b85c7169a7
will update usr.sbin/ntp to match this. MFC after: 2 weeks
543 lines
12 KiB
C
543 lines
12 KiB
C
/*
|
|
* systime -- routines to fiddle a UNIX clock.
|
|
*
|
|
* ATTENTION: Get approval from Dave Mills on all changes to this file!
|
|
*
|
|
*/
|
|
#include "ntp_machine.h"
|
|
#include "ntp_fp.h"
|
|
#include "ntp_syslog.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_random.h"
|
|
#include "ntpd.h" /* for sys_precision */
|
|
|
|
#ifdef SIM
|
|
# include "ntpsim.h"
|
|
#endif /*SIM */
|
|
|
|
#ifdef HAVE_SYS_PARAM_H
|
|
# include <sys/param.h>
|
|
#endif
|
|
#ifdef HAVE_UTMP_H
|
|
# include <utmp.h>
|
|
#endif /* HAVE_UTMP_H */
|
|
#ifdef HAVE_UTMPX_H
|
|
# include <utmpx.h>
|
|
#endif /* HAVE_UTMPX_H */
|
|
|
|
/*
|
|
* These routines (get_systime, step_systime, adj_systime) implement an
|
|
* interface between the system independent NTP clock and the Unix
|
|
* system clock in various architectures and operating systems.
|
|
*
|
|
* Time is a precious quantity in these routines and every effort is
|
|
* made to minimize errors by always rounding toward zero and amortizing
|
|
* adjustment residues. By default the adjustment quantum is 1 us for
|
|
* the usual Unix tickadj() system call, but this can be increased if
|
|
* necessary by the tick configuration command. For instance, when the
|
|
* adjtime() quantum is a clock tick for a 100-Hz clock, the quantum
|
|
* should be 10 ms.
|
|
*/
|
|
#if defined RELIANTUNIX_CLOCK || defined SCO5_CLOCK
|
|
double sys_tick = 10e-3; /* 10 ms tickadj() */
|
|
#else
|
|
double sys_tick = 1e-6; /* 1 us tickadj() */
|
|
#endif
|
|
double sys_residual = 0; /* adjustment residue (s) */
|
|
|
|
#ifndef SIM
|
|
|
|
/*
|
|
* get_systime - return system time in NTP timestamp format.
|
|
*/
|
|
void
|
|
get_systime(
|
|
l_fp *now /* system time */
|
|
)
|
|
{
|
|
double dtemp;
|
|
|
|
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_GETCLOCK)
|
|
struct timespec ts; /* seconds and nanoseconds */
|
|
|
|
/*
|
|
* Convert Unix clock from seconds and nanoseconds to seconds.
|
|
* The bottom is only two bits down, so no need for fuzz.
|
|
* Some systems don't have that level of precision, however...
|
|
*/
|
|
# ifdef HAVE_CLOCK_GETTIME
|
|
clock_gettime(CLOCK_REALTIME, &ts);
|
|
# else
|
|
getclock(TIMEOFDAY, &ts);
|
|
# endif
|
|
now->l_i = ts.tv_sec + JAN_1970;
|
|
dtemp = ts.tv_nsec / 1e9;
|
|
|
|
#else /* HAVE_CLOCK_GETTIME || HAVE_GETCLOCK */
|
|
struct timeval tv; /* seconds and microseconds */
|
|
|
|
/*
|
|
* Convert Unix clock from seconds and microseconds to seconds.
|
|
* Add in unbiased random fuzz beneath the microsecond.
|
|
*/
|
|
GETTIMEOFDAY(&tv, NULL);
|
|
now->l_i = tv.tv_sec + JAN_1970;
|
|
dtemp = tv.tv_usec / 1e6;
|
|
|
|
#endif /* HAVE_CLOCK_GETTIME || HAVE_GETCLOCK */
|
|
|
|
/*
|
|
* ntp_random() produces 31 bits (always nonnegative).
|
|
* This bit is done only after the precision has been
|
|
* determined.
|
|
*/
|
|
if (sys_precision != 0)
|
|
dtemp += (ntp_random() / FRAC - .5) / (1 <<
|
|
-sys_precision);
|
|
|
|
/*
|
|
* Renormalize to seconds past 1900 and fraction.
|
|
*/
|
|
dtemp += sys_residual;
|
|
if (dtemp >= 1) {
|
|
dtemp -= 1;
|
|
now->l_i++;
|
|
} else if (dtemp < 0) {
|
|
dtemp += 1;
|
|
now->l_i--;
|
|
}
|
|
dtemp *= FRAC;
|
|
now->l_uf = (u_int32)dtemp;
|
|
}
|
|
|
|
|
|
/*
|
|
* adj_systime - adjust system time by the argument.
|
|
*/
|
|
#if !defined SYS_WINNT
|
|
int /* 0 okay, 1 error */
|
|
adj_systime(
|
|
double now /* adjustment (s) */
|
|
)
|
|
{
|
|
struct timeval adjtv; /* new adjustment */
|
|
struct timeval oadjtv; /* residual adjustment */
|
|
double dtemp;
|
|
long ticks;
|
|
int isneg = 0;
|
|
|
|
/*
|
|
* Most Unix adjtime() implementations adjust the system clock
|
|
* in microsecond quanta, but some adjust in 10-ms quanta. We
|
|
* carefully round the adjustment to the nearest quantum, then
|
|
* adjust in quanta and keep the residue for later.
|
|
*/
|
|
dtemp = now + sys_residual;
|
|
if (dtemp < 0) {
|
|
isneg = 1;
|
|
dtemp = -dtemp;
|
|
}
|
|
adjtv.tv_sec = (long)dtemp;
|
|
dtemp -= adjtv.tv_sec;
|
|
ticks = (long)(dtemp / sys_tick + .5);
|
|
adjtv.tv_usec = (long)(ticks * sys_tick * 1e6);
|
|
dtemp -= adjtv.tv_usec / 1e6;
|
|
sys_residual = dtemp;
|
|
|
|
/*
|
|
* Convert to signed seconds and microseconds for the Unix
|
|
* adjtime() system call. Note we purposely lose the adjtime()
|
|
* leftover.
|
|
*/
|
|
if (isneg) {
|
|
adjtv.tv_sec = -adjtv.tv_sec;
|
|
adjtv.tv_usec = -adjtv.tv_usec;
|
|
sys_residual = -sys_residual;
|
|
}
|
|
if (adjtv.tv_sec != 0 || adjtv.tv_usec != 0) {
|
|
if (adjtime(&adjtv, &oadjtv) < 0) {
|
|
msyslog(LOG_ERR, "adj_systime: %m");
|
|
return (0);
|
|
}
|
|
}
|
|
return (1);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* step_systime - step the system clock.
|
|
*/
|
|
int
|
|
step_systime(
|
|
double now
|
|
)
|
|
{
|
|
struct timeval timetv, adjtv, oldtimetv;
|
|
int isneg = 0;
|
|
double dtemp;
|
|
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_GETCLOCK)
|
|
struct timespec ts;
|
|
#endif
|
|
|
|
dtemp = sys_residual + now;
|
|
if (dtemp < 0) {
|
|
isneg = 1;
|
|
dtemp = - dtemp;
|
|
adjtv.tv_sec = (int32)dtemp;
|
|
adjtv.tv_usec = (u_int32)((dtemp -
|
|
(double)adjtv.tv_sec) * 1e6 + .5);
|
|
} else {
|
|
adjtv.tv_sec = (int32)dtemp;
|
|
adjtv.tv_usec = (u_int32)((dtemp -
|
|
(double)adjtv.tv_sec) * 1e6 + .5);
|
|
}
|
|
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_GETCLOCK)
|
|
# ifdef HAVE_CLOCK_GETTIME
|
|
(void) clock_gettime(CLOCK_REALTIME, &ts);
|
|
# else
|
|
(void) getclock(TIMEOFDAY, &ts);
|
|
# endif
|
|
timetv.tv_sec = ts.tv_sec;
|
|
timetv.tv_usec = ts.tv_nsec / 1000;
|
|
#else /* not HAVE_GETCLOCK */
|
|
(void) GETTIMEOFDAY(&timetv, (struct timezone *)0);
|
|
#endif /* not HAVE_GETCLOCK */
|
|
|
|
oldtimetv = timetv;
|
|
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("step_systime: step %.6f residual %.6f\n", now, sys_residual);
|
|
#endif
|
|
if (isneg) {
|
|
timetv.tv_sec -= adjtv.tv_sec;
|
|
timetv.tv_usec -= adjtv.tv_usec;
|
|
if (timetv.tv_usec < 0) {
|
|
timetv.tv_sec--;
|
|
timetv.tv_usec += 1000000;
|
|
}
|
|
} else {
|
|
timetv.tv_sec += adjtv.tv_sec;
|
|
timetv.tv_usec += adjtv.tv_usec;
|
|
if (timetv.tv_usec >= 1000000) {
|
|
timetv.tv_sec++;
|
|
timetv.tv_usec -= 1000000;
|
|
}
|
|
}
|
|
if (ntp_set_tod(&timetv, NULL) != 0) {
|
|
msyslog(LOG_ERR, "step-systime: %m");
|
|
return (0);
|
|
}
|
|
sys_residual = 0;
|
|
|
|
#ifdef NEED_HPUX_ADJTIME
|
|
/*
|
|
* CHECKME: is this correct when called by ntpdate?????
|
|
*/
|
|
_clear_adjtime();
|
|
#endif
|
|
|
|
/*
|
|
* FreeBSD, for example, has:
|
|
* struct utmp {
|
|
* char ut_line[UT_LINESIZE];
|
|
* char ut_name[UT_NAMESIZE];
|
|
* char ut_host[UT_HOSTSIZE];
|
|
* long ut_time;
|
|
* };
|
|
* and appends line="|", name="date", host="", time for the OLD
|
|
* and appends line="{", name="date", host="", time for the NEW
|
|
* to _PATH_WTMP .
|
|
*
|
|
* Some OSes have utmp, some have utmpx.
|
|
*/
|
|
|
|
/*
|
|
* Write old and new time entries in utmp and wtmp if step
|
|
* adjustment is greater than one second.
|
|
*
|
|
* This might become even Uglier...
|
|
*/
|
|
if (oldtimetv.tv_sec != timetv.tv_sec)
|
|
{
|
|
#ifdef HAVE_UTMP_H
|
|
struct utmp ut;
|
|
#endif
|
|
#ifdef HAVE_UTMPX_H
|
|
struct utmpx utx;
|
|
#endif
|
|
|
|
#ifdef HAVE_UTMP_H
|
|
memset((char *)&ut, 0, sizeof(ut));
|
|
#endif
|
|
#ifdef HAVE_UTMPX_H
|
|
memset((char *)&utx, 0, sizeof(utx));
|
|
#endif
|
|
|
|
/* UTMP */
|
|
|
|
#ifdef UPDATE_UTMP
|
|
# ifdef HAVE_PUTUTLINE
|
|
ut.ut_type = OLD_TIME;
|
|
(void)strcpy(ut.ut_line, OTIME_MSG);
|
|
ut.ut_time = oldtimetv.tv_sec;
|
|
pututline(&ut);
|
|
setutent();
|
|
ut.ut_type = NEW_TIME;
|
|
(void)strcpy(ut.ut_line, NTIME_MSG);
|
|
ut.ut_time = timetv.tv_sec;
|
|
pututline(&ut);
|
|
endutent();
|
|
# else /* not HAVE_PUTUTLINE */
|
|
# endif /* not HAVE_PUTUTLINE */
|
|
#endif /* UPDATE_UTMP */
|
|
|
|
/* UTMPX */
|
|
|
|
#ifdef UPDATE_UTMPX
|
|
# ifdef HAVE_PUTUTXLINE
|
|
utx.ut_type = OLD_TIME;
|
|
(void)strcpy(utx.ut_line, OTIME_MSG);
|
|
utx.ut_tv = oldtimetv;
|
|
pututxline(&utx);
|
|
setutxent();
|
|
utx.ut_type = NEW_TIME;
|
|
(void)strcpy(utx.ut_line, NTIME_MSG);
|
|
utx.ut_tv = timetv;
|
|
pututxline(&utx);
|
|
endutxent();
|
|
# else /* not HAVE_PUTUTXLINE */
|
|
# endif /* not HAVE_PUTUTXLINE */
|
|
#endif /* UPDATE_UTMPX */
|
|
|
|
/* WTMP */
|
|
|
|
#ifdef UPDATE_WTMP
|
|
# ifdef HAVE_PUTUTLINE
|
|
utmpname(WTMP_FILE);
|
|
ut.ut_type = OLD_TIME;
|
|
(void)strcpy(ut.ut_line, OTIME_MSG);
|
|
ut.ut_time = oldtimetv.tv_sec;
|
|
pututline(&ut);
|
|
ut.ut_type = NEW_TIME;
|
|
(void)strcpy(ut.ut_line, NTIME_MSG);
|
|
ut.ut_time = timetv.tv_sec;
|
|
pututline(&ut);
|
|
endutent();
|
|
# else /* not HAVE_PUTUTLINE */
|
|
# endif /* not HAVE_PUTUTLINE */
|
|
#endif /* UPDATE_WTMP */
|
|
|
|
/* WTMPX */
|
|
|
|
#ifdef UPDATE_WTMPX
|
|
# ifdef HAVE_PUTUTXLINE
|
|
utx.ut_type = OLD_TIME;
|
|
utx.ut_tv = oldtimetv;
|
|
(void)strcpy(utx.ut_line, OTIME_MSG);
|
|
# ifdef HAVE_UPDWTMPX
|
|
updwtmpx(WTMPX_FILE, &utx);
|
|
# else /* not HAVE_UPDWTMPX */
|
|
# endif /* not HAVE_UPDWTMPX */
|
|
# else /* not HAVE_PUTUTXLINE */
|
|
# endif /* not HAVE_PUTUTXLINE */
|
|
# ifdef HAVE_PUTUTXLINE
|
|
utx.ut_type = NEW_TIME;
|
|
utx.ut_tv = timetv;
|
|
(void)strcpy(utx.ut_line, NTIME_MSG);
|
|
# ifdef HAVE_UPDWTMPX
|
|
updwtmpx(WTMPX_FILE, &utx);
|
|
# else /* not HAVE_UPDWTMPX */
|
|
# endif /* not HAVE_UPDWTMPX */
|
|
# else /* not HAVE_PUTUTXLINE */
|
|
# endif /* not HAVE_PUTUTXLINE */
|
|
#endif /* UPDATE_WTMPX */
|
|
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
#else /* SIM */
|
|
/*
|
|
* Clock routines for the simulator - Harish Nair, with help
|
|
*/
|
|
/*
|
|
* get_systime - return the system time in NTP timestamp format
|
|
*/
|
|
void
|
|
get_systime(
|
|
l_fp *now /* current system time in l_fp */ )
|
|
{
|
|
/*
|
|
* To fool the code that determines the local clock precision,
|
|
* we advance the clock a minimum of 200 nanoseconds on every
|
|
* clock read. This is appropriate for a typical modern machine
|
|
* with nanosecond clocks. Note we make no attempt here to
|
|
* simulate reading error, since the error is so small. This may
|
|
* change when the need comes to implement picosecond clocks.
|
|
*/
|
|
if (ntp_node.ntp_time == ntp_node.last_time)
|
|
ntp_node.ntp_time += 200e-9;
|
|
ntp_node.last_time = ntp_node.ntp_time;
|
|
DTOLFP(ntp_node.ntp_time, now);
|
|
}
|
|
|
|
|
|
/*
|
|
* adj_systime - advance or retard the system clock exactly like the
|
|
* real thng.
|
|
*/
|
|
int /* always succeeds */
|
|
adj_systime(
|
|
double now /* time adjustment (s) */
|
|
)
|
|
{
|
|
struct timeval adjtv; /* new adjustment */
|
|
double dtemp;
|
|
long ticks;
|
|
int isneg = 0;
|
|
|
|
/*
|
|
* Most Unix adjtime() implementations adjust the system clock
|
|
* in microsecond quanta, but some adjust in 10-ms quanta. We
|
|
* carefully round the adjustment to the nearest quantum, then
|
|
* adjust in quanta and keep the residue for later.
|
|
*/
|
|
dtemp = now + sys_residual;
|
|
if (dtemp < 0) {
|
|
isneg = 1;
|
|
dtemp = -dtemp;
|
|
}
|
|
adjtv.tv_sec = (long)dtemp;
|
|
dtemp -= adjtv.tv_sec;
|
|
ticks = (long)(dtemp / sys_tick + .5);
|
|
adjtv.tv_usec = (long)(ticks * sys_tick * 1e6);
|
|
dtemp -= adjtv.tv_usec / 1e6;
|
|
sys_residual = dtemp;
|
|
|
|
/*
|
|
* Convert to signed seconds and microseconds for the Unix
|
|
* adjtime() system call. Note we purposely lose the adjtime()
|
|
* leftover.
|
|
*/
|
|
if (isneg) {
|
|
adjtv.tv_sec = -adjtv.tv_sec;
|
|
adjtv.tv_usec = -adjtv.tv_usec;
|
|
sys_residual = -sys_residual;
|
|
}
|
|
ntp_node.adj = now;
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* step_systime - step the system clock. We are religious here.
|
|
*/
|
|
int /* always succeeds */
|
|
step_systime(
|
|
double now /* step adjustment (s) */
|
|
)
|
|
{
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("step_systime: time %.6f adj %.6f\n",
|
|
ntp_node.ntp_time, now);
|
|
#endif
|
|
ntp_node.ntp_time += now;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* node_clock - update the clocks
|
|
*/
|
|
int /* always succeeds */
|
|
node_clock(
|
|
Node *n, /* global node pointer */
|
|
double t /* node time */
|
|
)
|
|
{
|
|
double dtemp;
|
|
|
|
/*
|
|
* Advance client clock (ntp_time). Advance server clock
|
|
* (clk_time) adjusted for systematic and random frequency
|
|
* errors. The random error is a random walk computed as the
|
|
* integral of samples from a Gaussian distribution.
|
|
*/
|
|
dtemp = t - n->ntp_time;
|
|
n->time = t;
|
|
n->ntp_time += dtemp;
|
|
n->ferr += gauss(0, dtemp * n->fnse);
|
|
n->clk_time += dtemp * (1 + n->ferr);
|
|
|
|
/*
|
|
* Perform the adjtime() function. If the adjustment completed
|
|
* in the previous interval, amortize the entire amount; if not,
|
|
* carry the leftover to the next interval.
|
|
*/
|
|
dtemp *= n->slew;
|
|
if (dtemp < fabs(n->adj)) {
|
|
if (n->adj < 0) {
|
|
n->adj += dtemp;
|
|
n->ntp_time -= dtemp;
|
|
} else {
|
|
n->adj -= dtemp;
|
|
n->ntp_time += dtemp;
|
|
}
|
|
} else {
|
|
n->ntp_time += n->adj;
|
|
n->adj = 0;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* gauss() - returns samples from a gaussion distribution
|
|
*/
|
|
double /* Gaussian sample */
|
|
gauss(
|
|
double m, /* sample mean */
|
|
double s /* sample standard deviation (sigma) */
|
|
)
|
|
{
|
|
double q1, q2;
|
|
|
|
/*
|
|
* Roll a sample from a Gaussian distribution with mean m and
|
|
* standard deviation s. For m = 0, s = 1, mean(y) = 0,
|
|
* std(y) = 1.
|
|
*/
|
|
if (s == 0)
|
|
return (m);
|
|
while ((q1 = drand48()) == 0);
|
|
q2 = drand48();
|
|
return (m + s * sqrt(-2. * log(q1)) * cos(2. * PI * q2));
|
|
}
|
|
|
|
|
|
/*
|
|
* poisson() - returns samples from a network delay distribution
|
|
*/
|
|
double /* delay sample (s) */
|
|
poisson(
|
|
double m, /* fixed propagation delay (s) */
|
|
double s /* exponential parameter (mu) */
|
|
)
|
|
{
|
|
double q1;
|
|
|
|
/*
|
|
* Roll a sample from a composite distribution with propagation
|
|
* delay m and exponential distribution time with parameter s.
|
|
* For m = 0, s = 1, mean(y) = std(y) = 1.
|
|
*/
|
|
if (s == 0)
|
|
return (m);
|
|
while ((q1 = drand48()) == 0);
|
|
return (m - s * log(q1 * s));
|
|
}
|
|
#endif /* SIM */
|