14de8a2820
- Add tracker argument to preemptible epochs - Inline epoch read path in kernel and tied modules - Change in_epoch to take an epoch as argument - Simplify tfb_tcp_do_segment to not take a ti_locked argument, there's no longer any benefit to dropping the pcbinfo lock and trying to do so just adds an error prone branchfest to these functions - Remove cases of same function recursion on the epoch as recursing is no longer free. - Remove the the TAILQ_ENTRY and epoch_section from struct thread as the tracker field is now stack or heap allocated as appropriate. Tested by: pho and Limelight Networks Reviewed by: kbowling at llnw dot com Sponsored by: Limelight Networks Differential Revision: https://reviews.freebsd.org/D16066
1906 lines
53 KiB
C
1906 lines
53 KiB
C
/*-
|
|
* Copyright (c) 2016-2018 Netflix Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_tcpdebug.h"
|
|
/**
|
|
* Some notes about usage.
|
|
*
|
|
* The tcp_hpts system is designed to provide a high precision timer
|
|
* system for tcp. Its main purpose is to provide a mechanism for
|
|
* pacing packets out onto the wire. It can be used in two ways
|
|
* by a given TCP stack (and those two methods can be used simultaneously).
|
|
*
|
|
* First, and probably the main thing its used by Rack and BBR for, it can
|
|
* be used to call tcp_output() of a transport stack at some time in the future.
|
|
* The normal way this is done is that tcp_output() of the stack schedules
|
|
* itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
|
|
* slot is the time from now that the stack wants to be called but it
|
|
* must be converted to tcp_hpts's notion of slot. This is done with
|
|
* one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
|
|
* call from the tcp_output() routine might look like:
|
|
*
|
|
* tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
|
|
*
|
|
* The above would schedule tcp_ouput() to be called in 550 useconds.
|
|
* Note that if using this mechanism the stack will want to add near
|
|
* its top a check to prevent unwanted calls (from user land or the
|
|
* arrival of incoming ack's). So it would add something like:
|
|
*
|
|
* if (inp->inp_in_hpts)
|
|
* return;
|
|
*
|
|
* to prevent output processing until the time alotted has gone by.
|
|
* Of course this is a bare bones example and the stack will probably
|
|
* have more consideration then just the above.
|
|
*
|
|
* Now the tcp_hpts system will call tcp_output in one of two forms,
|
|
* it will first check to see if the stack as defined a
|
|
* tfb_tcp_output_wtime() function, if so that is the routine it
|
|
* will call, if that function is not defined then it will call the
|
|
* tfb_tcp_output() function. The only difference between these
|
|
* two calls is that the former passes the time in to the function
|
|
* so the function does not have to access the time (which tcp_hpts
|
|
* already has). What these functions do is of course totally up
|
|
* to the individual tcp stack.
|
|
*
|
|
* Now the second function (actually two functions I guess :D)
|
|
* the tcp_hpts system provides is the ability to either abort
|
|
* a connection (later) or process input on a connection.
|
|
* Why would you want to do this? To keep processor locality.
|
|
*
|
|
* So in order to use the input redirection function the
|
|
* stack changes its tcp_do_segment() routine to instead
|
|
* of process the data call the function:
|
|
*
|
|
* tcp_queue_pkt_to_input()
|
|
*
|
|
* You will note that the arguments to this function look
|
|
* a lot like tcp_do_segments's arguments. This function
|
|
* will assure that the tcp_hpts system will
|
|
* call the functions tfb_tcp_hpts_do_segment() from the
|
|
* correct CPU. Note that multiple calls can get pushed
|
|
* into the tcp_hpts system this will be indicated by
|
|
* the next to last argument to tfb_tcp_hpts_do_segment()
|
|
* (nxt_pkt). If nxt_pkt is a 1 then another packet is
|
|
* coming. If nxt_pkt is a 0 then this is the last call
|
|
* that the tcp_hpts system has available for the tcp stack.
|
|
*
|
|
* The other point of the input system is to be able to safely
|
|
* drop a tcp connection without worrying about the recursive
|
|
* locking that may be occuring on the INP_WLOCK. So if
|
|
* a stack wants to drop a connection it calls:
|
|
*
|
|
* tcp_set_inp_to_drop(tp, ETIMEDOUT)
|
|
*
|
|
* To schedule the tcp_hpts system to call
|
|
*
|
|
* tcp_drop(tp, drop_reason)
|
|
*
|
|
* at a future point. This is quite handy to prevent locking
|
|
* issues when dropping connections.
|
|
*
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/module.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/hhook.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h> /* for proc0 declaration */
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/counter.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/kern_prefetch.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/route.h>
|
|
#include <net/vnet.h>
|
|
|
|
#define TCPSTATES /* for logging */
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_kdtrace.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_icmp.h> /* required for icmp_var.h */
|
|
#include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcpip.h>
|
|
#include <netinet/cc/cc.h>
|
|
#include <netinet/tcp_hpts.h>
|
|
|
|
#ifdef tcpdebug
|
|
#include <netinet/tcp_debug.h>
|
|
#endif /* tcpdebug */
|
|
#ifdef tcp_offload
|
|
#include <netinet/tcp_offload.h>
|
|
#endif
|
|
|
|
#ifdef ipsec
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/ipsec6.h>
|
|
#endif /* ipsec */
|
|
#include "opt_rss.h"
|
|
|
|
MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
|
|
#ifdef RSS
|
|
static int tcp_bind_threads = 1;
|
|
#else
|
|
static int tcp_bind_threads = 0;
|
|
#endif
|
|
TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
|
|
|
|
static uint32_t tcp_hpts_logging_size = DEFAULT_HPTS_LOG;
|
|
|
|
TUNABLE_INT("net.inet.tcp.hpts_logging_sz", &tcp_hpts_logging_size);
|
|
|
|
static struct tcp_hptsi tcp_pace;
|
|
|
|
static void tcp_wakehpts(struct tcp_hpts_entry *p);
|
|
static void tcp_wakeinput(struct tcp_hpts_entry *p);
|
|
static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv);
|
|
static void tcp_hptsi(struct tcp_hpts_entry *hpts, struct timeval *ctick);
|
|
static void tcp_hpts_thread(void *ctx);
|
|
static void tcp_init_hptsi(void *st);
|
|
|
|
int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
|
|
static int32_t tcp_hpts_callout_skip_swi = 0;
|
|
|
|
SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW, 0, "TCP Hpts controls");
|
|
|
|
#define timersub(tvp, uvp, vvp) \
|
|
do { \
|
|
(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
|
|
(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
|
|
if ((vvp)->tv_usec < 0) { \
|
|
(vvp)->tv_sec--; \
|
|
(vvp)->tv_usec += 1000000; \
|
|
} \
|
|
} while (0)
|
|
|
|
static int32_t logging_on = 0;
|
|
static int32_t hpts_sleep_max = (NUM_OF_HPTSI_SLOTS - 2);
|
|
static int32_t tcp_hpts_precision = 120;
|
|
|
|
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
|
|
&tcp_hpts_precision, 120,
|
|
"Value for PRE() precision of callout");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
|
|
&logging_on, 0,
|
|
"Turn on logging if compiled in");
|
|
|
|
counter_u64_t hpts_loops;
|
|
|
|
SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD,
|
|
&hpts_loops, "Number of times hpts had to loop to catch up");
|
|
|
|
counter_u64_t back_tosleep;
|
|
|
|
SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
|
|
&back_tosleep, "Number of times hpts found no tcbs");
|
|
|
|
static int32_t in_newts_every_tcb = 0;
|
|
|
|
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, in_tsperpcb, CTLFLAG_RW,
|
|
&in_newts_every_tcb, 0,
|
|
"Do we have a new cts every tcb we process for input");
|
|
static int32_t in_ts_percision = 0;
|
|
|
|
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, in_tspercision, CTLFLAG_RW,
|
|
&in_ts_percision, 0,
|
|
"Do we use percise timestamp for clients on input");
|
|
static int32_t out_newts_every_tcb = 0;
|
|
|
|
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tsperpcb, CTLFLAG_RW,
|
|
&out_newts_every_tcb, 0,
|
|
"Do we have a new cts every tcb we process for output");
|
|
static int32_t out_ts_percision = 0;
|
|
|
|
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW,
|
|
&out_ts_percision, 0,
|
|
"Do we use a percise timestamp for every output cts");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, maxsleep, CTLFLAG_RW,
|
|
&hpts_sleep_max, 0,
|
|
"The maximum time the hpts will sleep <1 - 254>");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW,
|
|
&tcp_min_hptsi_time, 0,
|
|
"The minimum time the hpts must sleep before processing more slots");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW,
|
|
&tcp_hpts_callout_skip_swi, 0,
|
|
"Do we have the callout call directly to the hpts?");
|
|
|
|
static void
|
|
__tcp_hpts_log_it(struct tcp_hpts_entry *hpts, struct inpcb *inp, int event, uint32_t slot,
|
|
uint32_t ticknow, int32_t line)
|
|
{
|
|
struct hpts_log *pl;
|
|
|
|
HPTS_MTX_ASSERT(hpts);
|
|
if (hpts->p_log == NULL)
|
|
return;
|
|
pl = &hpts->p_log[hpts->p_log_at];
|
|
hpts->p_log_at++;
|
|
if (hpts->p_log_at >= hpts->p_logsize) {
|
|
hpts->p_log_at = 0;
|
|
hpts->p_log_wrapped = 1;
|
|
}
|
|
pl->inp = inp;
|
|
if (inp) {
|
|
pl->t_paceslot = inp->inp_hptsslot;
|
|
pl->t_hptsreq = inp->inp_hpts_request;
|
|
pl->p_onhpts = inp->inp_in_hpts;
|
|
pl->p_oninput = inp->inp_in_input;
|
|
} else {
|
|
pl->t_paceslot = 0;
|
|
pl->t_hptsreq = 0;
|
|
pl->p_onhpts = 0;
|
|
pl->p_oninput = 0;
|
|
}
|
|
pl->is_notempty = 1;
|
|
pl->event = event;
|
|
pl->line = line;
|
|
pl->cts = tcp_get_usecs(NULL);
|
|
pl->p_curtick = hpts->p_curtick;
|
|
pl->p_prevtick = hpts->p_prevtick;
|
|
pl->p_on_queue_cnt = hpts->p_on_queue_cnt;
|
|
pl->ticknow = ticknow;
|
|
pl->slot_req = slot;
|
|
pl->p_nxt_slot = hpts->p_nxt_slot;
|
|
pl->p_cur_slot = hpts->p_cur_slot;
|
|
pl->p_hpts_sleep_time = hpts->p_hpts_sleep_time;
|
|
pl->p_flags = (hpts->p_cpu & 0x7f);
|
|
pl->p_flags <<= 7;
|
|
pl->p_flags |= (hpts->p_num & 0x7f);
|
|
pl->p_flags <<= 2;
|
|
if (hpts->p_hpts_active) {
|
|
pl->p_flags |= HPTS_HPTS_ACTIVE;
|
|
}
|
|
}
|
|
|
|
#define tcp_hpts_log_it(a, b, c, d, e) __tcp_hpts_log_it(a, b, c, d, e, __LINE__)
|
|
|
|
static void
|
|
hpts_timeout_swi(void *arg)
|
|
{
|
|
struct tcp_hpts_entry *hpts;
|
|
|
|
hpts = (struct tcp_hpts_entry *)arg;
|
|
swi_sched(hpts->ie_cookie, 0);
|
|
}
|
|
|
|
static void
|
|
hpts_timeout_dir(void *arg)
|
|
{
|
|
tcp_hpts_thread(arg);
|
|
}
|
|
|
|
static inline void
|
|
hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear)
|
|
{
|
|
#ifdef INVARIANTS
|
|
if (mtx_owned(&hpts->p_mtx) == 0) {
|
|
/* We don't own the mutex? */
|
|
panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
|
|
}
|
|
if (hpts->p_cpu != inp->inp_hpts_cpu) {
|
|
/* It is not the right cpu/mutex? */
|
|
panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
|
|
}
|
|
if (inp->inp_in_hpts == 0) {
|
|
/* We are not on the hpts? */
|
|
panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp);
|
|
}
|
|
if (TAILQ_EMPTY(head) &&
|
|
(hpts->p_on_queue_cnt != 0)) {
|
|
/* We should not be empty with a queue count */
|
|
panic("%s hpts:%p hpts bucket empty but cnt:%d",
|
|
__FUNCTION__, hpts, hpts->p_on_queue_cnt);
|
|
}
|
|
#endif
|
|
TAILQ_REMOVE(head, inp, inp_hpts);
|
|
hpts->p_on_queue_cnt--;
|
|
if (hpts->p_on_queue_cnt < 0) {
|
|
/* Count should not go negative .. */
|
|
#ifdef INVARIANTS
|
|
panic("Hpts goes negative inp:%p hpts:%p",
|
|
inp, hpts);
|
|
#endif
|
|
hpts->p_on_queue_cnt = 0;
|
|
}
|
|
if (clear) {
|
|
inp->inp_hpts_request = 0;
|
|
inp->inp_in_hpts = 0;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref)
|
|
{
|
|
#ifdef INVARIANTS
|
|
if (mtx_owned(&hpts->p_mtx) == 0) {
|
|
/* We don't own the mutex? */
|
|
panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
|
|
}
|
|
if (hpts->p_cpu != inp->inp_hpts_cpu) {
|
|
/* It is not the right cpu/mutex? */
|
|
panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
|
|
}
|
|
if ((noref == 0) && (inp->inp_in_hpts == 1)) {
|
|
/* We are already on the hpts? */
|
|
panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp);
|
|
}
|
|
#endif
|
|
TAILQ_INSERT_TAIL(head, inp, inp_hpts);
|
|
inp->inp_in_hpts = 1;
|
|
hpts->p_on_queue_cnt++;
|
|
if (noref == 0) {
|
|
in_pcbref(inp);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear)
|
|
{
|
|
#ifdef INVARIANTS
|
|
if (mtx_owned(&hpts->p_mtx) == 0) {
|
|
/* We don't own the mutex? */
|
|
panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
|
|
}
|
|
if (hpts->p_cpu != inp->inp_input_cpu) {
|
|
/* It is not the right cpu/mutex? */
|
|
panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
|
|
}
|
|
if (inp->inp_in_input == 0) {
|
|
/* We are not on the input hpts? */
|
|
panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp);
|
|
}
|
|
#endif
|
|
TAILQ_REMOVE(&hpts->p_input, inp, inp_input);
|
|
hpts->p_on_inqueue_cnt--;
|
|
if (hpts->p_on_inqueue_cnt < 0) {
|
|
#ifdef INVARIANTS
|
|
panic("Hpts in goes negative inp:%p hpts:%p",
|
|
inp, hpts);
|
|
#endif
|
|
hpts->p_on_inqueue_cnt = 0;
|
|
}
|
|
#ifdef INVARIANTS
|
|
if (TAILQ_EMPTY(&hpts->p_input) &&
|
|
(hpts->p_on_inqueue_cnt != 0)) {
|
|
/* We should not be empty with a queue count */
|
|
panic("%s hpts:%p in_hpts input empty but cnt:%d",
|
|
__FUNCTION__, hpts, hpts->p_on_inqueue_cnt);
|
|
}
|
|
#endif
|
|
if (clear)
|
|
inp->inp_in_input = 0;
|
|
}
|
|
|
|
static inline void
|
|
hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line)
|
|
{
|
|
#ifdef INVARIANTS
|
|
if (mtx_owned(&hpts->p_mtx) == 0) {
|
|
/* We don't own the mutex? */
|
|
panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
|
|
}
|
|
if (hpts->p_cpu != inp->inp_input_cpu) {
|
|
/* It is not the right cpu/mutex? */
|
|
panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
|
|
}
|
|
if (inp->inp_in_input == 1) {
|
|
/* We are already on the input hpts? */
|
|
panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp);
|
|
}
|
|
#endif
|
|
TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input);
|
|
inp->inp_in_input = 1;
|
|
hpts->p_on_inqueue_cnt++;
|
|
in_pcbref(inp);
|
|
}
|
|
|
|
static int
|
|
sysctl_tcp_hpts_log(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct tcp_hpts_entry *hpts;
|
|
size_t sz;
|
|
int32_t logging_was, i;
|
|
int32_t error = 0;
|
|
|
|
/*
|
|
* HACK: Turn off logging so no locks are required this really needs
|
|
* a memory barrier :)
|
|
*/
|
|
logging_was = logging_on;
|
|
logging_on = 0;
|
|
if (!req->oldptr) {
|
|
/* How much? */
|
|
sz = 0;
|
|
for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
|
|
hpts = tcp_pace.rp_ent[i];
|
|
if (hpts->p_log == NULL)
|
|
continue;
|
|
sz += (sizeof(struct hpts_log) * hpts->p_logsize);
|
|
}
|
|
error = SYSCTL_OUT(req, 0, sz);
|
|
} else {
|
|
for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
|
|
hpts = tcp_pace.rp_ent[i];
|
|
if (hpts->p_log == NULL)
|
|
continue;
|
|
if (hpts->p_log_wrapped)
|
|
sz = (sizeof(struct hpts_log) * hpts->p_logsize);
|
|
else
|
|
sz = (sizeof(struct hpts_log) * hpts->p_log_at);
|
|
error = SYSCTL_OUT(req, hpts->p_log, sz);
|
|
}
|
|
}
|
|
logging_on = logging_was;
|
|
return error;
|
|
}
|
|
|
|
SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, log, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
|
|
0, 0, sysctl_tcp_hpts_log, "A", "tcp hptsi log");
|
|
|
|
|
|
static void
|
|
tcp_wakehpts(struct tcp_hpts_entry *hpts)
|
|
{
|
|
HPTS_MTX_ASSERT(hpts);
|
|
swi_sched(hpts->ie_cookie, 0);
|
|
if (hpts->p_hpts_active == 2) {
|
|
/* Rare sleeping on a ENOBUF */
|
|
wakeup_one(hpts);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tcp_wakeinput(struct tcp_hpts_entry *hpts)
|
|
{
|
|
HPTS_MTX_ASSERT(hpts);
|
|
swi_sched(hpts->ie_cookie, 0);
|
|
if (hpts->p_hpts_active == 2) {
|
|
/* Rare sleeping on a ENOBUF */
|
|
wakeup_one(hpts);
|
|
}
|
|
}
|
|
|
|
struct tcp_hpts_entry *
|
|
tcp_cur_hpts(struct inpcb *inp)
|
|
{
|
|
int32_t hpts_num;
|
|
struct tcp_hpts_entry *hpts;
|
|
|
|
hpts_num = inp->inp_hpts_cpu;
|
|
hpts = tcp_pace.rp_ent[hpts_num];
|
|
return (hpts);
|
|
}
|
|
|
|
struct tcp_hpts_entry *
|
|
tcp_hpts_lock(struct inpcb *inp)
|
|
{
|
|
struct tcp_hpts_entry *hpts;
|
|
int32_t hpts_num;
|
|
|
|
again:
|
|
hpts_num = inp->inp_hpts_cpu;
|
|
hpts = tcp_pace.rp_ent[hpts_num];
|
|
#ifdef INVARIANTS
|
|
if (mtx_owned(&hpts->p_mtx)) {
|
|
panic("Hpts:%p owns mtx prior-to lock line:%d",
|
|
hpts, __LINE__);
|
|
}
|
|
#endif
|
|
mtx_lock(&hpts->p_mtx);
|
|
if (hpts_num != inp->inp_hpts_cpu) {
|
|
mtx_unlock(&hpts->p_mtx);
|
|
goto again;
|
|
}
|
|
return (hpts);
|
|
}
|
|
|
|
struct tcp_hpts_entry *
|
|
tcp_input_lock(struct inpcb *inp)
|
|
{
|
|
struct tcp_hpts_entry *hpts;
|
|
int32_t hpts_num;
|
|
|
|
again:
|
|
hpts_num = inp->inp_input_cpu;
|
|
hpts = tcp_pace.rp_ent[hpts_num];
|
|
#ifdef INVARIANTS
|
|
if (mtx_owned(&hpts->p_mtx)) {
|
|
panic("Hpts:%p owns mtx prior-to lock line:%d",
|
|
hpts, __LINE__);
|
|
}
|
|
#endif
|
|
mtx_lock(&hpts->p_mtx);
|
|
if (hpts_num != inp->inp_input_cpu) {
|
|
mtx_unlock(&hpts->p_mtx);
|
|
goto again;
|
|
}
|
|
return (hpts);
|
|
}
|
|
|
|
static void
|
|
tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line)
|
|
{
|
|
int32_t add_freed;
|
|
|
|
if (inp->inp_flags2 & INP_FREED) {
|
|
/*
|
|
* Need to play a special trick so that in_pcbrele_wlocked
|
|
* does not return 1 when it really should have returned 0.
|
|
*/
|
|
add_freed = 1;
|
|
inp->inp_flags2 &= ~INP_FREED;
|
|
} else {
|
|
add_freed = 0;
|
|
}
|
|
#ifndef INP_REF_DEBUG
|
|
if (in_pcbrele_wlocked(inp)) {
|
|
/*
|
|
* This should not happen. We have the inpcb referred to by
|
|
* the main socket (why we are called) and the hpts. It
|
|
* should always return 0.
|
|
*/
|
|
panic("inpcb:%p release ret 1",
|
|
inp);
|
|
}
|
|
#else
|
|
if (__in_pcbrele_wlocked(inp, line)) {
|
|
/*
|
|
* This should not happen. We have the inpcb referred to by
|
|
* the main socket (why we are called) and the hpts. It
|
|
* should always return 0.
|
|
*/
|
|
panic("inpcb:%p release ret 1",
|
|
inp);
|
|
}
|
|
#endif
|
|
if (add_freed) {
|
|
inp->inp_flags2 |= INP_FREED;
|
|
}
|
|
}
|
|
|
|
static void
|
|
tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
|
|
{
|
|
if (inp->inp_in_hpts) {
|
|
hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1);
|
|
tcp_remove_hpts_ref(inp, hpts, line);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
|
|
{
|
|
HPTS_MTX_ASSERT(hpts);
|
|
if (inp->inp_in_input) {
|
|
hpts_sane_input_remove(hpts, inp, 1);
|
|
tcp_remove_hpts_ref(inp, hpts, line);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called normally with the INP_LOCKED but it
|
|
* does not matter, the hpts lock is the key
|
|
* but the lock order allows us to hold the
|
|
* INP lock and then get the hpts lock.
|
|
*
|
|
* Valid values in the flags are
|
|
* HPTS_REMOVE_OUTPUT - remove from the output of the hpts.
|
|
* HPTS_REMOVE_INPUT - remove from the input of the hpts.
|
|
* Note that you can or both values together and get two
|
|
* actions.
|
|
*/
|
|
void
|
|
__tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line)
|
|
{
|
|
struct tcp_hpts_entry *hpts;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
if (flags & HPTS_REMOVE_OUTPUT) {
|
|
hpts = tcp_hpts_lock(inp);
|
|
tcp_hpts_remove_locked_output(hpts, inp, flags, line);
|
|
mtx_unlock(&hpts->p_mtx);
|
|
}
|
|
if (flags & HPTS_REMOVE_INPUT) {
|
|
hpts = tcp_input_lock(inp);
|
|
tcp_hpts_remove_locked_input(hpts, inp, flags, line);
|
|
mtx_unlock(&hpts->p_mtx);
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
hpts_tick(struct tcp_hpts_entry *hpts, int32_t plus)
|
|
{
|
|
return ((hpts->p_prevtick + plus) % NUM_OF_HPTSI_SLOTS);
|
|
}
|
|
|
|
static int
|
|
tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref)
|
|
{
|
|
int32_t need_wake = 0;
|
|
uint32_t ticknow = 0;
|
|
|
|
HPTS_MTX_ASSERT(hpts);
|
|
if (inp->inp_in_hpts == 0) {
|
|
/* Ok we need to set it on the hpts in the current slot */
|
|
if (hpts->p_hpts_active == 0) {
|
|
/* A sleeping hpts we want in next slot to run */
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_INSERT_SLEEPER, 0,
|
|
hpts_tick(hpts, 1));
|
|
}
|
|
inp->inp_hptsslot = hpts_tick(hpts, 1);
|
|
inp->inp_hpts_request = 0;
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_SLEEP_BEFORE, 1, ticknow);
|
|
}
|
|
need_wake = 1;
|
|
} else if ((void *)inp == hpts->p_inp) {
|
|
/*
|
|
* We can't allow you to go into the same slot we
|
|
* are in. We must put you out.
|
|
*/
|
|
inp->inp_hptsslot = hpts->p_nxt_slot;
|
|
} else
|
|
inp->inp_hptsslot = hpts->p_cur_slot;
|
|
hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref);
|
|
inp->inp_hpts_request = 0;
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_IMMEDIATE, 0, 0);
|
|
}
|
|
if (need_wake) {
|
|
/*
|
|
* Activate the hpts if it is sleeping and its
|
|
* timeout is not 1.
|
|
*/
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_WAKEUP_HPTS, 0, ticknow);
|
|
}
|
|
hpts->p_direct_wake = 1;
|
|
tcp_wakehpts(hpts);
|
|
}
|
|
}
|
|
return (need_wake);
|
|
}
|
|
|
|
int
|
|
__tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line)
|
|
{
|
|
int32_t ret;
|
|
struct tcp_hpts_entry *hpts;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
hpts = tcp_hpts_lock(inp);
|
|
ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
|
|
mtx_unlock(&hpts->p_mtx);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, uint32_t cts, int32_t line,
|
|
struct hpts_diag *diag, int32_t noref)
|
|
{
|
|
int32_t need_new_to = 0;
|
|
int32_t need_wakeup = 0;
|
|
uint32_t largest_slot;
|
|
uint32_t ticknow = 0;
|
|
uint32_t slot_calc;
|
|
|
|
HPTS_MTX_ASSERT(hpts);
|
|
if (diag) {
|
|
memset(diag, 0, sizeof(struct hpts_diag));
|
|
diag->p_hpts_active = hpts->p_hpts_active;
|
|
diag->p_nxt_slot = hpts->p_nxt_slot;
|
|
diag->p_cur_slot = hpts->p_cur_slot;
|
|
diag->slot_req = slot;
|
|
}
|
|
if ((inp->inp_in_hpts == 0) || noref) {
|
|
inp->inp_hpts_request = slot;
|
|
if (slot == 0) {
|
|
/* Immediate */
|
|
tcp_queue_to_hpts_immediate_locked(inp, hpts, line, noref);
|
|
return;
|
|
}
|
|
if (hpts->p_hpts_active) {
|
|
/*
|
|
* Its slot - 1 since nxt_slot is the next tick that
|
|
* will go off since the hpts is awake
|
|
*/
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_INSERT_NORMAL, slot, 0);
|
|
}
|
|
/*
|
|
* We want to make sure that we don't place a inp in
|
|
* the range of p_cur_slot <-> p_nxt_slot. If we
|
|
* take from p_nxt_slot to the end, plus p_cur_slot
|
|
* and then take away 2, we will know how many is
|
|
* the max slots we can use.
|
|
*/
|
|
if (hpts->p_nxt_slot > hpts->p_cur_slot) {
|
|
/*
|
|
* Non-wrap case nxt_slot <-> cur_slot we
|
|
* don't want to land in. So the diff gives
|
|
* us what is taken away from the number of
|
|
* slots.
|
|
*/
|
|
largest_slot = NUM_OF_HPTSI_SLOTS - (hpts->p_nxt_slot - hpts->p_cur_slot);
|
|
} else if (hpts->p_nxt_slot == hpts->p_cur_slot) {
|
|
largest_slot = NUM_OF_HPTSI_SLOTS - 2;
|
|
} else {
|
|
/*
|
|
* Wrap case so the diff gives us the number
|
|
* of slots that we can land in.
|
|
*/
|
|
largest_slot = hpts->p_cur_slot - hpts->p_nxt_slot;
|
|
}
|
|
/*
|
|
* We take away two so we never have a problem (20
|
|
* usec's) out of 1024000 usecs
|
|
*/
|
|
largest_slot -= 2;
|
|
if (inp->inp_hpts_request > largest_slot) {
|
|
/*
|
|
* Restrict max jump of slots and remember
|
|
* leftover
|
|
*/
|
|
slot = largest_slot;
|
|
inp->inp_hpts_request -= largest_slot;
|
|
} else {
|
|
/* This one will run when we hit it */
|
|
inp->inp_hpts_request = 0;
|
|
}
|
|
if (hpts->p_nxt_slot == hpts->p_cur_slot)
|
|
slot_calc = (hpts->p_nxt_slot + slot) % NUM_OF_HPTSI_SLOTS;
|
|
else
|
|
slot_calc = (hpts->p_nxt_slot + slot - 1) % NUM_OF_HPTSI_SLOTS;
|
|
if (slot_calc == hpts->p_cur_slot) {
|
|
#ifdef INVARIANTS
|
|
/* TSNH */
|
|
panic("Hpts:%p impossible slot calculation slot_calc:%u slot:%u largest:%u\n",
|
|
hpts, slot_calc, slot, largest_slot);
|
|
#endif
|
|
if (slot_calc)
|
|
slot_calc--;
|
|
else
|
|
slot_calc = NUM_OF_HPTSI_SLOTS - 1;
|
|
}
|
|
inp->inp_hptsslot = slot_calc;
|
|
if (diag) {
|
|
diag->inp_hptsslot = inp->inp_hptsslot;
|
|
}
|
|
} else {
|
|
/*
|
|
* The hpts is sleeping, we need to figure out where
|
|
* it will wake up at and if we need to reschedule
|
|
* its time-out.
|
|
*/
|
|
uint32_t have_slept, yet_to_sleep;
|
|
uint32_t slot_now;
|
|
struct timeval tv;
|
|
|
|
ticknow = tcp_gethptstick(&tv);
|
|
slot_now = ticknow % NUM_OF_HPTSI_SLOTS;
|
|
/*
|
|
* The user wants to be inserted at (slot_now +
|
|
* slot) % NUM_OF_HPTSI_SLOTS, so lets set that up.
|
|
*/
|
|
largest_slot = NUM_OF_HPTSI_SLOTS - 2;
|
|
if (inp->inp_hpts_request > largest_slot) {
|
|
/* Adjust the residual in inp_hpts_request */
|
|
slot = largest_slot;
|
|
inp->inp_hpts_request -= largest_slot;
|
|
} else {
|
|
/* No residual it all fits */
|
|
inp->inp_hpts_request = 0;
|
|
}
|
|
inp->inp_hptsslot = (slot_now + slot) % NUM_OF_HPTSI_SLOTS;
|
|
if (diag) {
|
|
diag->slot_now = slot_now;
|
|
diag->inp_hptsslot = inp->inp_hptsslot;
|
|
diag->p_on_min_sleep = hpts->p_on_min_sleep;
|
|
}
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_INSERT_SLEEPER, slot, ticknow);
|
|
}
|
|
/* Now do we need to restart the hpts's timer? */
|
|
if (TSTMP_GT(ticknow, hpts->p_curtick))
|
|
have_slept = ticknow - hpts->p_curtick;
|
|
else
|
|
have_slept = 0;
|
|
if (have_slept < hpts->p_hpts_sleep_time) {
|
|
/* This should be what happens */
|
|
yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
|
|
} else {
|
|
/* We are over-due */
|
|
yet_to_sleep = 0;
|
|
need_wakeup = 1;
|
|
}
|
|
if (diag) {
|
|
diag->have_slept = have_slept;
|
|
diag->yet_to_sleep = yet_to_sleep;
|
|
diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
|
|
}
|
|
if ((hpts->p_on_min_sleep == 0) && (yet_to_sleep > slot)) {
|
|
/*
|
|
* We need to reschedule the hptss time-out.
|
|
*/
|
|
hpts->p_hpts_sleep_time = slot;
|
|
need_new_to = slot * HPTS_TICKS_PER_USEC;
|
|
}
|
|
}
|
|
hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref);
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_INSERTED, slot, ticknow);
|
|
}
|
|
/*
|
|
* Now how far is the hpts sleeping to? if active is 1, its
|
|
* up and ticking we do nothing, otherwise we may need to
|
|
* reschedule its callout if need_new_to is set from above.
|
|
*/
|
|
if (need_wakeup) {
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_RESCHEDULE, 1, 0);
|
|
}
|
|
hpts->p_direct_wake = 1;
|
|
tcp_wakehpts(hpts);
|
|
if (diag) {
|
|
diag->need_new_to = 0;
|
|
diag->co_ret = 0xffff0000;
|
|
}
|
|
} else if (need_new_to) {
|
|
int32_t co_ret;
|
|
struct timeval tv;
|
|
sbintime_t sb;
|
|
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = 0;
|
|
while (need_new_to > HPTS_USEC_IN_SEC) {
|
|
tv.tv_sec++;
|
|
need_new_to -= HPTS_USEC_IN_SEC;
|
|
}
|
|
tv.tv_usec = need_new_to;
|
|
sb = tvtosbt(tv);
|
|
if (tcp_hpts_callout_skip_swi == 0) {
|
|
co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
|
|
hpts_timeout_swi, hpts, hpts->p_cpu,
|
|
(C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
|
|
} else {
|
|
co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
|
|
hpts_timeout_dir, hpts,
|
|
hpts->p_cpu,
|
|
C_PREL(tcp_hpts_precision));
|
|
}
|
|
if (diag) {
|
|
diag->need_new_to = need_new_to;
|
|
diag->co_ret = co_ret;
|
|
}
|
|
}
|
|
} else {
|
|
#ifdef INVARIANTS
|
|
panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
uint32_t
|
|
tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag){
|
|
struct tcp_hpts_entry *hpts;
|
|
uint32_t slot_on, cts;
|
|
struct timeval tv;
|
|
|
|
/*
|
|
* We now return the next-slot the hpts will be on, beyond its
|
|
* current run (if up) or where it was when it stopped if it is
|
|
* sleeping.
|
|
*/
|
|
INP_WLOCK_ASSERT(inp);
|
|
hpts = tcp_hpts_lock(inp);
|
|
if (in_ts_percision)
|
|
microuptime(&tv);
|
|
else
|
|
getmicrouptime(&tv);
|
|
cts = tcp_tv_to_usectick(&tv);
|
|
tcp_hpts_insert_locked(hpts, inp, slot, cts, line, diag, 0);
|
|
slot_on = hpts->p_nxt_slot;
|
|
mtx_unlock(&hpts->p_mtx);
|
|
return (slot_on);
|
|
}
|
|
|
|
uint32_t
|
|
__tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){
|
|
return (tcp_hpts_insert_diag(inp, slot, line, NULL));
|
|
}
|
|
|
|
int
|
|
__tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line)
|
|
{
|
|
int32_t retval = 0;
|
|
|
|
HPTS_MTX_ASSERT(hpts);
|
|
if (inp->inp_in_input == 0) {
|
|
/* Ok we need to set it on the hpts in the current slot */
|
|
hpts_sane_input_insert(hpts, inp, line);
|
|
retval = 1;
|
|
if (hpts->p_hpts_active == 0) {
|
|
/*
|
|
* Activate the hpts if it is sleeping.
|
|
*/
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_WAKEUP_INPUT, 0, 0);
|
|
}
|
|
retval = 2;
|
|
hpts->p_direct_wake = 1;
|
|
tcp_wakeinput(hpts);
|
|
}
|
|
} else if (hpts->p_hpts_active == 0) {
|
|
retval = 4;
|
|
hpts->p_direct_wake = 1;
|
|
tcp_wakeinput(hpts);
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
void
|
|
tcp_queue_pkt_to_input(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
|
|
int32_t tlen, int32_t drop_hdrlen, uint8_t iptos)
|
|
{
|
|
/* Setup packet for input first */
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
m->m_pkthdr.pace_thoff = (uint16_t) ((caddr_t)th - mtod(m, caddr_t));
|
|
m->m_pkthdr.pace_tlen = (uint16_t) tlen;
|
|
m->m_pkthdr.pace_drphdrlen = drop_hdrlen;
|
|
m->m_pkthdr.pace_tos = iptos;
|
|
m->m_pkthdr.pace_lock = (curthread->td_epochnest != 0);
|
|
if (tp->t_in_pkt == NULL) {
|
|
tp->t_in_pkt = m;
|
|
tp->t_tail_pkt = m;
|
|
} else {
|
|
tp->t_tail_pkt->m_nextpkt = m;
|
|
tp->t_tail_pkt = m;
|
|
}
|
|
}
|
|
|
|
|
|
int32_t
|
|
__tcp_queue_to_input(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
|
|
int32_t tlen, int32_t drop_hdrlen, uint8_t iptos, int32_t line){
|
|
struct tcp_hpts_entry *hpts;
|
|
int32_t ret;
|
|
|
|
tcp_queue_pkt_to_input(tp, m, th, tlen, drop_hdrlen, iptos);
|
|
hpts = tcp_input_lock(tp->t_inpcb);
|
|
ret = __tcp_queue_to_input_locked(tp->t_inpcb, hpts, line);
|
|
mtx_unlock(&hpts->p_mtx);
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
__tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line)
|
|
{
|
|
struct tcp_hpts_entry *hpts;
|
|
struct tcpcb *tp;
|
|
|
|
tp = intotcpcb(inp);
|
|
hpts = tcp_input_lock(tp->t_inpcb);
|
|
if (inp->inp_in_input == 0) {
|
|
/* Ok we need to set it on the hpts in the current slot */
|
|
hpts_sane_input_insert(hpts, inp, line);
|
|
if (hpts->p_hpts_active == 0) {
|
|
/*
|
|
* Activate the hpts if it is sleeping.
|
|
*/
|
|
hpts->p_direct_wake = 1;
|
|
tcp_wakeinput(hpts);
|
|
}
|
|
} else if (hpts->p_hpts_active == 0) {
|
|
hpts->p_direct_wake = 1;
|
|
tcp_wakeinput(hpts);
|
|
}
|
|
inp->inp_hpts_drop_reas = reason;
|
|
mtx_unlock(&hpts->p_mtx);
|
|
}
|
|
|
|
static uint16_t
|
|
hpts_random_cpu(struct inpcb *inp){
|
|
/*
|
|
* No flow type set distribute the load randomly.
|
|
*/
|
|
uint16_t cpuid;
|
|
uint32_t ran;
|
|
|
|
/*
|
|
* If one has been set use it i.e. we want both in and out on the
|
|
* same hpts.
|
|
*/
|
|
if (inp->inp_input_cpu_set) {
|
|
return (inp->inp_input_cpu);
|
|
} else if (inp->inp_hpts_cpu_set) {
|
|
return (inp->inp_hpts_cpu);
|
|
}
|
|
/* Nothing set use a random number */
|
|
ran = arc4random();
|
|
cpuid = (ran & 0xffff) % mp_ncpus;
|
|
return (cpuid);
|
|
}
|
|
|
|
static uint16_t
|
|
hpts_cpuid(struct inpcb *inp){
|
|
uint16_t cpuid;
|
|
|
|
|
|
/*
|
|
* If one has been set use it i.e. we want both in and out on the
|
|
* same hpts.
|
|
*/
|
|
if (inp->inp_input_cpu_set) {
|
|
return (inp->inp_input_cpu);
|
|
} else if (inp->inp_hpts_cpu_set) {
|
|
return (inp->inp_hpts_cpu);
|
|
}
|
|
/* If one is set the other must be the same */
|
|
#ifdef RSS
|
|
cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
|
|
if (cpuid == NETISR_CPUID_NONE)
|
|
return (hpts_random_cpu(inp));
|
|
else
|
|
return (cpuid);
|
|
#else
|
|
/*
|
|
* We don't have a flowid -> cpuid mapping, so cheat and just map
|
|
* unknown cpuids to curcpu. Not the best, but apparently better
|
|
* than defaulting to swi 0.
|
|
*/
|
|
if (inp->inp_flowtype != M_HASHTYPE_NONE) {
|
|
cpuid = inp->inp_flowid % mp_ncpus;
|
|
return (cpuid);
|
|
}
|
|
cpuid = hpts_random_cpu(inp);
|
|
return (cpuid);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Do NOT try to optimize the processing of inp's
|
|
* by first pulling off all the inp's into a temporary
|
|
* list (e.g. TAILQ_CONCAT). If you do that the subtle
|
|
* interactions of switching CPU's will kill because of
|
|
* problems in the linked list manipulation. Basically
|
|
* you would switch cpu's with the hpts mutex locked
|
|
* but then while you were processing one of the inp's
|
|
* some other one that you switch will get a new
|
|
* packet on the different CPU. It will insert it
|
|
* on the new hptss input list. Creating a temporary
|
|
* link in the inp will not fix it either, since
|
|
* the other hpts will be doing the same thing and
|
|
* you will both end up using the temporary link.
|
|
*
|
|
* You will die in an ASSERT for tailq corruption if you
|
|
* run INVARIANTS or you will die horribly without
|
|
* INVARIANTS in some unknown way with a corrupt linked
|
|
* list.
|
|
*/
|
|
static void
|
|
tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv)
|
|
{
|
|
struct mbuf *m, *n;
|
|
struct tcpcb *tp;
|
|
struct inpcb *inp;
|
|
uint16_t drop_reason;
|
|
int16_t set_cpu;
|
|
uint32_t did_prefetch = 0;
|
|
int32_t ti_locked = TI_UNLOCKED;
|
|
struct epoch_tracker et;
|
|
|
|
HPTS_MTX_ASSERT(hpts);
|
|
while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) {
|
|
HPTS_MTX_ASSERT(hpts);
|
|
hpts_sane_input_remove(hpts, inp, 0);
|
|
if (inp->inp_input_cpu_set == 0) {
|
|
set_cpu = 1;
|
|
} else {
|
|
set_cpu = 0;
|
|
}
|
|
hpts->p_inp = inp;
|
|
drop_reason = inp->inp_hpts_drop_reas;
|
|
inp->inp_in_input = 0;
|
|
mtx_unlock(&hpts->p_mtx);
|
|
CURVNET_SET(inp->inp_vnet);
|
|
if (drop_reason) {
|
|
INP_INFO_RLOCK_ET(&V_tcbinfo, et);
|
|
ti_locked = TI_RLOCKED;
|
|
} else {
|
|
ti_locked = TI_UNLOCKED;
|
|
}
|
|
INP_WLOCK(inp);
|
|
if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
|
|
(inp->inp_flags2 & INP_FREED)) {
|
|
out:
|
|
hpts->p_inp = NULL;
|
|
if (ti_locked == TI_RLOCKED) {
|
|
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
|
|
}
|
|
if (in_pcbrele_wlocked(inp) == 0) {
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
ti_locked = TI_UNLOCKED;
|
|
CURVNET_RESTORE();
|
|
mtx_lock(&hpts->p_mtx);
|
|
continue;
|
|
}
|
|
tp = intotcpcb(inp);
|
|
if ((tp == NULL) || (tp->t_inpcb == NULL)) {
|
|
goto out;
|
|
}
|
|
if (drop_reason) {
|
|
/* This tcb is being destroyed for drop_reason */
|
|
m = tp->t_in_pkt;
|
|
if (m)
|
|
n = m->m_nextpkt;
|
|
else
|
|
n = NULL;
|
|
tp->t_in_pkt = NULL;
|
|
while (m) {
|
|
m_freem(m);
|
|
m = n;
|
|
if (m)
|
|
n = m->m_nextpkt;
|
|
}
|
|
tp = tcp_drop(tp, drop_reason);
|
|
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
|
|
if (tp == NULL) {
|
|
INP_WLOCK(inp);
|
|
}
|
|
if (in_pcbrele_wlocked(inp) == 0)
|
|
INP_WUNLOCK(inp);
|
|
CURVNET_RESTORE();
|
|
mtx_lock(&hpts->p_mtx);
|
|
continue;
|
|
}
|
|
if (set_cpu) {
|
|
/*
|
|
* Setup so the next time we will move to the right
|
|
* CPU. This should be a rare event. It will
|
|
* sometimes happens when we are the client side
|
|
* (usually not the server). Somehow tcp_output()
|
|
* gets called before the tcp_do_segment() sets the
|
|
* intial state. This means the r_cpu and r_hpts_cpu
|
|
* is 0. We get on the hpts, and then tcp_input()
|
|
* gets called setting up the r_cpu to the correct
|
|
* value. The hpts goes off and sees the mis-match.
|
|
* We simply correct it here and the CPU will switch
|
|
* to the new hpts nextime the tcb gets added to the
|
|
* the hpts (not this time) :-)
|
|
*/
|
|
tcp_set_hpts(inp);
|
|
}
|
|
m = tp->t_in_pkt;
|
|
n = NULL;
|
|
if (m != NULL &&
|
|
(m->m_pkthdr.pace_lock == TI_RLOCKED ||
|
|
tp->t_state != TCPS_ESTABLISHED)) {
|
|
ti_locked = TI_RLOCKED;
|
|
INP_INFO_RLOCK_ET(&V_tcbinfo, et);
|
|
m = tp->t_in_pkt;
|
|
}
|
|
if (in_newts_every_tcb) {
|
|
if (in_ts_percision)
|
|
microuptime(tv);
|
|
else
|
|
getmicrouptime(tv);
|
|
}
|
|
if (tp->t_fb_ptr != NULL) {
|
|
kern_prefetch(tp->t_fb_ptr, &did_prefetch);
|
|
did_prefetch = 1;
|
|
}
|
|
/* Any input work to do, if so do it first */
|
|
if ((m != NULL) && (m == tp->t_in_pkt)) {
|
|
struct tcphdr *th;
|
|
int32_t tlen, drop_hdrlen, nxt_pkt;
|
|
uint8_t iptos;
|
|
|
|
n = m->m_nextpkt;
|
|
tp->t_in_pkt = tp->t_tail_pkt = NULL;
|
|
while (m) {
|
|
th = (struct tcphdr *)(mtod(m, caddr_t)+m->m_pkthdr.pace_thoff);
|
|
tlen = m->m_pkthdr.pace_tlen;
|
|
drop_hdrlen = m->m_pkthdr.pace_drphdrlen;
|
|
iptos = m->m_pkthdr.pace_tos;
|
|
m->m_nextpkt = NULL;
|
|
if (n)
|
|
nxt_pkt = 1;
|
|
else
|
|
nxt_pkt = 0;
|
|
inp->inp_input_calls = 1;
|
|
if (tp->t_fb->tfb_tcp_hpts_do_segment) {
|
|
/* Use the hpts specific do_segment */
|
|
(*tp->t_fb->tfb_tcp_hpts_do_segment) (m, th, inp->inp_socket,
|
|
tp, drop_hdrlen,
|
|
tlen, iptos, nxt_pkt, tv);
|
|
} else {
|
|
/* Use the default do_segment */
|
|
(*tp->t_fb->tfb_tcp_do_segment) (m, th, inp->inp_socket,
|
|
tp, drop_hdrlen,
|
|
tlen, iptos);
|
|
}
|
|
if (ti_locked == TI_RLOCKED)
|
|
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
|
|
/*
|
|
* Do segment returns unlocked we need the
|
|
* lock again but we also need some kasserts
|
|
* here.
|
|
*/
|
|
INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
|
|
INP_UNLOCK_ASSERT(inp);
|
|
m = n;
|
|
if (m)
|
|
n = m->m_nextpkt;
|
|
if (m != NULL &&
|
|
m->m_pkthdr.pace_lock == TI_RLOCKED) {
|
|
INP_INFO_RLOCK_ET(&V_tcbinfo, et);
|
|
ti_locked = TI_RLOCKED;
|
|
} else
|
|
ti_locked = TI_UNLOCKED;
|
|
INP_WLOCK(inp);
|
|
/*
|
|
* Since we have an opening here we must
|
|
* re-check if the tcb went away while we
|
|
* were getting the lock(s).
|
|
*/
|
|
if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
|
|
(inp->inp_flags2 & INP_FREED)) {
|
|
while (m) {
|
|
m_freem(m);
|
|
m = n;
|
|
if (m)
|
|
n = m->m_nextpkt;
|
|
}
|
|
goto out;
|
|
}
|
|
/*
|
|
* Now that we hold the INP lock, check if
|
|
* we need to upgrade our lock.
|
|
*/
|
|
if (ti_locked == TI_UNLOCKED &&
|
|
(tp->t_state != TCPS_ESTABLISHED)) {
|
|
ti_locked = TI_RLOCKED;
|
|
INP_INFO_RLOCK_ET(&V_tcbinfo, et);
|
|
}
|
|
} /** end while(m) */
|
|
} /** end if ((m != NULL) && (m == tp->t_in_pkt)) */
|
|
if (in_pcbrele_wlocked(inp) == 0)
|
|
INP_WUNLOCK(inp);
|
|
if (ti_locked == TI_RLOCKED)
|
|
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
|
|
INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
|
|
INP_UNLOCK_ASSERT(inp);
|
|
ti_locked = TI_UNLOCKED;
|
|
mtx_lock(&hpts->p_mtx);
|
|
hpts->p_inp = NULL;
|
|
CURVNET_RESTORE();
|
|
}
|
|
}
|
|
|
|
static int
|
|
tcp_hpts_est_run(struct tcp_hpts_entry *hpts)
|
|
{
|
|
int32_t ticks_to_run;
|
|
|
|
if (hpts->p_prevtick && (SEQ_GT(hpts->p_curtick, hpts->p_prevtick))) {
|
|
ticks_to_run = hpts->p_curtick - hpts->p_prevtick;
|
|
if (ticks_to_run >= (NUM_OF_HPTSI_SLOTS - 1)) {
|
|
ticks_to_run = NUM_OF_HPTSI_SLOTS - 2;
|
|
}
|
|
} else {
|
|
if (hpts->p_prevtick == hpts->p_curtick) {
|
|
/* This happens when we get woken up right away */
|
|
return (-1);
|
|
}
|
|
ticks_to_run = 1;
|
|
}
|
|
/* Set in where we will be when we catch up */
|
|
hpts->p_nxt_slot = (hpts->p_cur_slot + ticks_to_run) % NUM_OF_HPTSI_SLOTS;
|
|
if (hpts->p_nxt_slot == hpts->p_cur_slot) {
|
|
panic("Impossible math -- hpts:%p p_nxt_slot:%d p_cur_slot:%d ticks_to_run:%d",
|
|
hpts, hpts->p_nxt_slot, hpts->p_cur_slot, ticks_to_run);
|
|
}
|
|
return (ticks_to_run);
|
|
}
|
|
|
|
static void
|
|
tcp_hptsi(struct tcp_hpts_entry *hpts, struct timeval *ctick)
|
|
{
|
|
struct tcpcb *tp;
|
|
struct inpcb *inp = NULL, *ninp;
|
|
struct timeval tv;
|
|
int32_t ticks_to_run, i, error, tick_now, interum_tick;
|
|
int32_t paced_cnt = 0;
|
|
int32_t did_prefetch = 0;
|
|
int32_t prefetch_ninp = 0;
|
|
int32_t prefetch_tp = 0;
|
|
uint32_t cts;
|
|
int16_t set_cpu;
|
|
|
|
HPTS_MTX_ASSERT(hpts);
|
|
hpts->p_curtick = tcp_tv_to_hptstick(ctick);
|
|
cts = tcp_tv_to_usectick(ctick);
|
|
memcpy(&tv, ctick, sizeof(struct timeval));
|
|
hpts->p_cur_slot = hpts_tick(hpts, 1);
|
|
|
|
/* Figure out if we had missed ticks */
|
|
again:
|
|
HPTS_MTX_ASSERT(hpts);
|
|
ticks_to_run = tcp_hpts_est_run(hpts);
|
|
if (!TAILQ_EMPTY(&hpts->p_input)) {
|
|
tcp_input_data(hpts, &tv);
|
|
}
|
|
#ifdef INVARIANTS
|
|
if (TAILQ_EMPTY(&hpts->p_input) &&
|
|
(hpts->p_on_inqueue_cnt != 0)) {
|
|
panic("tp:%p in_hpts input empty but cnt:%d",
|
|
hpts, hpts->p_on_inqueue_cnt);
|
|
}
|
|
#endif
|
|
HPTS_MTX_ASSERT(hpts);
|
|
/* Reset the ticks to run and time if we need too */
|
|
interum_tick = tcp_gethptstick(&tv);
|
|
if (interum_tick != hpts->p_curtick) {
|
|
/* Save off the new time we execute to */
|
|
*ctick = tv;
|
|
hpts->p_curtick = interum_tick;
|
|
cts = tcp_tv_to_usectick(&tv);
|
|
hpts->p_cur_slot = hpts_tick(hpts, 1);
|
|
ticks_to_run = tcp_hpts_est_run(hpts);
|
|
}
|
|
if (ticks_to_run == -1) {
|
|
goto no_run;
|
|
}
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_SETTORUN, ticks_to_run, 0);
|
|
}
|
|
if (hpts->p_on_queue_cnt == 0) {
|
|
goto no_one;
|
|
}
|
|
HPTS_MTX_ASSERT(hpts);
|
|
for (i = 0; i < ticks_to_run; i++) {
|
|
/*
|
|
* Calculate our delay, if there are no extra ticks there
|
|
* was not any
|
|
*/
|
|
hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC;
|
|
HPTS_MTX_ASSERT(hpts);
|
|
while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_cur_slot])) != NULL) {
|
|
/* For debugging */
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_HPTSI, ticks_to_run, i);
|
|
}
|
|
hpts->p_inp = inp;
|
|
paced_cnt++;
|
|
if (hpts->p_cur_slot != inp->inp_hptsslot) {
|
|
panic("Hpts:%p inp:%p slot mis-aligned %u vs %u",
|
|
hpts, inp, hpts->p_cur_slot, inp->inp_hptsslot);
|
|
}
|
|
/* Now pull it */
|
|
if (inp->inp_hpts_cpu_set == 0) {
|
|
set_cpu = 1;
|
|
} else {
|
|
set_cpu = 0;
|
|
}
|
|
hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_cur_slot], 0);
|
|
if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_cur_slot])) != NULL) {
|
|
/* We prefetch the next inp if possible */
|
|
kern_prefetch(ninp, &prefetch_ninp);
|
|
prefetch_ninp = 1;
|
|
}
|
|
if (inp->inp_hpts_request) {
|
|
/*
|
|
* This guy is deferred out further in time
|
|
* then our wheel had on it. Push him back
|
|
* on the wheel.
|
|
*/
|
|
int32_t remaining_slots;
|
|
|
|
remaining_slots = ticks_to_run - (i + 1);
|
|
if (inp->inp_hpts_request > remaining_slots) {
|
|
/*
|
|
* Keep INVARIANTS happy by clearing
|
|
* the flag
|
|
*/
|
|
tcp_hpts_insert_locked(hpts, inp, inp->inp_hpts_request, cts, __LINE__, NULL, 1);
|
|
hpts->p_inp = NULL;
|
|
continue;
|
|
}
|
|
inp->inp_hpts_request = 0;
|
|
}
|
|
/*
|
|
* We clear the hpts flag here after dealing with
|
|
* remaining slots. This way anyone looking with the
|
|
* TCB lock will see its on the hpts until just
|
|
* before we unlock.
|
|
*/
|
|
inp->inp_in_hpts = 0;
|
|
mtx_unlock(&hpts->p_mtx);
|
|
INP_WLOCK(inp);
|
|
if (in_pcbrele_wlocked(inp)) {
|
|
mtx_lock(&hpts->p_mtx);
|
|
if (logging_on)
|
|
tcp_hpts_log_it(hpts, hpts->p_inp, HPTSLOG_INP_DONE, 0, 1);
|
|
hpts->p_inp = NULL;
|
|
continue;
|
|
}
|
|
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
|
|
out_now:
|
|
#ifdef INVARIANTS
|
|
if (mtx_owned(&hpts->p_mtx)) {
|
|
panic("Hpts:%p owns mtx prior-to lock line:%d",
|
|
hpts, __LINE__);
|
|
}
|
|
#endif
|
|
INP_WUNLOCK(inp);
|
|
mtx_lock(&hpts->p_mtx);
|
|
if (logging_on)
|
|
tcp_hpts_log_it(hpts, hpts->p_inp, HPTSLOG_INP_DONE, 0, 3);
|
|
hpts->p_inp = NULL;
|
|
continue;
|
|
}
|
|
tp = intotcpcb(inp);
|
|
if ((tp == NULL) || (tp->t_inpcb == NULL)) {
|
|
goto out_now;
|
|
}
|
|
if (set_cpu) {
|
|
/*
|
|
* Setup so the next time we will move to
|
|
* the right CPU. This should be a rare
|
|
* event. It will sometimes happens when we
|
|
* are the client side (usually not the
|
|
* server). Somehow tcp_output() gets called
|
|
* before the tcp_do_segment() sets the
|
|
* intial state. This means the r_cpu and
|
|
* r_hpts_cpu is 0. We get on the hpts, and
|
|
* then tcp_input() gets called setting up
|
|
* the r_cpu to the correct value. The hpts
|
|
* goes off and sees the mis-match. We
|
|
* simply correct it here and the CPU will
|
|
* switch to the new hpts nextime the tcb
|
|
* gets added to the the hpts (not this one)
|
|
* :-)
|
|
*/
|
|
tcp_set_hpts(inp);
|
|
}
|
|
if (out_newts_every_tcb) {
|
|
struct timeval sv;
|
|
|
|
if (out_ts_percision)
|
|
microuptime(&sv);
|
|
else
|
|
getmicrouptime(&sv);
|
|
cts = tcp_tv_to_usectick(&sv);
|
|
}
|
|
CURVNET_SET(inp->inp_vnet);
|
|
/*
|
|
* There is a hole here, we get the refcnt on the
|
|
* inp so it will still be preserved but to make
|
|
* sure we can get the INP we need to hold the p_mtx
|
|
* above while we pull out the tp/inp, as long as
|
|
* fini gets the lock first we are assured of having
|
|
* a sane INP we can lock and test.
|
|
*/
|
|
#ifdef INVARIANTS
|
|
if (mtx_owned(&hpts->p_mtx)) {
|
|
panic("Hpts:%p owns mtx before tcp-output:%d",
|
|
hpts, __LINE__);
|
|
}
|
|
#endif
|
|
if (tp->t_fb_ptr != NULL) {
|
|
kern_prefetch(tp->t_fb_ptr, &did_prefetch);
|
|
did_prefetch = 1;
|
|
}
|
|
inp->inp_hpts_calls = 1;
|
|
if (tp->t_fb->tfb_tcp_output_wtime != NULL) {
|
|
error = (*tp->t_fb->tfb_tcp_output_wtime) (tp, &tv);
|
|
} else {
|
|
error = tp->t_fb->tfb_tcp_output(tp);
|
|
}
|
|
if (ninp && ninp->inp_ppcb) {
|
|
/*
|
|
* If we have a nxt inp, see if we can
|
|
* prefetch its ppcb. Note this may seem
|
|
* "risky" since we have no locks (other
|
|
* than the previous inp) and there no
|
|
* assurance that ninp was not pulled while
|
|
* we were processing inp and freed. If this
|
|
* occured it could mean that either:
|
|
*
|
|
* a) Its NULL (which is fine we won't go
|
|
* here) <or> b) Its valid (which is cool we
|
|
* will prefetch it) <or> c) The inp got
|
|
* freed back to the slab which was
|
|
* reallocated. Then the piece of memory was
|
|
* re-used and something else (not an
|
|
* address) is in inp_ppcb. If that occurs
|
|
* we don't crash, but take a TLB shootdown
|
|
* performance hit (same as if it was NULL
|
|
* and we tried to pre-fetch it).
|
|
*
|
|
* Considering that the likelyhood of <c> is
|
|
* quite rare we will take a risk on doing
|
|
* this. If performance drops after testing
|
|
* we can always take this out. NB: the
|
|
* kern_prefetch on amd64 actually has
|
|
* protection against a bad address now via
|
|
* the DMAP_() tests. This will prevent the
|
|
* TLB hit, and instead if <c> occurs just
|
|
* cause us to load cache with a useless
|
|
* address (to us).
|
|
*/
|
|
kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
|
|
prefetch_tp = 1;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
INP_UNLOCK_ASSERT(inp);
|
|
CURVNET_RESTORE();
|
|
#ifdef INVARIANTS
|
|
if (mtx_owned(&hpts->p_mtx)) {
|
|
panic("Hpts:%p owns mtx prior-to lock line:%d",
|
|
hpts, __LINE__);
|
|
}
|
|
#endif
|
|
mtx_lock(&hpts->p_mtx);
|
|
if (logging_on)
|
|
tcp_hpts_log_it(hpts, hpts->p_inp, HPTSLOG_INP_DONE, 0, 4);
|
|
hpts->p_inp = NULL;
|
|
}
|
|
HPTS_MTX_ASSERT(hpts);
|
|
hpts->p_inp = NULL;
|
|
hpts->p_cur_slot++;
|
|
if (hpts->p_cur_slot >= NUM_OF_HPTSI_SLOTS) {
|
|
hpts->p_cur_slot = 0;
|
|
}
|
|
}
|
|
no_one:
|
|
HPTS_MTX_ASSERT(hpts);
|
|
hpts->p_prevtick = hpts->p_curtick;
|
|
hpts->p_delayed_by = 0;
|
|
/*
|
|
* Check to see if we took an excess amount of time and need to run
|
|
* more ticks (if we did not hit eno-bufs).
|
|
*/
|
|
/* Re-run any input that may be there */
|
|
(void)tcp_gethptstick(&tv);
|
|
if (!TAILQ_EMPTY(&hpts->p_input)) {
|
|
tcp_input_data(hpts, &tv);
|
|
}
|
|
#ifdef INVARIANTS
|
|
if (TAILQ_EMPTY(&hpts->p_input) &&
|
|
(hpts->p_on_inqueue_cnt != 0)) {
|
|
panic("tp:%p in_hpts input empty but cnt:%d",
|
|
hpts, hpts->p_on_inqueue_cnt);
|
|
}
|
|
#endif
|
|
tick_now = tcp_gethptstick(&tv);
|
|
if (SEQ_GT(tick_now, hpts->p_prevtick)) {
|
|
struct timeval res;
|
|
|
|
/* Did we really spend a full tick or more in here? */
|
|
timersub(&tv, ctick, &res);
|
|
if (res.tv_sec || (res.tv_usec >= HPTS_TICKS_PER_USEC)) {
|
|
counter_u64_add(hpts_loops, 1);
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_TOLONG, (uint32_t) res.tv_usec, tick_now);
|
|
}
|
|
*ctick = res;
|
|
hpts->p_curtick = tick_now;
|
|
goto again;
|
|
}
|
|
}
|
|
no_run:
|
|
{
|
|
uint32_t t = 0, i, fnd = 0;
|
|
|
|
if (hpts->p_on_queue_cnt) {
|
|
|
|
|
|
/*
|
|
* Find next slot that is occupied and use that to
|
|
* be the sleep time.
|
|
*/
|
|
for (i = 1, t = hpts->p_nxt_slot; i < NUM_OF_HPTSI_SLOTS; i++) {
|
|
if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) {
|
|
fnd = 1;
|
|
break;
|
|
}
|
|
t = (t + 1) % NUM_OF_HPTSI_SLOTS;
|
|
}
|
|
if (fnd) {
|
|
hpts->p_hpts_sleep_time = i;
|
|
} else {
|
|
counter_u64_add(back_tosleep, 1);
|
|
#ifdef INVARIANTS
|
|
panic("Hpts:%p cnt:%d but non found", hpts, hpts->p_on_queue_cnt);
|
|
#endif
|
|
hpts->p_on_queue_cnt = 0;
|
|
goto non_found;
|
|
}
|
|
t++;
|
|
} else {
|
|
/* No one on the wheel sleep for all but 2 slots */
|
|
non_found:
|
|
if (hpts_sleep_max == 0)
|
|
hpts_sleep_max = 1;
|
|
hpts->p_hpts_sleep_time = min((NUM_OF_HPTSI_SLOTS - 2), hpts_sleep_max);
|
|
t = 0;
|
|
}
|
|
if (logging_on) {
|
|
tcp_hpts_log_it(hpts, inp, HPTSLOG_SLEEPSET, t, (hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC));
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
__tcp_set_hpts(struct inpcb *inp, int32_t line)
|
|
{
|
|
struct tcp_hpts_entry *hpts;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
hpts = tcp_hpts_lock(inp);
|
|
if ((inp->inp_in_hpts == 0) &&
|
|
(inp->inp_hpts_cpu_set == 0)) {
|
|
inp->inp_hpts_cpu = hpts_cpuid(inp);
|
|
inp->inp_hpts_cpu_set = 1;
|
|
}
|
|
mtx_unlock(&hpts->p_mtx);
|
|
hpts = tcp_input_lock(inp);
|
|
if ((inp->inp_input_cpu_set == 0) &&
|
|
(inp->inp_in_input == 0)) {
|
|
inp->inp_input_cpu = hpts_cpuid(inp);
|
|
inp->inp_input_cpu_set = 1;
|
|
}
|
|
mtx_unlock(&hpts->p_mtx);
|
|
}
|
|
|
|
uint16_t
|
|
tcp_hpts_delayedby(struct inpcb *inp){
|
|
return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by);
|
|
}
|
|
|
|
static void
|
|
tcp_hpts_thread(void *ctx)
|
|
{
|
|
struct tcp_hpts_entry *hpts;
|
|
struct timeval tv;
|
|
sbintime_t sb;
|
|
|
|
hpts = (struct tcp_hpts_entry *)ctx;
|
|
mtx_lock(&hpts->p_mtx);
|
|
if (hpts->p_direct_wake) {
|
|
/* Signaled by input */
|
|
if (logging_on)
|
|
tcp_hpts_log_it(hpts, NULL, HPTSLOG_AWAKE, 1, 1);
|
|
callout_stop(&hpts->co);
|
|
} else {
|
|
/* Timed out */
|
|
if (callout_pending(&hpts->co) ||
|
|
!callout_active(&hpts->co)) {
|
|
if (logging_on)
|
|
tcp_hpts_log_it(hpts, NULL, HPTSLOG_AWAKE, 2, 2);
|
|
mtx_unlock(&hpts->p_mtx);
|
|
return;
|
|
}
|
|
callout_deactivate(&hpts->co);
|
|
if (logging_on)
|
|
tcp_hpts_log_it(hpts, NULL, HPTSLOG_AWAKE, 3, 3);
|
|
}
|
|
hpts->p_hpts_active = 1;
|
|
(void)tcp_gethptstick(&tv);
|
|
tcp_hptsi(hpts, &tv);
|
|
HPTS_MTX_ASSERT(hpts);
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
|
|
if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) {
|
|
tv.tv_usec = tcp_min_hptsi_time;
|
|
hpts->p_on_min_sleep = 1;
|
|
} else {
|
|
/* Clear the min sleep flag */
|
|
hpts->p_on_min_sleep = 0;
|
|
}
|
|
hpts->p_hpts_active = 0;
|
|
sb = tvtosbt(tv);
|
|
if (tcp_hpts_callout_skip_swi == 0) {
|
|
callout_reset_sbt_on(&hpts->co, sb, 0,
|
|
hpts_timeout_swi, hpts, hpts->p_cpu,
|
|
(C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
|
|
} else {
|
|
callout_reset_sbt_on(&hpts->co, sb, 0,
|
|
hpts_timeout_dir, hpts,
|
|
hpts->p_cpu,
|
|
C_PREL(tcp_hpts_precision));
|
|
}
|
|
hpts->p_direct_wake = 0;
|
|
mtx_unlock(&hpts->p_mtx);
|
|
}
|
|
|
|
#undef timersub
|
|
|
|
static void
|
|
tcp_init_hptsi(void *st)
|
|
{
|
|
int32_t i, j, error, bound = 0, created = 0;
|
|
size_t sz, asz;
|
|
struct timeval tv;
|
|
sbintime_t sb;
|
|
struct tcp_hpts_entry *hpts;
|
|
char unit[16];
|
|
uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
|
|
|
|
tcp_pace.rp_proc = NULL;
|
|
tcp_pace.rp_num_hptss = ncpus;
|
|
hpts_loops = counter_u64_alloc(M_WAITOK);
|
|
back_tosleep = counter_u64_alloc(M_WAITOK);
|
|
|
|
sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
|
|
tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
|
|
asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
|
|
for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
|
|
tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
|
|
M_TCPHPTS, M_WAITOK | M_ZERO);
|
|
tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
|
|
M_TCPHPTS, M_WAITOK);
|
|
hpts = tcp_pace.rp_ent[i];
|
|
/*
|
|
* Init all the hpts structures that are not specifically
|
|
* zero'd by the allocations. Also lets attach them to the
|
|
* appropriate sysctl block as well.
|
|
*/
|
|
mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
|
|
"hpts", MTX_DEF | MTX_DUPOK);
|
|
TAILQ_INIT(&hpts->p_input);
|
|
for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
|
|
TAILQ_INIT(&hpts->p_hptss[j]);
|
|
}
|
|
sysctl_ctx_init(&hpts->hpts_ctx);
|
|
sprintf(unit, "%d", i);
|
|
hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
|
|
OID_AUTO,
|
|
unit,
|
|
CTLFLAG_RW, 0,
|
|
"");
|
|
SYSCTL_ADD_INT(&hpts->hpts_ctx,
|
|
SYSCTL_CHILDREN(hpts->hpts_root),
|
|
OID_AUTO, "in_qcnt", CTLFLAG_RD,
|
|
&hpts->p_on_inqueue_cnt, 0,
|
|
"Count TCB's awaiting input processing");
|
|
SYSCTL_ADD_INT(&hpts->hpts_ctx,
|
|
SYSCTL_CHILDREN(hpts->hpts_root),
|
|
OID_AUTO, "out_qcnt", CTLFLAG_RD,
|
|
&hpts->p_on_queue_cnt, 0,
|
|
"Count TCB's awaiting output processing");
|
|
SYSCTL_ADD_UINT(&hpts->hpts_ctx,
|
|
SYSCTL_CHILDREN(hpts->hpts_root),
|
|
OID_AUTO, "active", CTLFLAG_RD,
|
|
&hpts->p_hpts_active, 0,
|
|
"Is the hpts active");
|
|
SYSCTL_ADD_UINT(&hpts->hpts_ctx,
|
|
SYSCTL_CHILDREN(hpts->hpts_root),
|
|
OID_AUTO, "curslot", CTLFLAG_RD,
|
|
&hpts->p_cur_slot, 0,
|
|
"What the current slot is if active");
|
|
SYSCTL_ADD_UINT(&hpts->hpts_ctx,
|
|
SYSCTL_CHILDREN(hpts->hpts_root),
|
|
OID_AUTO, "curtick", CTLFLAG_RD,
|
|
&hpts->p_curtick, 0,
|
|
"What the current tick on if active");
|
|
SYSCTL_ADD_UINT(&hpts->hpts_ctx,
|
|
SYSCTL_CHILDREN(hpts->hpts_root),
|
|
OID_AUTO, "logsize", CTLFLAG_RD,
|
|
&hpts->p_logsize, 0,
|
|
"Hpts logging buffer size");
|
|
hpts->p_hpts_sleep_time = NUM_OF_HPTSI_SLOTS - 2;
|
|
hpts->p_num = i;
|
|
hpts->p_prevtick = hpts->p_curtick = tcp_gethptstick(&tv);
|
|
hpts->p_prevtick -= 1;
|
|
hpts->p_prevtick %= NUM_OF_HPTSI_SLOTS;
|
|
hpts->p_cpu = 0xffff;
|
|
hpts->p_nxt_slot = 1;
|
|
hpts->p_logsize = tcp_hpts_logging_size;
|
|
if (hpts->p_logsize) {
|
|
sz = (sizeof(struct hpts_log) * hpts->p_logsize);
|
|
hpts->p_log = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
|
|
}
|
|
callout_init(&hpts->co, 1);
|
|
}
|
|
/*
|
|
* Now lets start ithreads to handle the hptss.
|
|
*/
|
|
CPU_FOREACH(i) {
|
|
hpts = tcp_pace.rp_ent[i];
|
|
hpts->p_cpu = i;
|
|
error = swi_add(&hpts->ie, "hpts",
|
|
tcp_hpts_thread, (void *)hpts,
|
|
SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
|
|
if (error) {
|
|
panic("Can't add hpts:%p i:%d err:%d",
|
|
hpts, i, error);
|
|
}
|
|
created++;
|
|
if (tcp_bind_threads) {
|
|
if (intr_event_bind(hpts->ie, i) == 0)
|
|
bound++;
|
|
}
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
|
|
sb = tvtosbt(tv);
|
|
if (tcp_hpts_callout_skip_swi == 0) {
|
|
callout_reset_sbt_on(&hpts->co, sb, 0,
|
|
hpts_timeout_swi, hpts, hpts->p_cpu,
|
|
(C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
|
|
} else {
|
|
callout_reset_sbt_on(&hpts->co, sb, 0,
|
|
hpts_timeout_dir, hpts,
|
|
hpts->p_cpu,
|
|
C_PREL(tcp_hpts_precision));
|
|
}
|
|
}
|
|
printf("TCP Hpts created %d swi interrupt thread and bound %d\n",
|
|
created, bound);
|
|
return;
|
|
}
|
|
|
|
SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL);
|
|
MODULE_VERSION(tcphpts, 1);
|