_1S;
sc->et.et_start = arm_tmr_start;
sc->et.et_stop = arm_tmr_stop;
sc->et.et_priv = sc;
et_register(&sc->et);
return (0);
}
static device_method_t arm_tmr_methods[] = {
DEVMETHOD(device_probe, arm_tmr_probe),
DEVMETHOD(device_attach, arm_tmr_attach),
{ 0, 0 }
};
static driver_t arm_tmr_driver = {
"mp_tmr",
arm_tmr_methods,
sizeof(struct arm_tmr_softc),
};
static devclass_t arm_tmr_devclass;
EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
/*
* Handle a change in clock frequency. The mpcore timer runs at half the CPU
* frequency. When the CPU frequency changes due to power-saving or thermal
* managment, the platform-specific code that causes the frequency change calls
* this routine to inform the clock driver, and we in turn inform the event
* timer system, which actually updates the value in et->frequency for us and
* reschedules the current event(s) in a way that's atomic with respect to
* start/stop/intr code that may be running on various CPUs at the time of the
* call.
*
* This routine can also be called by a platform's early init code. If the
* value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
* to register as an eventtimer, but not a timecounter. If the value passed in
* is any other non-zero value it is used as the fixed frequency for the timer.
*/
void
arm_tmr_change_frequency(uint64_t newfreq)
{
if (arm_tmr_sc == NULL)
platform_arm_tmr_freq = newfreq;
else
et_change_frequency(&arm_tmr_sc->et, newfreq);
}
/**
* DELAY - Delay for at least usec microseconds.
* @usec: number of microseconds to delay by
*
* This function is called all over the kernel and is suppose to provide a
* consistent delay. This function may also be called before the console
* is setup so no printf's can be called here.
*
* RETURNS:
* nothing
*/
static void __used /* Must emit function code for the weak ref below. */
arm_tmr_DELAY(int usec)
{
int32_t counts_per_usec;
int32_t counts;
uint32_t first, last;
/* Check the timers are setup, if not just use a for loop for the meantime */
if (arm_tmr_sc == NULL || arm_tmr_timecount.tc_frequency == 0) {
for (; usec > 0; usec--)
for (counts = 200; counts > 0; counts--)
cpufunc_nullop(); /* Prevent gcc from optimizing
* out the loop
*/
return;
}
/* Get the number of times to count */
counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
/*
* Clamp the timeout at a maximum value (about 32 seconds with
* a 66MHz clock). *Nobody* should be delay()ing for anywhere
* near that length of time and if they are, they should be hung
* out to dry.
*/
if (usec >= (0x80000000U / counts_per_usec))
counts = (0x80000000U / counts_per_usec) - 1;
else
counts = usec * counts_per_usec;
first = tmr_gbl_read_4(GBL_TIMER_COUNT_LOW);
while (counts > 0) {
last = tmr_gbl_read_4(GBL_TIMER_COUNT_LOW);
counts -= (int32_t)(last - first);
first = last;
}
}
/*
* Supply a DELAY() implementation via weak linkage. A platform may want to use
* the mpcore per-cpu eventtimers but provide its own DELAY() routine,
* especially when the core frequency can change on the fly.
*/
__weak_reference(arm_tmr_DELAY, DELAY);