freebsd-skq/ar5212/ar5212_misc.c
sam 44a50d5709 Replace most compile-time support options with linker sets for
chip and RF backend support:
o add OS_DATA_SET and OS_SET_DECLARE os requirements for setting
  up linker sets
o add AH_CHIP macro for registering chip support (e.g. 5210)
o add AH_RF macro for registering RF support (e.g. 2413); note
  this isn't required for single chip solutions where there's no
  ambiguity (e.g. 5416/9160+2133) but for 5212 class parts it's
  required because of the multi-chip solutions
o remove all uses of AH_SUPPORT_AR5210, AH_SUPPORT_AR5211, AH_SUPPORT_5212,
  and AH_SUPPORT_AR9160; still need AH_SUPPORT_AR5416 to enable the 11n
  descriptor formats and 5312 support is presently broken
o remove all uses of AH_SUPPORT_2133, AH_SUPPORT_2413, AH_SUPPORT_5111,
  AH_SUPPORT_5112, AH_SUPPORT_2417, AH_SUPPORT_2425, and AH_SUPPORT_5413;
  5312-related support still requires fixup

Remaining issues:
o fixup SoC attach
o ath_hal_attach uses a hack to probe w/o access to the vendorid
o fallback handling of parts w/o a macrev needs to be restored
2008-11-28 19:58:09 +00:00

1075 lines
30 KiB
C

/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $Id: ar5212_misc.c,v 1.12 2008/11/27 22:30:00 sam Exp $
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#ifdef AH_DEBUG
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
#endif
#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212phy.h"
#include "ah_eeprom_v3.h"
#define AR_NUM_GPIO 6 /* 6 GPIO pins */
#define AR_GPIOD_MASK 0x0000002F /* GPIO data reg r/w mask */
extern void ar5212SetRateDurationTable(struct ath_hal *, HAL_CHANNEL *);
void
ar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
{
struct ath_hal_5212 *ahp = AH5212(ah);
OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
{
struct ath_hal_5212 *ahp = AH5212(ah);
OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
return AH_TRUE;
}
void
ar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
{
struct ath_hal_5212 *ahp = AH5212(ah);
OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/* save it since it must be rewritten on reset */
OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
return AH_TRUE;
}
/*
* Attempt to change the cards operating regulatory domain to the given value
*/
HAL_BOOL
ar5212SetRegulatoryDomain(struct ath_hal *ah,
uint16_t regDomain, HAL_STATUS *status)
{
HAL_STATUS ecode;
if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
ecode = HAL_EINVAL;
goto bad;
}
if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
ecode = HAL_EEWRITE;
goto bad;
}
#ifdef AH_SUPPORT_WRITE_REGDOMAIN
if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: set regulatory domain to %u (0x%x)\n",
__func__, regDomain, regDomain);
AH_PRIVATE(ah)->ah_currentRD = regDomain;
return AH_TRUE;
}
#endif
ecode = HAL_EIO;
bad:
if (status)
*status = ecode;
return AH_FALSE;
}
/*
* Return the wireless modes (a,b,g,t) supported by hardware.
*
* This value is what is actually supported by the hardware
* and is unaffected by regulatory/country code settings.
*/
u_int
ar5212GetWirelessModes(struct ath_hal *ah)
{
u_int mode = 0;
if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
mode = HAL_MODE_11A;
if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
mode |= HAL_MODE_TURBO | HAL_MODE_108A;
if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
mode |= HAL_MODE_11A_HALF_RATE;
if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
mode |= HAL_MODE_11A_QUARTER_RATE;
}
if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
mode |= HAL_MODE_11B;
if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
mode |= HAL_MODE_11G;
if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
mode |= HAL_MODE_108G;
if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
mode |= HAL_MODE_11G_HALF_RATE;
if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
mode |= HAL_MODE_11G_QUARTER_RATE;
}
return mode;
}
/*
* Set the interrupt and GPIO values so the ISR can disable RF
* on a switch signal. Assumes GPIO port and interrupt polarity
* are set prior to call.
*/
void
ar5212EnableRfKill(struct ath_hal *ah)
{
uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
/*
* Configure the desired GPIO port for input
* and enable baseband rf silence.
*/
ath_hal_gpioCfgInput(ah, select);
OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
/*
* If radio disable switch connection to GPIO bit x is enabled
* program GPIO interrupt.
* If rfkill bit on eeprom is 1, setupeeprommap routine has already
* verified that it is a later version of eeprom, it has a place for
* rfkill bit and it is set to 1, indicating that GPIO bit x hardware
* connection is present.
*/
ath_hal_gpioSetIntr(ah, select,
(ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
}
/*
* Change the LED blinking pattern to correspond to the connectivity
*/
void
ar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
{
static const uint32_t ledbits[8] = {
AR_PCICFG_LEDCTL_NONE, /* HAL_LED_INIT */
AR_PCICFG_LEDCTL_PEND, /* HAL_LED_SCAN */
AR_PCICFG_LEDCTL_PEND, /* HAL_LED_AUTH */
AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_ASSOC*/
AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_RUN */
AR_PCICFG_LEDCTL_NONE,
AR_PCICFG_LEDCTL_NONE,
AR_PCICFG_LEDCTL_NONE,
};
uint32_t bits;
bits = OS_REG_READ(ah, AR_PCICFG);
if (IS_2417(ah)) {
/*
* Enable LED for Nala. There is a bit marked reserved
* that must be set and we also turn on the power led.
* Because we mark s/w LED control setting the control
* status bits below is meangless (the driver must flash
* the LED(s) using the GPIO lines).
*/
bits = (bits &~ AR_PCICFG_LEDMODE)
| SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
#if 0
| SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
#endif
| 0x08000000;
}
bits = (bits &~ AR_PCICFG_LEDCTL)
| SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
OS_REG_WRITE(ah, AR_PCICFG, bits);
}
/*
* Change association related fields programmed into the hardware.
* Writing a valid BSSID to the hardware effectively enables the hardware
* to synchronize its TSF to the correct beacons and receive frames coming
* from that BSSID. It is called by the SME JOIN operation.
*/
void
ar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/* XXX save bssid for possible re-use on reset */
OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
}
/*
* Get the current hardware tsf for stamlme
*/
uint64_t
ar5212GetTsf64(struct ath_hal *ah)
{
uint32_t low1, low2, u32;
/* sync multi-word read */
low1 = OS_REG_READ(ah, AR_TSF_L32);
u32 = OS_REG_READ(ah, AR_TSF_U32);
low2 = OS_REG_READ(ah, AR_TSF_L32);
if (low2 < low1) { /* roll over */
/*
* If we are not preempted this will work. If we are
* then we re-reading AR_TSF_U32 does no good as the
* low bits will be meaningless. Likewise reading
* L32, U32, U32, then comparing the last two reads
* to check for rollover doesn't help if preempted--so
* we take this approach as it costs one less PCI read
* which can be noticeable when doing things like
* timestamping packets in monitor mode.
*/
u32++;
}
return (((uint64_t) u32) << 32) | ((uint64_t) low2);
}
/*
* Get the current hardware tsf for stamlme
*/
uint32_t
ar5212GetTsf32(struct ath_hal *ah)
{
return OS_REG_READ(ah, AR_TSF_L32);
}
/*
* Reset the current hardware tsf for stamlme.
*/
void
ar5212ResetTsf(struct ath_hal *ah)
{
uint32_t val = OS_REG_READ(ah, AR_BEACON);
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
/*
* When resetting the TSF, write twice to the
* corresponding register; each write to the RESET_TSF bit toggles
* the internal signal to cause a reset of the TSF - but if the signal
* is left high, it will reset the TSF on the next chip reset also!
* writing the bit an even number of times fixes this issue
*/
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
}
/*
* Set or clear hardware basic rate bit
* Set hardware basic rate set if basic rate is found
* and basic rate is equal or less than 2Mbps
*/
void
ar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
{
HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
uint32_t reg;
uint8_t xset;
int i;
if (chan == AH_NULL || !IS_CHAN_CCK(chan))
return;
xset = 0;
for (i = 0; i < rs->rs_count; i++) {
uint8_t rset = rs->rs_rates[i];
/* Basic rate defined? */
if ((rset & 0x80) && (rset &= 0x7f) >= xset)
xset = rset;
}
/*
* Set the h/w bit to reflect whether or not the basic
* rate is found to be equal or less than 2Mbps.
*/
reg = OS_REG_READ(ah, AR_STA_ID1);
if (xset && xset/2 <= 2)
OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
else
OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
}
/*
* Grab a semi-random value from hardware registers - may not
* change often
*/
uint32_t
ar5212GetRandomSeed(struct ath_hal *ah)
{
uint32_t nf;
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
return (OS_REG_READ(ah, AR_TSF_U32) ^
OS_REG_READ(ah, AR_TSF_L32) ^ nf);
}
/*
* Detect if our card is present
*/
HAL_BOOL
ar5212DetectCardPresent(struct ath_hal *ah)
{
uint16_t macVersion, macRev;
uint32_t v;
/*
* Read the Silicon Revision register and compare that
* to what we read at attach time. If the same, we say
* a card/device is present.
*/
v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
macVersion = v >> AR_SREV_ID_S;
macRev = v & AR_SREV_REVISION;
return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
AH_PRIVATE(ah)->ah_macRev == macRev);
}
void
ar5212EnableMibCounters(struct ath_hal *ah)
{
/* NB: this just resets the mib counter machinery */
OS_REG_WRITE(ah, AR_MIBC,
~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
}
void
ar5212DisableMibCounters(struct ath_hal *ah)
{
OS_REG_WRITE(ah, AR_MIBC, AR_MIBC | AR_MIBC_CMC);
}
/*
* Update MIB Counters
*/
void
ar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
{
stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
}
/*
* Detect if the HW supports spreading a CCK signal on channel 14
*/
HAL_BOOL
ar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
{
return AH_TRUE;
}
/*
* Get the rssi of frame curently being received.
*/
uint32_t
ar5212GetCurRssi(struct ath_hal *ah)
{
return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
}
u_int
ar5212GetDefAntenna(struct ath_hal *ah)
{
return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
}
void
ar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
{
OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
}
HAL_ANT_SETTING
ar5212GetAntennaSwitch(struct ath_hal *ah)
{
return AH5212(ah)->ah_antControl;
}
HAL_BOOL
ar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting)
{
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_CHANNEL_INTERNAL *ichan = AH_PRIVATE(ah)->ah_curchan;
if (!ahp->ah_phyPowerOn || ichan == AH_NULL) {
/* PHY powered off, just stash settings */
ahp->ah_antControl = setting;
ahp->ah_diversity = (setting == HAL_ANT_VARIABLE);
return AH_TRUE;
}
return ar5212SetAntennaSwitchInternal(ah, setting, ichan);
}
HAL_BOOL
ar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
{
return AH_TRUE;
}
HAL_BOOL
ar5212SetSifsTime(struct ath_hal *ah, u_int us)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (us > ath_hal_mac_usec(ah, 0xffff)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
__func__, us);
ahp->ah_sifstime = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
ahp->ah_slottime = us;
return AH_TRUE;
}
}
u_int
ar5212GetSifsTime(struct ath_hal *ah)
{
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5212SetSlotTime(struct ath_hal *ah, u_int us)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
__func__, us);
ahp->ah_slottime = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
ahp->ah_slottime = us;
return AH_TRUE;
}
}
u_int
ar5212GetSlotTime(struct ath_hal *ah)
{
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5212SetAckTimeout(struct ath_hal *ah, u_int us)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
__func__, us);
ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
ahp->ah_acktimeout = us;
return AH_TRUE;
}
}
u_int
ar5212GetAckTimeout(struct ath_hal *ah)
{
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
u_int
ar5212GetAckCTSRate(struct ath_hal *ah)
{
return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
}
HAL_BOOL
ar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (high) {
OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
} else {
OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
}
return AH_TRUE;
}
HAL_BOOL
ar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
__func__, us);
ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
ahp->ah_ctstimeout = us;
return AH_TRUE;
}
}
u_int
ar5212GetCTSTimeout(struct ath_hal *ah)
{
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
/* Setup decompression for given key index */
HAL_BOOL
ar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
{
struct ath_hal_5212 *ahp = AH5212(ah);
if (keyidx >= HAL_DECOMP_MASK_SIZE)
return HAL_EINVAL;
OS_REG_WRITE(ah, AR_DCM_A, keyidx);
OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
ahp->ah_decompMask[keyidx] = en;
return AH_TRUE;
}
/* Setup coverage class */
void
ar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
{
uint32_t slot, timeout, eifs;
u_int clkRate;
AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
if (now) {
if (AH_PRIVATE(ah)->ah_coverageClass == 0)
return;
/* Don't apply coverage class to non A channels */
if (!IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
return;
/* Get core clock rate */
clkRate = ath_hal_mac_clks(ah, 1);
/* Compute EIFS */
slot = coverageclass * 3 * clkRate;
eifs = coverageclass * 6 * clkRate;
if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
slot += IFS_SLOT_HALF_RATE;
eifs += IFS_EIFS_HALF_RATE;
} else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
slot += IFS_SLOT_QUARTER_RATE;
eifs += IFS_EIFS_QUARTER_RATE;
} else { /* full rate */
slot += IFS_SLOT_FULL_RATE;
eifs += IFS_EIFS_FULL_RATE;
}
/*
* Add additional time for air propagation for ACK and CTS
* timeouts. This value is in core clocks.
*/
timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
/*
* Write the values: slot, eifs, ack/cts timeouts.
*/
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
OS_REG_WRITE(ah, AR_TIME_OUT,
SM(timeout, AR_TIME_OUT_CTS)
| SM(timeout, AR_TIME_OUT_ACK));
}
}
void
ar5212SetPCUConfig(struct ath_hal *ah)
{
ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
}
/*
* Return whether an external 32KHz crystal should be used
* to reduce power consumption when sleeping. We do so if
* the crystal is present (obtained from EEPROM) and if we
* are not running as an AP and are configured to use it.
*/
HAL_BOOL
ar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
{
if (opmode != HAL_M_HOSTAP) {
struct ath_hal_5212 *ahp = AH5212(ah);
return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
(ahp->ah_enable32kHzClock == USE_32KHZ ||
ahp->ah_enable32kHzClock == AUTO_32KHZ);
} else
return AH_FALSE;
}
/*
* If 32KHz clock exists, use it to lower power consumption during sleep
*
* Note: If clock is set to 32 KHz, delays on accessing certain
* baseband registers (27-31, 124-127) are required.
*/
void
ar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
{
if (ar5212Use32KHzclock(ah, opmode)) {
/*
* Enable clocks to be turned OFF in BB during sleep
* and also enable turning OFF 32MHz/40MHz Refclk
* from A2.
*/
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
OS_REG_WRITE(ah, AR_TSF_PARM, 61); /* 32 KHz TSF incr */
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x26);
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0d);
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x07);
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x3f);
/* # Set sleep clock rate to 32 KHz. */
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
} else {
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x0a);
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0c);
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x03);
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x20);
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
}
} else {
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32MHz TSF inc */
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f);
if (IS_2417(ah))
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
else if (IS_HB63(ah))
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
else
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c);
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff);
OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18);
OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
}
}
/*
* If 32KHz clock exists, turn it off and turn back on the 32Mhz
*/
void
ar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
{
if (ar5212Use32KHzclock(ah, opmode)) {
/* # Set sleep clock rate back to 32 MHz. */
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32 MHz TSF incr */
OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
/*
* Restore BB registers to power-on defaults
*/
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f);
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c);
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff);
OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
}
}
/*
* Adjust NF based on statistical values for 5GHz frequencies.
* Default method: this may be overridden by the rf backend.
*/
int16_t
ar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
static const struct {
uint16_t freqLow;
int16_t adjust;
} adjustDef[] = {
{ 5790, 11 }, /* NB: ordered high -> low */
{ 5730, 10 },
{ 5690, 9 },
{ 5660, 8 },
{ 5610, 7 },
{ 5530, 5 },
{ 5450, 4 },
{ 5379, 2 },
{ 5209, 0 },
{ 3000, 1 },
{ 0, 0 },
};
int i;
for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
;
return adjustDef[i].adjust;
}
HAL_STATUS
ar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t *result)
{
#define MACVERSION(ah) AH_PRIVATE(ah)->ah_macVersion
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
const struct ar5212AniState *ani;
switch (type) {
case HAL_CAP_CIPHER: /* cipher handled in hardware */
switch (capability) {
case HAL_CIPHER_AES_CCM:
return pCap->halCipherAesCcmSupport ?
HAL_OK : HAL_ENOTSUPP;
case HAL_CIPHER_AES_OCB:
case HAL_CIPHER_TKIP:
case HAL_CIPHER_WEP:
case HAL_CIPHER_MIC:
case HAL_CIPHER_CLR:
return HAL_OK;
default:
return HAL_ENOTSUPP;
}
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return (ahp->ah_staId1Defaults &
AR_STA_ID1_CRPT_MIC_ENABLE) ? HAL_OK : HAL_ENXIO;
}
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
switch (capability) {
case 0: /* hardware capability */
return pCap->halTkipMicTxRxKeySupport ?
HAL_ENXIO : HAL_OK;
case 1: /* current setting */
return (ahp->ah_miscMode &
AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
}
return HAL_EINVAL;
case HAL_CAP_WME_TKIPMIC: /* hardware can do TKIP MIC w/ WMM */
/* XXX move to capability bit */
return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
(MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1: /* current setting */
return ahp->ah_diversity ? HAL_OK : HAL_ENXIO;
}
return HAL_EINVAL;
case HAL_CAP_DIAG:
*result = AH_PRIVATE(ah)->ah_diagreg;
return HAL_OK;
case HAL_CAP_TPC:
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
}
return HAL_OK;
case HAL_CAP_PHYDIAG: /* radar pulse detection capability */
switch (capability) {
case HAL_CAP_RADAR:
return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
HAL_OK: HAL_ENXIO;
case HAL_CAP_AR:
return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
HAL_OK: HAL_ENXIO;
}
return HAL_ENXIO;
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return (ahp->ah_staId1Defaults &
AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
}
return HAL_EINVAL;
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
switch (capability) {
case 0: /* hardware capability */
return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
case 1:
return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
HAL_OK : HAL_ENXIO;
}
return HAL_EINVAL;
case HAL_CAP_TPC_ACK:
*result = MS(ahp->ah_macTPC, AR_TPC_ACK);
return HAL_OK;
case HAL_CAP_TPC_CTS:
*result = MS(ahp->ah_macTPC, AR_TPC_CTS);
return HAL_OK;
case HAL_CAP_INTMIT: /* interference mitigation */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
HAL_OK : HAL_ENXIO;
case 2: /* HAL_ANI_NOISE_IMMUNITY_LEVEL */
case 3: /* HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION */
case 4: /* HAL_ANI_CCK_WEAK_SIGNAL_THR */
case 5: /* HAL_ANI_FIRSTEP_LEVEL */
case 6: /* HAL_ANI_SPUR_IMMUNITY_LEVEL */
ani = ar5212AniGetCurrentState(ah);
if (ani == AH_NULL)
return HAL_ENXIO;
switch (capability) {
case 2: *result = ani->noiseImmunityLevel; break;
case 3: *result = !ani->ofdmWeakSigDetectOff; break;
case 4: *result = ani->cckWeakSigThreshold; break;
case 5: *result = ani->firstepLevel; break;
case 6: *result = ani->spurImmunityLevel; break;
}
return HAL_OK;
}
return HAL_EINVAL;
default:
return ath_hal_getcapability(ah, type, capability, result);
}
#undef MACVERSION
}
HAL_BOOL
ar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t setting, HAL_STATUS *status)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
uint32_t v;
switch (type) {
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
if (setting)
ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
else
ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
return AH_TRUE;
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
if (!pCap->halTkipMicTxRxKeySupport)
return AH_FALSE;
/* NB: true =>'s use split key cache layout */
if (setting)
ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
else
ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
/* NB: write here so keys can be setup w/o a reset */
OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
return AH_TRUE;
case HAL_CAP_DIVERSITY:
if (ahp->ah_phyPowerOn) {
v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
if (setting)
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
else
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
}
ahp->ah_diversity = (setting != 0);
return AH_TRUE;
case HAL_CAP_DIAG: /* hardware diagnostic support */
/*
* NB: could split this up into virtual capabilities,
* (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
* seems worth the additional complexity.
*/
AH_PRIVATE(ah)->ah_diagreg = setting;
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
return AH_TRUE;
case HAL_CAP_TPC:
ahp->ah_tpcEnabled = (setting != 0);
return AH_TRUE;
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
if (setting)
ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
else
ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
return AH_TRUE;
case HAL_CAP_TPC_ACK:
case HAL_CAP_TPC_CTS:
setting += ahp->ah_txPowerIndexOffset;
if (setting > 63)
setting = 63;
if (type == HAL_CAP_TPC_ACK) {
ahp->ah_macTPC &= AR_TPC_ACK;
ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
} else {
ahp->ah_macTPC &= AR_TPC_CTS;
ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
}
OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
return AH_TRUE;
case HAL_CAP_INTMIT: { /* interference mitigation */
static const HAL_ANI_CMD cmds[] = {
HAL_ANI_PRESENT,
HAL_ANI_MODE,
HAL_ANI_NOISE_IMMUNITY_LEVEL,
HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
HAL_ANI_CCK_WEAK_SIGNAL_THR,
HAL_ANI_FIRSTEP_LEVEL,
HAL_ANI_SPUR_IMMUNITY_LEVEL,
};
return capability < N(cmds) ?
ar5212AniControl(ah, cmds[capability], setting) :
AH_FALSE;
}
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
if (pCap->halTsfAddSupport) {
if (setting)
ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
else
ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
return AH_TRUE;
}
/* fall thru... */
default:
return ath_hal_setcapability(ah, type, capability,
setting, status);
}
#undef N
}
HAL_BOOL
ar5212GetDiagState(struct ath_hal *ah, int request,
const void *args, uint32_t argsize,
void **result, uint32_t *resultsize)
{
struct ath_hal_5212 *ahp = AH5212(ah);
(void) ahp;
if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
return AH_TRUE;
switch (request) {
case HAL_DIAG_EEPROM:
case HAL_DIAG_EEPROM_EXP_11A:
case HAL_DIAG_EEPROM_EXP_11B:
case HAL_DIAG_EEPROM_EXP_11G:
case HAL_DIAG_RFGAIN:
return ath_hal_eepromDiag(ah, request,
args, argsize, result, resultsize);
case HAL_DIAG_RFGAIN_CURSTEP:
*result = __DECONST(void *, ahp->ah_gainValues.currStep);
*resultsize = (*result == AH_NULL) ?
0 : sizeof(GAIN_OPTIMIZATION_STEP);
return AH_TRUE;
case HAL_DIAG_PCDAC:
*result = ahp->ah_pcdacTable;
*resultsize = ahp->ah_pcdacTableSize;
return AH_TRUE;
case HAL_DIAG_TXRATES:
*result = &ahp->ah_ratesArray[0];
*resultsize = sizeof(ahp->ah_ratesArray);
return AH_TRUE;
case HAL_DIAG_ANI_CURRENT:
*result = ar5212AniGetCurrentState(ah);
*resultsize = (*result == AH_NULL) ?
0 : sizeof(struct ar5212AniState);
return AH_TRUE;
case HAL_DIAG_ANI_STATS:
*result = ar5212AniGetCurrentStats(ah);
*resultsize = (*result == AH_NULL) ?
0 : sizeof(struct ar5212Stats);
return AH_TRUE;
case HAL_DIAG_ANI_CMD:
if (argsize != 2*sizeof(uint32_t))
return AH_FALSE;
ar5212AniControl(ah, ((const uint32_t *)args)[0],
((const uint32_t *)args)[1]);
return AH_TRUE;
case HAL_DIAG_ANI_PARAMS:
/*
* NB: We assume struct ar5212AniParams is identical
* to HAL_ANI_PARAMS; if they diverge then we'll need
* to handle it here
*/
if (argsize == 0 && args == AH_NULL) {
struct ar5212AniState *aniState =
ar5212AniGetCurrentState(ah);
if (aniState == AH_NULL)
return AH_FALSE;
*result = __DECONST(void *, aniState->params);
*resultsize = sizeof(struct ar5212AniParams);
return AH_TRUE;
} else {
if (argsize != sizeof(struct ar5212AniParams))
return AH_FALSE;
return ar5212AniSetParams(ah, args, args);
}
}
return AH_FALSE;
}